Передача информации конспект кратко

Обновлено: 02.07.2024

Мы непрерывно передаём информацию . Передача информации происходит при чтении книг, журналов, газет, при просмотре телевизора.
В процессе передачи информации обязательно участвуют источник и приёмник информации : передачу информации осуществляет источник, а приёмник её принимает.

Органы чувств человека являются биологическими информационными каналами .
Техническими информационными каналами являются телефон, радио, телевидение, компьютерные сети.
По характеру передачи информационный канал может быть односторонним или двусторонним .

Если информация передаётся в одну сторону, то это односторонняя передача информации. Например, при чтении книги ты являешься приёмником информации, воспринимаешь информацию, которая находится в книге с помощью органов зрения, а книга — источником информации.

Рассмотрим другую ситуацию. Например, просмотр фильма в кинотеатре. Источник информации здесь будет один — фильм, а приёмников информации будет несколько — все зрители в кинозале.

Для того чтобы передавать информацию на большие расстояния, человек использует различные средства связи.

Средства связи — способы передачи информации на расстояние. К традиционным средствам связи относятся сигнализация, почта, телеграф, телефон, радио, телевидение, Интернет.

Учитель:Салманов Магомед Гаджиевич.

  1. Изучение и закрепление знаний;
  2. Актуализация ведущих знаний;
  3. Ввести понятия способы передачи информации, каналы передачи информации, пропускная способность канала.
  4. Рассмотреть технические системы передачи информации.
  1. развивать познавательный интерес, творческую активность учащихся;
  2. развивать дружеское и деловое общение учащихся в совместной работе.
  1. воспитывать интерес к предмету, внимательность, дисциплинированность.
  1. Организационный момент.
  2. Актуализация знаний:
  3. Постановка цели урока.
  4. Изучение нового материала.
  5. Подведение итогов урока.
  6. Постановка домашнего задания.

II. Актуализация знаний

Из базового курса вам известно:

Информационный канал может иметь либо естественную природу (атмосферный воздух, через который переносятся звуковые волны, солнечный свет, отраженный от наблюдаемых объектов), либо быть искусственно созданным. Искусственно созданные – это как раз технические средства связи.

III. Постановка цели урока

Приступим к изучению нового материала. Тему урока запишите в тетрадь.
Сегодня на уроке мы с вами познакомимся с техническими системами передачи информации, как осуществляется процесс передачи информации, решим практические задачи.

IV. Изучение нового материала.

Первым техническим средством передачи информации на расстояние стал телеграф, изобретенный в 1837 году американцем Сэмюэлем Морзе. В 1876 году американец А.Белл изобретает телефон. На основании открытия немецким физиком Генрихом Герцем электромагнитных волн (1886 г.), А.С. Поповым в России в 1895 году и почти одновременно с ним в 1896 году Г.Маркони в Италии, было изобретено радио. Телевидение и Интернет появились в ХХ веке. (Слайд 2)

Модель передачи информации К. Шеннона

Все перечисленные способы информационной связи основаны на передаче на расстояние физического (электрического или электромагнитного) сигнала и подчиняются некоторым общим законам. Исследованием этих законов занимается теория связи, возникшая в 1920-х годах. Математический аппарат теории связи — математическую теорию связи, разработал американский ученый Клод Шеннон. (Слайд 3)

Модель передачи информации по техническим каналам связи

Клодом Шенноном была предложена модель процесса передачи информации по техническим каналам связи. Под кодированием здесь понимается любое преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи. Декодирование — обратное преобразование сигнальной последовательности .

Работу такой схемы можно пояснить на знакомом всем процессе разговора по телефону. Источником информации является говорящий человек. Кодирующим устройством — микрофон телефонной трубки, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Каналом связи служит телефонная сеть (провода, коммутаторы телефонных узлов, через которые проходит сигнал). Декодирующим устройством является телефонная трубка (наушник) слушающего человека — приемника информации. Здесь пришедший электрический сигнал превращается в звук.

Современные компьютерные системы передачи информации — компьютерные сети, работают по тому же принципу. Есть процесс кодирования, преобразующий двоичный компьютерный код в физический сигнал того типа, который передается по каналу связи. Декодирование заключается в обратном преобразовании передаваемого сигнала в компьютерный код. Например, при использовании телефонных линий в компьютерных сетях функции кодирования-декодирования выполняет прибор, который называется модемом.

Пропускная способность канала и скорость передачи информации

Разработчикам технических систем передачи информации приходится решать две взаимосвязанные задачи: как обеспечить наибольшую скорость передачи информации и как уменьшить потери информации при передаче. К. Шеннон был первым ученым, взявшимся за решение этих задач создавшим новую для того времени науку — теорию информации . Шеннон определил способ измерения количества информации , передаваемой по каналам связи. Им было введено понятие пропускной способности канала как максимально возможной скорости передачи информации. Эта скорость измеряется в битах в секунду (а также килобитах в секунду, мегабитах в секунду).

Пропускная способность канала связи зависит от его технической реализации. Например, в компьютерных сетях используются следующие средства связи:

  • телефонные линии;
  • электрическая кабельная связь;
  • оптоволоконная кабельная связь;
  • радиосвязь.

Пропускная способность телефонных линий — десятки и сотни Кбит/с; пропускная способность оптоволоконных линий и линий радиосвязи измеряется десятками и сотнями Мбит/с.

Шум, защита от шума

Шеннон разработал специальную теорию кодирования, дающую методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Например, если при разговоре по телефону вас плохо слышно, то, повторяя каждое слово дважды, вы имеете больше шансов на то, что собеседник поймет вас правильно.

Избыточность кода — это многократное повторение передаваемых данных.

Однако нельзя делать избыточность слишком большой. Это приведет к задержкам и удорожанию связи. Теория кодирования как раз и позволяет получить такой код, который будет оптимальным: избыточность передаваемой информации будет минимально возможной, а достоверность принятой информации — максимальной.

Большой вклад в научную теорию связи внес известный советский ученый Владимир Александрович Котельников. В 1940-1950-х годах им получены фундаментальные научные результаты по проблеме помехоустойчивости систем передачи информации.

Самостоятельная работа. У учащихся карточки с заданиями, которые они должны выполнить.

Задания для самостоятельной работы

  1. Пропускная способность канала связи 100 Мбит/с. Канал не подвержен воздействию шума (например, оптоволоконная линия). Определите, за какое время по каналу будет передан текст, информационный объем которого составляет 100 Кб.
  2. Пропускная способность канала связи 10 Мбит/с. Канал подвержен воздействию шума, поэтому избыточность кода передачи составляет 20%. Определите, за сколько времени по каналу будет передан текст, информационный объем которого составляет 100 Кб.

Наш урок подошел к концу. Что нового вы сегодня узнали на уроке и чему научились?

Я предлагаю оценить себя самостоятельно (говорю правильные ответы). Оценки за урок.

Код ОГЭ: 1.2.1 Процесс передачи информации, источник и приемник информации, сигнал, скорость передачи информации

  • тот, кто предоставляет информацию (выступает ее источником);
  • тот, кто принимает информацию и является ее получателем (таких может быть несколько);
  • канал связи, по которому передается информация.

Общую схему передачи информации разработал основоположник цифровой связи (создатель теории информации) Клод Шеннон.

Процесс передачи информации

Источниками и приемниками информации могут быть живые существа или технические устройства. Каналами связи могут быть, например, электромагнитные, звуковые и световые волны.

Сигналы могут быть аналоговыми (непрерывными) или дискретными (импульсными). Сигнал является дискретным, если его параметр может принимать только конечное число значений и существует лишь в конечное число моментов времени. В компьютерах используются сигналы, которые могут принимать только два дискретных значения — 0 и 1.

По способу передачи сигналов различают каналы проводной связи (например, кабельные) и каналы беспроводной связи (например, спутниковые).

По типу среды распространения каналы связи делятся на проводные, акустические, оптические, инфракрасные и радиоканалы. Например, один из современных каналов передачи информации — световод (оптоволокно) — позволяет передавать сигналы лазеров на расстояние более 100 км без усиления.

Основной характеристикой каналов передачи информации является их пропускная способность, или скорость передачи по каналу информации.

Скорость передачи информации отображает, как быстро передается информация от источника к получателю — безотносительно к тому, по каким каналам происходит передача.

Пропускная способность канала — максимальное количество переданной или полученной по этому каналу информации за единицу времени. Таким образом, пропускная способность канала — максимально возможная скорость передачи информации по этому каналу. Например, пропускная способность современных оптоволоконных каналов — более 100 Мбит/с, т. е. в миллиарды раз выше, чем у нервной системы человека при чтении текстов.

Пропускная способность канала измеряется в тех же единицах, что и скорость передачи информации.

Теоретический материал для самостоятельного изучения:

В основе любой информационной деятельности лежат так называемые информационные процессы — совокупность последовательных действий (операций), производимых над информацией для получения какого-либо результата (достижения цели). Информационные процессы могут быть различными, но все их можно свести к трем основным: обработка информации, передача информации и хранение информации.

Обработка информации

Обработка информации — это целенаправленный процесс изменения формы ее представления или содержания.

Из курса информатики основной школы вам известно, что существует два различных типа обработки информации:

  1. обработка, связанная с получением новой информации (например, нахождение ответа при решении математической задачи; логические рассуждения и др.);
  2. обработка, связанная с изменением формы представления информации, не изменяющая ее содержания. К этому типу относятся:

— кодирование — переход от одной формы представления информации к другой, более удобной для восприятия, хранения, передачи или последующей обработки; один из вариантов кодирования — шифрование, цель которого — скрыть смысл информации от посторонних;

— структурирование — организация информации по некоторому правилу, связывающему ее в единое целое (например, сортировка);

— поиск и отбор информации, требуемой для решения некоторой задачи, из информационного массива (например, поиск в словаре).

Общая схема обработки информации может быть представлена следующим образом:


Исходные данные — это информация, которая подвергается обработке.

Правила — это информация процедурного типа. Они содержат сведения для исполнителя о том, какие действия требуется выполнить, чтобы решить задачу.

Исполнитель — тот объект, который осуществляет обработку. Это может быть человек или компьютер. При этом человек, как правило, является неформальным, творчески действующим исполнителем. Компьютер же способен работать только в строгом соответствии с правилами, т.е. является формальным исполнителем обработки информации.

Рассмотрим отдельные процессы обработки информации более подробно.

Кодирование информации

Кодирование информации — это обработка информации, заключающаяся в ее преобразовании в некоторую форму, удобную для хранения, передачи, обработки информации в дальнейшем.

Код — это система условных обозначений (кодовых слов), используемых для представления информации.

Кодовая таблица — это совокупность используемых кодовых слов и их значений.

Нам уже знакомы примеры равномерных двоичных кодов — пятиразрядный код Бодо и восьмиразрядный код ASCII.

Самый известный пример неравномерного кода — код Морзе. В этом коде все буквы и цифры кодируются в виде различных последовательностей точек и тире.


При использовании неравномерных кодов важно понимать, сколько различных кодовых слов они позволяют построить.

Пример 1. Имеющаяся информация должна быть закодирована в четырехбуквенном алфавите . Выясним, сколько существует различных последовательностей из 7 символов этого алфавита, которые содержат ровно пять букв А.

Нас интересует семибуквенная последовательность, т. е.


Если бы у нас не было условия, что в ней должны содержаться ровно пять букв А, то для первого символа было бы 4 варианта, для второго — тоже 4, и т. д.

Тогда мы получили бы: 4 · 4 · 4 · 4 · 4 · 4 · 4 = 16384 варианта.

Теперь вернемся к имеющемуся условию и заполним пять первых мест буквой А. Получим:


Так как на 6-м и 7-м местах могут стоять любые из трех оставшихся букв B, C, D, то всего существует 9 (3 · 3) вариантов последовательностей.

Но ведь буквы А могут находиться на любых пяти из семи имеющихся позиций. А сколько таких вариантов всего?

Префиксный код — код со словом переменной длины, обладающий тем свойством, что никакое его кодовое слово не может быть началом другого (более длинного) кодового слова.

  1. Код, состоящий из слов 0, 10 и 11, является префиксным.
  2. Код, состоящий из слов 0, 10, 11 и 100, не является префиксным.

Также достаточным условием однозначного декодирования неравномерного код является обратное условие Фано. В нем требуется, чтобы никакой код не был окончанием другого (более длинного) кода.

Пример 2. Двоичные коды для 5 букв латинского алфавита представлены в таблице:


Можно заметить, что для заданных кодов не выполняется прямое условие Фано:

B=01, E=011, и D=10, C=100.

А вот обратное условие Фано выполняется: никакое кодовое слово не является окончанием другого. Следовательно, имеющуюся строку нужно декодировать справа налево (с конца). Получим

01 10 100 011 000 = BDCEA

Для построения префиксных кодов удобно использовать бинарные деревья, в которых от каждого узла отходят только два ребра, помеченные цифрами 0 и 1.

Пример 3. Для кодирования некоторой последовательности, состоящей из букв А, Б, В и Г, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. При этом используются такие кодовые слова: А — 0, Б — 10, В — 110. Каким кодовым словом может быть закодирована буква Г? Если таких слов несколько, укажите кратчайшее из них.

Построим бинарное дерево:


Чтобы найти код символа, нужно пройти по стрелкам от корня дерева к нужному листу, выписывая метки стрелок, по которым мы переходим.

Определим положение букв А, Б и В на этом дереве, зная их коды. Получим:


Чтобы код был префиксным, ни один символ не должен лежать на пути от корня к другому символу. Уберем лишние стрелки:


На получившемся дереве можно определить подходящее расположение буквы Г и его код.

Поиск информации

Задача поиска обычно формулируется следующим образом. Имеется некоторое хранилище информации — информационный массив (телефонный справочник, словарь, расписание поездов, диск с файлами и др.). Требуется найти в нем информацию, удовлетворяющую определенным условиям поиска (телефон какой-то организации, перевод слова, время отправления поезда, нужную фотографию и т. д.). При этом, как правило, необходимо сократить время поиска, которое зависит от способа организации данных и используемого алгоритма поиска.

Алгоритм поиска, в свою очередь, также зависит от способа организации данных.

Если данные никак не упорядочены, то мы имеем дело с неструктурированным набором данных. Для осуществления поиска в таком наборе применяется метод последовательного перебора.

При последовательном переборе просматриваются все элементы подряд, начиная с первого. Поиск при этом завершается в двух случаях:

— искомый элемент найден;

— просмотрен весь набор данных, но искомого элемента среди них не нашлось.

— искомый элемент оказался первым среди просматриваемых. Тогда просмотр всего один;

Если же информация упорядочена, то мы имеем дело со структурой данных, в которой поиск осуществляется быстрее, можно построить оптимальный алгоритм.


Одним из оптимальных алгоритмов поиска в структурированном наборе данных может быть метод половинного деления.

Напомним, что при этом методе искомый элемент сначала сравнивается с центральным элементом последовательности. Если искомый элемент меньше центрального, то поиск продолжается аналогичным образом в левой части последовательности. Если больше, то — в правой. Если же значения искомого и центрального элемента совпадают, то поиск завершается.

Пример 4. В последовательности чисел 61 87 180 201 208 230 290 345 367 389 456 478 523 567 590 требуется найти число 180.

Процесс поиска представлен на схеме:


Передача информации

Передача информации — это процесс распространения информации от источника к приемнику через определенный канал связи.

На рисунке представлена схема модели процесса передачи информации по техническим каналам связи, предложенная Клодом Шенноном.


Работу такой схемы можно пояснить на примере записи речи человека с помощью микрофона на компьютер.

Источником информации является говорящий человек. Кодирующим устройством — микрофон, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Канал связи — провода, соединяющие микрофон и компьютер. Декодирующее устройство — звуковая плата компьютера. Приемник информации — жесткий диск компьютера.

В современных технических системах связи борьба с шумом (защита от шума) осуществляется по следующим двум направлениям:

Но чрезмерная избыточность приводит к задержкам и удорожанию связи. Поэтому очень важно иметь алгоритмы получения оптимального кода, одновременно обеспечивающего минимальную избыточность передаваемой информации и максимальную достоверность принятой информации.

Важной характеристикой современных технических каналов передачи информации является их пропускная способность — максимально возможная скорость передачи информации, измеряемая в битах в секунду (бит/с). Пропускная способность канала связи зависит от свойств используемых носителей (электрический ток, радиоволны, свет). Так, каналы связи, использующие оптоволоконные кабели и радиосвязь, обладают пропускной способностью, в тысячи раз превышающей пропускную способность телефонных линий.

Современные технические каналы связи обладают, перед ранее известными, целым рядом достоинств:

— высокая пропускная способность, обеспечиваемая свойствами используемых носителей;

— надёжность, связанная с использованием параллельных каналов связи;

— помехозащищённость, основанная на автоматических системах проверки целостности переданной информации;

— универсальность используемого двоичного кода, позволяющего передавать любую информацию — текст, изображение, звук.

Объём переданной информации I вычисляется по формуле:

где v — пропускная способность канала (в битах в секунду), а t — время передачи.

Рассмотрим пример решения задачи, имеющей отношение к процессу передачи информации.

Пример 5. Документ объемом 10 Мбайт можно передать с одного компьютера на другой двумя способами.

А. Передать по каналу связи без использования архиватора.

Б. Сжать архиватором, передать архив по каналу связи, распаковать.

Какой способ быстрее и насколько, если:

— средняя скорость передачи данных по каналу связи составляет 2 18 бит/с;

— объем сжатого архиватором документа равен 25% от исходного объема;

— время, требуемое на сжатие документа — 5 секунд, на распаковку — 3 секунды?

Для решения данной задачи диаграмма Гантта не нужна; достаточно выполнить расчёты для каждого из имеющихся вариантов передачи информации.

Рассмотрим вариант А. Длительность передачи информации в этом случае составит:

Рассмотрим вариант Б. Длительность передачи информации в этом случае составит:

Итак, вариант Б быстрее на 232 с.

Хранение информации

Сохранить информацию — значит тем или иным способом зафиксировать её на некотором носителе.

Носитель информации — это материальная среда, используемая для записи и хранения информации.

Основным носителем информации для человека является его собственная память. По отношению к человеку все прочие виды носителей информации можно назвать внешними.

Основное свойство человеческой памяти — быстрота, оперативность воспроизведения хранящейся в ней информации. Но наша память не надёжна: человеку свойственно забывать информацию. Именно для более надёжного хранения информации человек использует внешние носители, организует внешние хранилища информации.

Виды внешних носителей менялись со временем: в древности это были камень, дерево, папирус, кожа и др. Долгие годы основным носителем информации была бумага. Развитие компьютерной техники привело к созданию магнитных (магнитная лента, гибкий магнитный диск, жёсткий магнитный диск), оптических (CD, DVD, BD) и других современных носителей информации.

В последние годы появились и получили широкое распространение всевозможные мобильные электронные (цифровые) устройства: планшетные компьютеры, смартфоны, устройства для чтения электронных книг, GPS-навигаторы и др. Появление таких устройств стало возможно, в том числе, благодаря разработке принципиально новых носителей информации, которые:

  1. Обладают большой информационной ёмкостью при небольших физических размерах.
  2. Характеризуются низким энергопотреблением при работе, обеспечивая наряду с этим высокие скорости записи и чтения данных.
  3. Энергонезависимы при хранении.
  4. Имеют долгий срок службы.

Используя ресурсы Интернет, найти ответы на вопросы:

Задание 1

1. Что представляет из себя процесс передачи информации?

Передача информации — физический процесс, посредством которого осуществляется перемещение информации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:

  • Источник информации.
  • Приёмник информации.
  • Носитель информации.
  • Среда передачи.

Схема передачи информации:

Источник информации – информационный канал – приемник информации.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):


Клодом Шенноном была разработана специальная теория ко­дирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части ин­формации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это при­ведёт к задержкам и подорожанию связи.

2. Общая схема передачи информации


По типу среды распространения каналы связи делятся на:

Телекоммуникации (греч. tele - вдаль, далеко и лат. communicatio - общение) - это передача и прием любой информации (звука, изображения, данных, текста) на расстояние по различным электромагнитным системам (кабельным и оптоволоконным каналам, радиоканалам и другим проводным и беспроводным каналам связи).

Телекоммуникационная сеть - это система технических средств, посредством которой осуществляются телекоммуникации.

К телекоммуникационным сетям относятся:
1. Компьютерные сети (для передачи данных)
2. Телефонные сети (передача голосовой информации)
3. Радиосети (передача голосовой информации - широковещательные услуги)
4. Телевизионные сети (передача голоса и изображения - широковещательные услуги)

Компьютерные телекоммуникации - телекоммуникации, оконечными устройствами которых являются компьютеры.

Компьютерные телекоммуникации начинают внедряться в образование. В высшей школе их используют для координации научных исследований, оперативного обмена информацией между участниками проектов, обучения на расстоянии, проведения консультаций. В системе школьного образования - для повышения эффективности самостоятельной деятельности учащихся, связанной с разнообразными видами творческих работ, включая и учебную деятельность, на основе широкого использования исследовательских методов, свободного доступа к базам данных, обмена информацией с партнерами как внутри страны, так и за рубежом.

5. Что такое пропускная способность канала передачи информации?
Пропускная способность — метрическая характеристика, показывающая соотношение предельного количества проходящих единиц (информации, предметов, объёма) в единицу времени через канал, систему, узел.
В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной/полученной информации за единицу времени.
Пропускная способность — один из важнейших с точки зрения пользователей факторов. Она оценивается количеством данных, которые сеть в пределе может передать за единицу времени от одного подсоединенного к ней устройства к другому.

5. В каких единицах измеряется пропускная способность каналов передачи информации?

Может измеряться в различных, иногда сугубо специализированных, единицах — штуки, бит/сек, тонны, кубические метры и т. д.

Читайте также: