Конспект по биологии биотехнология

Обновлено: 02.07.2024

Биотехнология кратко — дисциплина, изучающая возможности применения живых организмов и их систем в решении различных технологических задач, в том числе создания живых организмов с определенными свойствами при помощи генной инженерии.

Биотехнологию в рефератах представляют как понятие, охватывающее широкий спектр процедур, направленных на модификацию живых организмов в соответствии с целями человека.

История биотехнологии

Ранняя биотехнология позволила фермерам выбрать и развести культуры, которые сегодня дают самые большие урожаи: в достаточном для поддержания растущего населения количестве.

Так как посевы и поля становились все более объемными, возникли проблемы с их поддержанием. Тогда обнаружили, что отдельные организмы и продукты их переработки вполне эффективно оплодотворяют, восстанавливают азот и борются с вредителями. На протяжении развития сельского хозяйства, фермеры непреднамеренно изменяли генетику культур, вводя их в новые условия и разводя вместе с другими растениями. Все это было первыми формами биотехнологий.

Долгое время люди также пользовались селекцией с целью улучшить производство сельскохозяйственных культур и домашнего скота, чтобы все это потом можно было употреблять в пищу.

Селекция основывалась на том, что организмы, обладающие желательными характеристиками, сопрягались с такими же организмами.

Так получили самые сладкие и крупные зерновые культуры.

Начало 20 века стало временем углубления в основы микробиологии, что привело к изучению различных способов производства. Хаим Вейцман в 1917 году первым применил микробиологическую культуру в промышленном процессе — в производстве кукурузного крахмала.

Ключевые слова: биотехнология, направления биотехнологии, иммобилизованные ферменты, инженерная энзимология.
Раздел ЕГЭ: 3.9. Биотехнология, ее направления…

Основные направления биотехнологии

Благодаря открытиям и успехам молекулярной биологии и генетики в биотехнологии со второй половины XX в. бурно развивается биоинженеринг, представленный тремя направлениями: клеточной, хромосомной и генной инженерией. Клеточная инженерия связана с генетическими экспериментами с изолированными клетками, благодаря которым получают новые генотипы многоклеточных организмов с хозяйственно ценными признаками. Предпосылкой для развития клеточной инженерии стала клеточная технология — выращивание отдельных соматических клеток на питательных средах. Хромосомная инженерия является одним из методов комбинационной селекции, так как связана с выделением и переносом отдельных хромосом с известным набором генов в клетки другого организма, которые приобретают в результате этого новые свойства. Это направление биотехнологии связано с другим направлением — генной инженерией, использующей лабораторные методы in vitro (в пробирке), которые заключаются в переносе генов от одного организма к другому. Одной из задач генной инженерии является создание бактериальных клеток, способных в промышленных масштабах синтезировать защитные белки и гормоны.

Инженерная энзимология

Как вам уже известно, ферменты (энзимы) — вещества белковой природы, поэтому они неустойчивы при хранении и не могут быть использованы в биохимических реакциях многократно (из-за трудностей, связанных с разделением реагентов и продуктов реакции). Решить эти проблемы технологического характера позволяет применение иммобилизованных ферментов, созданием которых занимаются учёные, работающие в области инженерной энзимологии.

Основные преимущества использования иммобилизованных ферментов перед природными заключаются в следующем:

  1. иммобилизованные ферменты легко отделимы от реакционной среды, что даёт возможность использовать их повторно, а также получать чистый (без примесей) продукт ферментативной реакции;
  2. ферментативный процесс с использованием иммобилизованных ферментов можно проводить непрерывно, регулируя скорость катализируемой реакции и выход конечного продукта;
  3. иммобилизованные ферменты можно модифицировать, целенаправленно изменяя их свойства, например специфичность действия;
  4. можно регулировать каталитическую активность иммобилизованных ферментов путём изменения свойств носителя.

Способы иммобилизации ферментов

Способы иммобилизации ферментов

Носителями для иммобилизованных ферментов служат некоторые органические и неорганические вещества. Они должны иметь высокую химическую прочность, быть проницаемыми для фермента и субстратов, легко активироваться и являться доступными для получения в виде удобных в технологическом отношении форм (гранул, мембран), иметь невысокую стоимость (рис. 262). Существует достаточно большой набор носителей, пригодных для иммобилизации ферментов в биотехнологических процессах. Рассмотрим вначале органические полимерные носители ферментов.

Органические носители иммобилизованных ферментов могут быть природного или синтетического происхождения. Среди природных полимерных органических носителей различают полисахаридные, белковые и липидные, а среди синтетических — полиметиленовые, полиамидные и полиэфирные. Использование природных полимеров в качестве носителей для иммобилизации объясняется их доступностью и наличием реакционно-способных функциональных групп, легко вступающих в химические реакции. Наиболее часто для иммобилизации ферментов применяют такие природные полимеры, как целлюлоза, декстран и агар.

В биотехнологии используются и синтетические полимерные носители, например полученные на основе стирола, акриловой кислоты, поливинилового спирта. В качестве неорганических носителей для иммобилизации ферментов применяют материалы из стекла, глины, керамики, силикагеля.

Сочетание уникальных каталитических свойств ферментов с преимуществами их иммобилизации позволило создать в биотехнологии новые промышленные процессы. Большинство из них применяют в пищевой промышленности — например, при производстве глюкозо-фруктозных сиропов, получении диетического безлактозного молока, сахаров из молочной сыворотки, аспарагиновой, уксусной, яблочной кислот и др.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Биотехнологияэто производство необходимых человеку продуктов и материалов с помощью живых организмов, культивируемых клеток и биологических процессов.

Возможности биотехнологии необычайно велики благодаря тому, что ее методы выгоднее обычных: они используются при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду и др.

Объектами биотехнологии служат многочисленные представители групп живых организмов — микроорганизмы (вирусы, бактерии, протисты, дрожжи и др.>, растения, животные, а также изолированные из них клетки и субклеточные структуры (органеллы). Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главными направлениями биотехнологии являются :

1) производство с помощью микроорганизмов и культивируемых эука-риотических клеток биологически активных соединений (ферментов, витаминов, гормональных препаратов), лекарственных препаратов (антибиотиков, вакцин, сывороток, высокоспецифичных антител и др.), а также белков, аминокислот, используемых в качестве кормовых добавок;

2) применение биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязнений почвы и т. и.) и для защиты растений от вредителей и болезней;

3) создание новых полезных штаммов микроорганизмов, сортов растений, пород животных и т. п.

Задачи, методы и достижения биотехнологии. Человечеству необходимо научиться эффективно изменять наследственную природу живых организмов, чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе. Поэтому не случайно главной задачей селекционеров в наше время стало решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.

Генная (генетическая) инженерия — раздел молекулярной генетику связанный с целенаправленным созданием новых молекул ДНК, способных размножаться в клетке-хозяине и осуществлять контроль за синтезом необходимых метаболитов клетки. Возникнув на стыке химии нуклеиновых кислот и генетики микроорганизмов, генная инженерия занимается расшифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов или вновь синтезированных генов в клетки растений и животных с целью направленного изменения их наследственных свойств.

Для осуществления переноса генов (или трансгенеза) от одного вида организмов в другой, часто очень далекий по своему происхождению, необходимо выполнить несколько сложных операций:

выделение генов (отдельных фрагментов ДНК) из клеток бак- терий, растений или животных. В отдельных случаях эту операцию заменяют искусственным синтезом нужных генов;

соединение (сшивание) отдельных фрагментов ДНК любого происхождения в единую молекулу в составе плазмиды;

введение гибридной плазмидной ДНК, содержащей нужный ген, в клетки хозяина;

копирование (клонирование) этого гена в новом хозяине с обеспечением его работы.

Клонированные гены путем микроинъекции вводят в яйцеклетку млекопитающих или протопласты растений (изолированные клетки, лишенные клеточной стенки) и из них выращивают целых животных или растения, в геном которых встроены (интегрированы) клонированные гены. Растения и животные, геном которых изменен путем генноинженерных операций, получили название трансгенных растений или трансгенных животных.

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Трансгенные организмы свидетельствуют о больших возможностях генной инженерии как прикладной ветви молекулярной генетики. Например, в последние годы получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др. Трансгенные растения в 1999 г. занимали в мире площадь, равную 48,2 млн. га.

Есть все основания предполагать, что уже в ближайшем будущем будет решена проблема направленного изменения наследственности высших растений, что приведет к революции в сельском хозяйстве. В первую очередь речь идет о создании симбиоза между злаками и азотфиксирующими клубеньковыми бактериями, а это решит проблему азотных удобрений. Имеются уже доказательства того, что свободноживущие азотфиксирующие бактерии способны ассоциировать с корнями злаков, давая возможность растению-хозяину получать некоторое количество азота в результате бактериальной азотфиксации. Теперь генетически нужно добиться, чтобы азотфиксирующие бактерии более эффективно присоединялись к корням злаков, что способствовало бы их более полезной и успешной ассоциации (симбиозу).

Разрабатывается метод переноса в определенные растения более эффективных ферментных систем метаболического пути фиксации атмосферного углерода (темновой фазы фотосинтеза), что позволит повысить скорость фиксации углекислого газа и, как следствие, продуктивность фотосинтеза культурных растений.

Самым важным шагом к победе не только над генетическими болезнями, но и над старостью будет разработка методов генотерапии, безопасных для клетки. Тогда у врачей появится возможность заменять в организме пожилых людей поврежденные в результате мутаций гены на нормальные.

Соматическая гибридизация — это слияние двух различных клеток в культуре тканей. Сливаться могут разные виды клеток одного организма и клетки разных, иногда очень далеких видов, например мыши и крысы, кошки и собаки, человека и мыши,

Культивирование клеток растений стало возможным, когда научились с помощью ферментов избавляться от толстой клеточной стенки и получать изолированный протопласт, который можно культивировать так же, как и клетки животных. Кроме того, можно заставить слиться с протопластом других видов растений и получить в соответствующих условиях новые гибриды. Протопласт является также идеальным реципиентом для чужеродной ДНК, что дает возможность образования генетически модифицированных растений.

Из протопластов многих растений в подходящих условиях формируются полноценные организмы, которые можно пересадить в землю и далее размножать обычным способом. Таким путем получают гибриды между растениями, которые иначе не скрещиваются, освобождаются от вирусов или, наоборот, вводят в растения иные гены.

У растений-регенерантов выявлен широкий спектр мутаций как по качественным, так и по количественным признакам. Для проведения направленной селекции мутантов в культуре создается селективный фон, позволяюеций отобрать клетки с нужными качествами. Именно этот тип клеточной селекции обеспечивает возможность повышения приспособленности генотипов, т. е. в культуре возможна селекция на устойчивость к патогенам, гербицидам, засолению почв, высокой или низкой их кислотности, засухе и т, п. Общий принцип отбора растительных клеток в культуре на питательной среде заключается в том, что признак растения, по которому ведется отбор, как правило, должен проявляться на клеточном уровне.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача — она расширяет и ускоряет масштабы воздействий человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. Со временем человек будет внедрять нужные гены в клетки растений, животных и человека, что позволит постепенно избавиться от многих наследственных болезней, заставит клетки синтезировать необходимые лекарства и биологически активные соединения, а затем — непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород — самое экологически чистое топливо будущего, а также превращать в аммиак атмосферный азот при обычных условиях и т. д.

Биотехнология — комплексная наука, разрабатывающая способы получения необходимых человеку веществ с помощью живых организмов..

Биотехнологические процессы давно используются в производстве хлеба, молочнокислых продуктов, вина, пива.

Объекты биотехнологии — микроорганизмы (бактерии, цианобактерии, грибы, протисты). Их особенности: короткий жизненный цикл, интенсивное размножение, большое разнообразие биохимических свойств, лёгкое получение мутантов.

В селекции микроорганизмов основными методами являются индуцированный мутагенез и отбор групп сходных по генотипу клеток с заданными свойствами.

В промышленных масштабах используется такое направление биотехнологии, как микробиологический синтез.

Микробиологический синтез — получение с помощью микроорганизмов ценных веществ: витаминов, белков, ферментов, лекарств и т. д.

Например, так получают незаменимую аминокислоту лизин (её добавляют в корм животных), антибиотики, уксусную и лимонную кислоты.

Из растительных клеток можно вырастить целый организм. С помощью этого метода получают и размножают ценные сорта растений.

К методам клеточной инженерии относится также гибридизация , т. е. слияние клеток . Разработаны методы гибридизации половых и соматических клеток.

Получение гибридных клеток, совмещающих свойства лимфоцитов и раковых клеток, позволяет быстро получить антитела.

добавление в ДНК кишечной палочки соответствующих человеческих генов дало возможность получать с помощью этой бактерии гормоны инсулин и соматотропин, необходимые в медицине.

shutterstock_794881564.jpg

Организмы, в геном которых встроены гены других видов, называют трансгенными , или генетически модифицированными (ГМО).

Биотехнология – это использование организмов, биологических систем или биологических процессов в промышленном производстве.

Основными объектами биотехнологии являются микроорганизмы. Микроорганизмы быстро растут и размножаются, потребляют и производят широкий спектр химических соединений. С помощью генной инженерии можно заставить их производить полезные для человека продукты. К биотехнологии также можно отнести разведение и усовершенствование сельскохозяйственных животных и растений. Методы генной инженерии позволяют наделять живые организмы новыми желаемыми признаками.

Биотехнология имеет широкий спектр применения. Биотехнология, особенно с применением методов генной инженерии, позволяет получать разнообразные продукты, необходимые человеку:

· продукты питания (молочные продукты, хлебопечение, пивоварение);

С изготовлением пищевых продуктов и напитков связаны самые старейшие биотехнологии. Производство хлеба, сыра, йогурта, уксуса, пива и вина существует уже тысячи лет. В настоящее время производство этих продуктов осуществляется в условиях крупных производств, с использованием современных методов селекции микроорганизмов.

· медикаменты (гормоны, лекарства, антибиотики, вакцины);

Производство антибиотика пенициллина с момента открытия в 1928 году спасло, возможно, миллионы жизней. С тех пор благодаря селекции высокопродуктивных мутантных штаммов, а также разработке методов культивирования, выделения и очистки, производство пенициллина возросло примерно в 2000 раз.

· химические вещества (спирты, ацетон, полимеры);

Запасы традиционных видов топлива (таких как нефть, древесина, уголь, торф) постепенно истощаются, поэтому разрабатываются новые методы использования живых организмов и биологических процессов в качестве источников топлива. Примером тому служит образование биогаза (метана) метаногенными бактериями, образующими метан из углекислого газа в анаэробных условиях. В качестве субстрата чаще всего используются отходы (из навоза, полученного от одной коровы за год, можно получить количество метана, эквивалентное приблизительно 227 л бензина). Например, в Китае такой газ используется для приготовления пищи, освещения, заправки тракторов и автомобилей, запуска электрических генераторов.

Достижения биотехнологии используются в сельском хозяйстве:

· получение кормового белка

Белок получают при крупномасштабном выращивании микроорганизмов, таких как бактерии, водоросли, а также дрожжи и другие грибы. Белок используется в качестве корма для животных и пригоден для употребления людьми. Он служит полезным источником минеральных веществ, витаминов, жиров и углеводов.

Изготовление силоса это традиционных процесс, в основе которого лежит сбраживание клетчатки молочнокислыми бактериями, позволяющий сохранить питательную ценность травы для кормления сельскохозяйственных животных в зимнее время. В настоящее время для изготовления силоса используются культуры быстрорастущих молочнокислых бактерий, что повышает качество и время изготовления силоса.

Культуры семейства бобовых (горох, бобы, клевер, люцерна), на протяжении многих веков использовались в системах севооборота, потому, что их корни обогащают почву азотом. В 19 веке было установлено, что наросты на корнях этих растений содержат симбиотические бактерии рода Rhizobium, которые могут усваивать азот из воздуха и превращать его в нитрат. В настоящее время штаммы этого микроорганизма выращивают промышленным способом, а затем добавляют в почву при посеве семян. Благодаря этому можно выращивать бобовые культуры в различных почвах, в том числе не содержащих симбиотических азотфиксаторов.

Для решения проблем окружающей среды:

· переработка отходов (бумажных, нефтяных, сельскохозяйственных, бытовых);

Необходимые человеку металлы (медь, железо, золото, свинец и др.) а природе встречаются в виде минералов, которые называются также рудами. Добывать металлы из руды – очень трудоемкий процесс. Сейчас стало известно, что процесс высвобождения металлов из руд (выщелачивания) происходит под действием бактерий, которые превращают нерастворимые металлические соединения в растворимые. Бактериальное выщелачивание сейчас используют во всем мире как дополнительный метод выделения металлов из руд, главным образом медных и урановых.

· очистка сточных вод.

Генетическая инженерия исследует возможность создания в лаборатории наследственно измененных организмов. Благодаря генетической инженерии стало возможным соединить в лабораторных условиях фрагменты ДНК разных организмов и получить совершенно новую (рекомбинантную) ДНК, не существующую в природе. Организм, получивший такую ДНК, может сочетать в себе желаемые признаки растений и животных, бактерий и человека, которые в естественных условиях не могли бы сочетаться благодаря межвидовым барьерам.

Эксперименты с рекомбинантной ДНК чаще всего проводят по следующей схеме:

1. Из организма-донора нужных генов выделяют (экстрагируют) ДНК, разрезают с помощью специальных ферментов – нуклеаз и сшивают (лигируют) с другой ДНК (вектор для клонирования) с образованием новой рекомбинантной молекулы ДНК.

Таким образом, молекула рекомбинантной ДНК содержит в себе фрагмент клонируемой (чужеродной) ДНК и векторную молекулу ДНК. Сама по себе ДНК, введенная в живую клетку будет разрушена специальными ферментами – нуклеазами. Для того чтобы нужные гены стали составной частью генетического аппарата клетки, сконструированная ДНК должна встроится в ее геном, либо быть способной к самостоятельной (автономной) репликации. Молекулы ДНК, способные встраиваться в геном клетки или автономно реплироваться используются в генетической инженерии для ввода желаемых генов. Такие молекулы ДНК называют векторными. К числу векторов относят плазмиды, бактериофаги, вирусы животных. Векторные плазмиды и векторные вирусы часто называют гибридными.

Плазмиды – это дополнительные, внехромосомные молекулы ДНК, кодирующие признаки, полезные для бактериальной клетки (устойчивость к антибиотикам, синтез антибиотиков, способность разрушать и использовать некоторые вещества. Плазмиды представляют собой двойную спираль, замкнутую в кольцо. Число их может колебаться от 1 до 38 на клетку. Они не являются необходимыми для жизни. Бактерии способны обмениваться плазмидами, приобретая новые свойства (посредством контакта через половые пили).

2. Эту конструкцию вводят в клетку-хозяина (реципиент), где она копируется (реплицируется) и передается потомкам. Этот процесс называется трансформацией.

Клетку реципиентного организма (бактериальную, грибную, растительную или животную клетку) предварительно подвергают специальной обработке, благодаря чему их мембрана становится проницаемой для ДНК.

3. Идентифицируют и отбирают клетки, несущие рекомбинантную ДНК (трансформированные клетки).

Поскольку эффективность проникновения чужеродной ДНК через мембрану довольно низка, для отбора трансформированных клеток, их помещают в среду, в которой способны существовать только клетки, получившие векторную молекулу.

4. Получают специфический белковый продукт, синтезированный клетками-хозяевами, что служит подтверждением клонирования искомого гена.

Клетка, получившая новые признаки, начинает делиться с образованием маленькой колонии. Эта колония называется клоном, причем из каждой клетки образуется свой клон, все клетки которого имеют свойства бактерии-родоначальника. Такой способ выделения трансформированной клетки и копирование клеток с заданными признаками, называется клонированием.

Таким образом, сущность генетической инженерии сводится к конструированию генетических систем вне организма и последующему введению их в живой организм. При этом рекомбинантные ДНК становятся составной частью генетического аппарата организма и привносят в него новые генетические и физиолго-биохимические свойства, полезные для человека. К числу таких свойств можно отнести синтез аминокислот, белков, гормонов, ферментов, витаминов и др.

Читайте также: