Равносильность уравнений конспект кратко

Обновлено: 02.07.2024

Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Определение. Два уравнения с одной переменной

f(х) = g(х) и р(х) = h(х) называют равносильными, если множества их корней совпадают.

Иными словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.


1) Уравнения равносильны, т.к. каждое из них имеет только один корень х=3.

2) Уравнения также равносильны, т.к. у них одни и те же корни .


3) А вот уравнения не равносильны, потому что у первого уравнения корень х=2, а у второго уравнения два корня х=2 и х=-2.

Из определения равносильности следует, что два уравнения равносильны, если каждый корень первого уравнения является корнем второго уравнения, и наоборот.

Решение уравнения осуществляется в три этапа.

Первый этап — технический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3)→ (4) → . и находят корни последнего (самого простого) уравнения указанной цепочки.

Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этап — проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.

  • Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?
  • Какие преобразования могут перевести данное уравнение в уравнение-следствие?
  • Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?
  • В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

Из курса средней школы мы знаем, что можно сделать следующие преобразования уравнений: любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Обе части уравнения можно умножить или разделить на одной и то же число, не равное нулю.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Из этого определения и определения равносильности уравнений следует, что:

  1. если ва уравнения равносильны, то каждое из них является следствием другого;
  2. если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.

При решении уравнений главное- не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.

Стоит отметить, что посторонние корни могут получиться при умножении обеих частей уравнения на выражение, содержащее неизвестное; а вот потеря корней может произойти при делении обеих частей уравнения на выражение, содержащее неизвестное.

Итак, сформулируем основные теоремы, которые используются при решении равносильных уравнений:

Определение. Областью определения уравнения f(х) = g(х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения

f(х)и g(х).

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и туже нечетную степень, то получится уравнение, равносильное данному.

равносильно уравнению f(x) = g(х).

Теорема 4. Если обе части уравнения f(x) = g(х) умножить на одно и то же выражение h(х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(х)

б) нигде в этой области не обращается в 0, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному в его ОДЗ.

Следствием теоремы 4: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.


Теорема 5. Если обе части уравнения f(x)=g(х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение равносильное данному в его ОДЗ.

Краткая запись теорем 4, 5.

4. f(x) = g(x) ⇔h(x)f(x) = h(x)g(x), где h(x) ≠0

и h(x) имеет смысл в ОДЗ данного уравнения.

и n=2k (чётное число).

Например, х – 1 = 3; х = 4

Умножим обе части на (х – 2):

(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень⇒ проверка!

Равносильность неравенств с неизвестным определяется аналогично.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Разбор решения заданий тренировочного модуля


Решим уравнение:

Возведем в квадрат обе части уравнения, получим:

, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня , а у первоначального уравнения только один корень х=4.


  1. Неравенства и x-3 x-1 не равносильны, так как решениями первого являются числа x 1, а решениями второго- числа x>-1. При решении неравенств обычно данное неравенство преобразуется в ему равносильное.


На этом уроке обобщаются сведения о равносильности уравнений. Повторяются основные теоремы равносильности. Рассматриваются причины потери и появления посторонних корней при решении уравнений.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Равносильность уравнений"

• обобщить сведения о равносильности уравнений;

• повторить основные теоремы равносильности;

• рассмотреть причины потери и появления посторонних корней при решении уравнений.

В процессе изучения математики, начиная с младших классов, мы постоянно сталкиваемся с уравнениями с одной или двумя переменными, с неравенствами, с системами уравнений или неравенств. На сегодняшнем уроке мы постараемся обобщить все, что мы знаем об уравнениях.

Начнем с определения.

Определение.

Два уравнения с одной переменной f(x) = g(x) и p(x) = h(x) называют равносильными, если множества их корней совпадают.

Другими словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Дадим еще одно определение.

Определение.

Если каждый корень уравнения f(x) = g(x) является в то же время корнем уравнения p(x) = h(x), то уравнение p(x) = h(x) называют следствием уравнения f(x) = g(x).

Очевидно, что справедливо следующее утверждение: два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.

Таким образом, общую схему можно описать так. Исходное уравнение преобразовывается в более простое уравнение, полученное уравнение преобразовывается в еще более простое уравнение и так происходит до тех пор, пока не получится довольное простое уравнение, корни которого и находят.

Естественно возникает вопрос, а будут ли корни решенного простого уравнения корнями нашего исходного уравнения? Если все преобразования были равносильными, то есть все полученные уравнения равносильные, тогда да. Если же некоторые преобразования были равносильными, а в некоторых мы не уверены, но точно знаем, что переходили с их помощью к уравнениям-следствиям, то однозначного ответа на вопрос мы не получим.

Для того, чтобы на данный вопрос ответить точно, нужно все найденные корни проверить, подставив их в исходное уравнение. Если найденный корень последнего уравнения не удовлетворяет исходному уравнению, то его называют посторонним корнем и в ответ его включать не надо.

Как правило, решение уравнения осуществляется в три этапа.

1. Технический. На этом этапе осуществляется преобразование по схеме, которую мы описали выше.

2. Анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

3. Проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательно проверка всех найденных корней их подстановкой в исходное уравнение.

Давайте теперь определимся: как же узнать, является ли переход от одного уравнения к другому равносильным преобразованием?

Попробуем вспомнить все теоремы, в которых уравнение заменяется равносильным уравнением. Эти теоремы были доказаны нами ранее, поэтому мы просто напомним их.

Теорема 1. Если какой-либо компонент уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение, равносильное данному.

Теперь давайте вспомним, что областью определения уравнения эф от икс равно жэ от икс или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной икс, при которых одновременно имеют смысл выражения f(x) и g(x).

Теорема 4. Если обе части уравнения f(x) = g(x) умножить на одно и тоже выражение h(x, которое: имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(x); нигде в этой области не обращается в ноль, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному.

Следствием этой теоремы будет известный факт о том, что если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильно данному.

Теорема 6.

Теперь давайте вспомним, какие преобразования переводят уравнение в уравнение-следствие.

Если в процессе решения, мы воспользуемся последними теоремами, но не будем проверять выполнение необходимых условий, то получится уравнение-следствие.

Второй корень является посторонним для уравнения:

А появился он потому, что мы умножили обе части уравнения на одно и то же выражение, нарушив при этом условие теоремы 4.

В этой теореме содержится требование: выражение, на которое мы умножаем обе части уравнения, нигде не должно обращаться в ноль. А в нашем случае, выражение x – 2 обращается в ноль при x = 2, которое и оказалось посторонним корнем.

Теперь давайте обе части исходного уравнения возведем в квадрат. Получим:

Посторонний корень появился потому, что мы возвели обе части уравнения в одну и ту же четную степень, нарушив при этом условие теоремы пять. В этой теореме содержится требование: обе части уравнения должны быть неотрицательны. Про выражение x – 5 мы не можем этого утверждать.

Потенцируя, получим уравнение

Но этот корень является посторонним для исходного уравнения, поскольку оба выражения под знаками логарифмов принимают отрицательные значения.

А появился этот корень потому, что при потенцировании, мы нарушили условие шестой теоремы. В этой теореме содержится требование: выражения под знаками логарифмов должны быть положительными, о выражениях 2x – 4 и 3x – 5 этого утверждать мы не можем, так как они при одних значениях x положительны, при других – они отрицательны.

В нашем примере переход от логарифмического уравнения к уравнению 2x – 4 = 3x – 5 привел к расширению области определения уравнения.

Область определения логарифмического уравнения задается системой неравенств

решением которого будет промежуток

Областью определения уравнения 2x – 4 = 3x – 5 является множество всех действительных чисел. То есть у области определения логарифмического уравнения добавился луч от минус бесконечности до двух. В этом промежутке и находится корень уравнения x = 1.

Давайте попробуем сформулировать возможные причины расширения области определения уравнения:

1. Освобождение в процессе решения уравнения от знаменателей, содержащих переменную величину.

2. Освобождение в процессе решения уравнения от знаков корней четной степени.

3. Освобождение в процессе решения уравнения от знаков логарифмов.

Итак при решении уравнения обязательна проверка всех найденных корней, если:

1. Произошло расширение области определения уравнения.

2. Осуществлялось возведение обеих частей уравнения в одну и ту же четную степень.

3. Выполнялось умножение обеих частей уравнения на одно и то же выражение с переменной (имеющее смысл во всей области определения уравнения).

Рассмотрим пример.

В рассмотренном примере, при проверке корней у нас были небольшие и несложные вычисления, а как же быть в случаях, когда проверка корней сопровождается значительными вычислительными трудностями? Существует несколько так называемых обходных путей проверки.

Например, при проверке корней в примере, мы не высчитывали значение левой части уравнения, а просто прикидывали чему равно получившееся выражение. Такая прикидка – один из обходных путей проверки.

Но этот корень можно было проверить и другим способом. Мы могли его проверить не по исходному уравнению, а по полученному в процессе преобразований уравнению-следствию.

Как правило, самый легкий путь проверки – по области определения исходного уравнения.

Каждый раз, при решении уравнений, явно выделять три этапа мы не будем. Но мысленно мы всегда такое разбиение будем делать.

Рассмотрим еще один пример.

Мы рассмотрели варианты, когда уравнение в процессе преобразований приобретает новые корни, но бывают случаи, когда уравнение теряет корни. Укажем причины потери корней при решении уравнений:

Рассмотрим пример.

Можно сделать вывод, что применяя при решении уравнения какую-либо формулу, надо следить за тем, чтобы ОДЗ переменной для правой и левой частей формулы были одинаковыми.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Равносильность уравнений

Определение 1: Два уравнения с одной переменной f ( x )= g ( x ) и p ( x )= h ( x )

называются равносильными , если множества их корней совпадают.

Определение 2: Если каждый корень уравнения f ( x )= g ( x ) (1)

является в тоже время корнем уравнения p ( x )= h ( x ) (2),

то уравнение (2) называют следствием уравнения (1).

Очевидно: Два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.

Схема решения любого уравнения:

1.Технический этап. Осуществляется преобразование уравнения (1)→(2)→(3)→(4) …

2 . Анализ решения. Все ли преобразования были равносильными?

3. Проверка.

Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?

Какие преобразования могут перевести данное уравнение в уравнение-следствие?

Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?

В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

1.Теоремы о равносильности уравнений.

Теорема 1. Если какой либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение а f ( x ) =а g ( x ) ( где а>0, а≠1) равносильно уравнению f ( x )= g ( x ).

Определение: Областью определения уравнения f ( x )= g ( x ) или областью допустимых значений (ОДЗ) переменной называют множество тех значений переменной х, при которых одновременно имеют смысл выражения f ( x ) и g ( x ).

Теорема 4. Если обе части уравнения f ( x )= g ( x ) умножить на одно и то же выражение h ( x ), которое:

А) имеет смысл всюду в области определения (в ОДЗ) уравнения f ( x )= g ( x )

Б) нигде в этой области не обращается в 0 –

то получится уравнение f ( x ) h ( x )= g ( x ) h ( x ), равносильное данному.

Теорема 5. Если обе части уравнения f ( x )= g ( x ) неотрицательны в области определения уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение, равносильное данному f ( x ) n = g ( x ) n .

Теорема 6. Если f ( x ) >0 и g ( x ) >0, то логарифмическое уравнение log а f ( x )= log а g ( x ), где а>0, а≠1, равносильно уравнению f ( x )= g ( x ).

2. Преобразование данного уравнения в уравнение-следствие.

Если в процессе решения уравнения мы применили заключение одной из теорем 4,5,6, не проверив выполнения ограничительных условий, заложенных в формулировках теорем, то получится уравнение-следствие.

Причины расширения области определения уравнения.

Освобождение в процессе решения уравнения от знаменателей, содержащих переменную величину.

Освобождение в процессе решения уравнения от знаков корней четной степени.

Освобождение в процессе решения уравнения от знаков логарифмов.

Обязательна проверка всех найденных корней, если:

произошло расширение области определ6ения уравнения.

осуществлялось возведение обеих частей уравнения в одну и ту же четную степень.

выполнялось умножение обеих частей уравнения на одно и то же выражение с переменной (разумеется, имеющее смысл во всей области определения уравнения).

3. О проверке корней.

Как правило, самый легкий обходной путь проверки – по области определения (ОДЗ) заданного уравнения. Но не переоценивайте этот способ: он является полноценным только в том случае, когда при решении уравнения других причин нарушения равносильности, кроме расширения области определения, не было (это чаще всего бывает в логарифмических уравнениях). При решении же иррациональных уравнений, где используется метод возведения в квадрат, способ проверки найденных корней по ОДЗ не выручит; лучше, если это возможно, делать проверку подстановкой.

О потере корней.

Причины потери корней при решении уравнений:

деление обеих частей уравнения на одно и то же выражение h ( x ) (кроме тех случаев, когда точно известно, что всюду в области определения уравнения выполняется условие h ( x ) ≠0).

сужение ОДЗ в процессе решения уравнения.

замена уравнения h ( f ( x ))= h ( g ( x )) уравнением f ( x )= g ( x ) в том случае, если функция

у= h ( x ) – немонотонная функция.

Этот метод можно применить только в том случае, если функция у= h ( x ) – монотонная функция.

Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.

Понятие равносильных уравнений

Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.

Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.

Уравнение f ( x ) = g ( x ) считается равносильным уравнению r ( x ) = s ( x ) , если у них одинаковые корни или у них обоих нет корней.

Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.

Если уравнение f ( x ) = g ( x ) имеет то же множество корней, что и уравнение p ( x ) = h ( x ) , то они считаются равносильными по отношению друг к другу.

Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.

Приведем несколько примеров таких уравнений.

Например, равносильными будут 4 · x = 8 , 2 · x = 4 и x = 2 , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x · 0 = 0 и 2 + x = x + 2 , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x = x + 5 и x 4 = − 1 , каждое из которых не имеет ни одного решения.

Для наглядности рассмотрим несколько примеров неравносильных уравнений.

К примеру, таковыми будут x = 2 и x 2 = 4 , поскольку их корни отличаются. То же относится и к уравнениям x x = 1 и x 2 + 5 x 2 + 5 , потому что во втором решением может быть любое число, а во втором корнем не может быть 0 .

Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x 2 + y 2 + z 2 = 0 и 5 · x 2 + x 2 · y 4 · z 8 = 0 включают в себя по три переменных и имеют только одно решение, равное 0 , во всех трех случаях. А пара уравнений x + y = 5 и x · y = 1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.

Понятие уравнений-следствий

Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.

Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.

Читайте также: