Графические методы решения уравнений и неравенств конспект 10 класс

Обновлено: 03.07.2024

Оборудование: ПК, проектор, экран, аудиторная доска.

Тип занятия: изучение нового материала.

отработать навыки построения графиков тригонометрических функций;

научить применять знания на практике;

воспитывать дисциплинированность и добросовестность при выполнении заданий;

  • повторить следующие темы по математике: решение квадратных неравенств графическим способом, преобразование графиков тригонометрических функций, понятие arcsin, arccos, arctg и arcctg числа, решение тригонометрических уравнений;
  • научить применять графический метод для решения тригонометрических неравенств;
  • отработать навыки построения графиков тригонометрических функций;
  • расширить кругозор учащихся об истории развития Тригонометрии;
  • для активизации познавательной деятельности учащихся применять различные формы и методы работы на уроке: фронтальная, индивидуальная и групповая (работа в парах) формы работы, использование игровых технологий.
  1. Организационный момент, проверка домашнего задания (3 мин.);
  2. Актуализация опорных знаний и фиксация затруднений в деятельности (5 мин.);
  3. Объяснение нового материала (10 мин.);
  4. Экспертная работа (5 мин.);
  5. Самостоятельная работа в парах (10 мин.);
  6. Домашнее задание (2 мин.);
  7. Игра “Поле чудес” (6 мин.);
  8. Рефлексия деятельности (итог урока) (4 мин.).

Пояснение к уроку: во время урока учащиеся выставляют баллы в “Рабочую карту урока” согласно правилам, описанным в данной карте. В конце урока подводится итог работы учащихся по количеству набранных баллов.

1. Организационный момент, проверка домашнего задания

Французский писатель Анатоль Франс однажды заметил: “Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.”.

Давайте сегодня на уроке будем следовать этому совету писателя, будем активны, внимательны, будем поглощать знания с большим желанием.

Прежде чем приступить к изучению нового материала, проверим домашнее задание на сегодня.

Проверка домашнего задания:

№ 11.27 (а, б), № 11.29 (б, е), № 11.30 (б)

Никольский С. М. Алгебра и начала математического анализа. 10 класс – М.: Просвещение, 2013.

За каждое правильно выполненное задание – 1 балл в рабочую карту занятия в колонку “Домашняя работа”.

2. Актуализация опорных знаний и фиксация затруднений в деятельности

Тема нашего урока – Тригонометрические неравенства. Решение тригонометрических неравенств графическим способом.

Давайте запишем дату и тему урока в тетрадь.

Перед Вами на сегодня стоит задача – научиться применять графический метод для решения тригонометрических неравенств.

Поработаем сначала устно, чтобы вспомнить те понятия и приемы, которые нам понадобятся для изучения новой темы.

За каждый правильный ответ учащиеся получают 1 балл в рабочую карту занятия в колонку “Устная работа”.

Инструкция по работе с презентацией: при подведении курсора к ответу и нажатии левой кнопки мыши: неверные ответы исчезают, а в области верного ответа всплывает окно со словом “Верно”.

3. Объяснение нового материала

Если вспомнить определение тригонометрического уравнения – это уравнение, содержащее переменную под знаком тригонометрической функции, тогда легко можно дать определение тригонометрического неравенства – это неравенство, содержащие переменную под знаком тригонометрической функции.

Для решения тригонометрических неравенств мы будем использовать графический метод.

Рассмотрим решение неравенства

Построим график функции: и проведём прямую .

Определим точки пересечения данных графиков:

Заштрихуем область, при которой значения функции больше

Так как функция периодическая (Т=), значит, ,

Рассмотрим решение неравенства

Пусть . Получим неравенство

Рассмотрим графики функций и Множество решений неравенства составляют абсциссы точек графика расположенных выше точек графика


4. Экспертная работа

К доске приглашаются двое учащихся, хорошо разобравшихся в материале и желающих ответить у доски, они будут выступать в роли экспертов, остальные учащиеся могут поправлять их решение по мере надобности с места.

За работу у доски учащиеся получают 1-3 балла, за работу с места 1 балл.

5. Самостоятельная работа в парах

Прежде чем перейти к выполнению самостоятельной работы, необходимо заметить, что при решении более сложных тригонометрических неравенств, их с помощью преобразований сводят к простейшим тригонометрическим неравенствам, используя при этом те же приёмы, что и при решении тригонометрических уравнений.

Учащиеся выполняют задание, обмениваются тетрадями и проверяют работу соседа по парте, выставляя соответствующие баллы, ответы представлены на экране, подробное решение неравенств под номером 3 необходимо заранее подготовить на аудиторной доске.

Для решения тригонометрических неравенств графическим методом можно использовать Приложение № 2 к данному уроку.

Вариант № 1
Решить неравенства
Вариант № 2
Решить неравенства
1. 1.
2. 2.

За каждое верное задание № 1,2-1 балл, № 3 – 3 балла.

Подведение итогов изучения новой темы. Учащимся необходимо ответить на вопросы учителя.

  • Какой метод мы использовали для решения тригонометрических неравенств?
  • Что необходимо предпринять, чтобы решить тригонометрическое неравенство графическим способом?
  • Как влияет периодичность тригонометрических функций на ответ при решении тригонометрических неравенств?

За каждый правильный ответ учащиеся получают 1 балл в рабочую карту занятия в колонку “Устная работа”.

6. Домашнее задание

Никольский С. М. Алгебра и начала математического анализа. 10 класс – М.: Просвещение, 2013.

п. 11.5, 11.6, № 11.34 (б), 11.36 (в), 11.37 (в), 11.38 (б), 11.41 (б)

Дополнительное задание (по желанию):

7. Игра “Поле чудес”

Игра построена по принципу одноименной телевизионной игры. Учитель читает задание, учащиеся могут открыть любую букву, если выполнят скрытое в данной ячейке задание.

За каждую угаданную букву (решенное задание) учащиеся получают 1 балл, за отгаданное слово – 5 баллов.

Инструкция по работе с презентацией: при подведении курсора к ячейке, за которой скрывается буква, и нажатии левой кнопки мыши: появляется задание, которое необходимо выполнить, при повторном нажатии левой кнопки мыши в данную область появляется скрытая там буква.

Древнегреческий астроном, географ и математик II века до н.э., часто называемый величайшим астрономом античности. Главной заслугой его считается то, что он привнёс в греческие геометрические модели движения небесных тел предсказательную точность астрономии Древнего Вавилона.

При разработке теорий Луны и Солнца он использовал античный вариант тригонометрии. Возможно, он первым составил таблицу хорд, аналог современных таблиц тригонометрических функций.

Швейцарский, немецкий и российский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук.

Автор более чем 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и др.

Почти полжизни провёл в России, где внёс существенный вклад в становление российской науки. С 1731 по 1741, а также с 1766 года был академиком Петербургской Академии Наук (в 1741—1766 годах работал в Берлине, оставаясь одновременно почётным членом Петербургской Академии). Хорошо знал русский язык и часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики-математики (С.К. Котельников) и астрономы (С.Я. Румовский) были его учениками.

Аналитическая теория тригонометрических функций в основном была создана этим выдающимся математиком XVIII века. Именно он первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения.

Ответ: Леонард Эйлер

Наука об измерении треугольников. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса, а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре..

Раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Учитель: Кондратьева Татьяна Юрьевна

повторить определение логарифма, свойства логарифмической и показательной функции, основные способы решения логарифмических и показательных уравнений;

расширить представления учащихся о функционально- графическом методе решения логарифмических и показательных уравнений;

акцентировать внимание учащихся на том, в заданиях какого типа рациональнее применять функционально-графический метод;

формировать у учащихся умения сравнивать и анализировать, сопоставлять и делать выводы.

Пояснительная записка

I. Актуализация знаний учащихся.

hello_html_m45edc17.jpg

4 ) методы решения показательных уравнений и неравенств.

Давайте вспомним. (Предлагается посмотреть фрагмент кейса ученицы 10б класс и найти в ее рассуждениях ошибку).

Ошибка в условии возрастания показательной функции.

Почему так важно знать свойства показательной функции?
По закону показательной функции размножалось бы все живое на Земле, если бы для этого имелись благоприятные условия, т.е. не было естественных врагов и было вдоволь пищи. Доказательство тому – распространение в Австралии кроликов, которых там не было раньше. Достаточно было выпустить пару особей, как через некоторое время их потомство стало национальным бедствием.
В природе, технике и экономике встречаются многочисленные процессы, в ходе которых значение величины меняется в одно и то же число раз, т.е. по закону показательной функции. Эти процессы называются процессами органического роста или органического затухания

На доске заранее написаны методы решения показательных и логарифмических уравнений.

Многие задания, которые мы привыкли вычислять чисто алгебраически, можно решить намного легче и быстрее!

С помощью графиков функций!

Приступим? Начнем с решения уравнений!

Решение уравнений и неравенств с помощью графиков — коротко о главном

  1. Выразим 𝑥 через 𝑦
  2. Определим тип функции
  3. Построим графики получившихся функций
  4. Найдем точки пересечения графиков
  5. Корректно запишем ответ (с учетом ОДЗ и знаков неравенств)
  6. Проверим ответ (подставим корни в уравнение или систему)

Решение уравнений с помощью графиков

Решение линейных уравнений

Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида.

Линейные уравнения достаточно легко решать алгебраическим путем – все неизвестные переносим в одну сторону уравнения, все, что нам известно – в другую и вуаля! Мы нашли корень.

Сейчас же я покажу тебе, как это сделать графическим способом.

Итак, у тебя есть уравнение: \( \displaystyle 2 -10=2\)

Вариант 1, и самый распространенный – перенести неизвестные в одну сторону, а известные в другую, получаем:

Обычно дальше мы делим правую часть на левую, и получаем искомый корень, но мы с тобой попробуем построить левую и правую части как две различные функции в одной системе координат.

Иными словами, у нас будет:

А теперь строим. Что у тебя получилось?


Как ты думаешь, что является корнем нашего уравнения? Правильно, координата \( \displaystyle x\) точки пересечения графиков:


Наш ответ: \( \displaystyle x=6\)

Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число \( \displaystyle 6\)!

Вариант 2

Как я говорила выше, это самый распространенный вариант, приближенный к алгебраическому решению, но можно решать и по-другому. Для рассмотрения альтернативного решения вернемся к нашему уравнению:

\( \displaystyle 2 -10=2\)

В этот раз не будем ничего переносить из стороны в сторону, а построим графики напрямую, так, как они сейчас есть:


Что является решением на этот раз? Все верно. То же самое: координата \( \displaystyle x\) точки пересечения графиков:


И снова наш ответ: \( \displaystyle x=6\).

Как ты видишь, с линейными уравнениями все предельно просто. Настало время рассмотреть что-нибудь посложнее… Например, графическое решение квадратных уравнений.

Решение квадратных уравнений

Итак, теперь приступим к решению квадратного уравнения. Допустим, тебе нужно найти корни у этого уравнения:

Конечно, ты можешь сейчас начать считать через дискриминант, либо по теореме Виета, но многие на нервах ошибаются при умножении или возведении в квадрат, особенно, если пример с большими числами, а калькулятора, как ты знаешь, у тебя на экзамене не будет…

Поэтому давай попробуем немного расслабиться и порисовать, решая данное уравнение.

Графически найти решения данного уравнения можно различными способами. Рассмотрим различные варианты, а уже ты сам выберешь, какой больше всего тебе понравится.

Вариант 1. Напрямую

Просто строим параболу по данному уравнению: \( \displaystyle ^>+2 -8=0\)

Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:

\( \displaystyle x=-\frac\)

Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!

Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:

Точно такой же ответ? Молодец!

И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, \( \displaystyle 3\).

Ты знаешь, что парабола симметрична относительно своей вершины, например:


Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:


Возвращаемся к нашей параболе.

Для нашего случая точка \( \displaystyle A\left( -1;-9 \right)\). Нам необходимо еще две точки, соответственно, \( \displaystyle x\) можно взять положительные, а можно взять отрицательные? Какие точки тебе удобней?

Мне удобней работать с положительными, поэтому я рассчитаю при \( \displaystyle x=0\) и \( \displaystyle x=2\).

При \( \displaystyle x=0\):

При \( \displaystyle x=2\):

Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:


Как ты думаешь, что является решением уравнения?

Правильно, точки, в которых \( \displaystyle y=0\), то есть \( \displaystyle x=2\) и \( \displaystyle x=-4\). Потому что \( \displaystyle ^>+2 -8=0\).

И если мы говорим, что \( \displaystyle y=^>+2 -8\), то значит, что \( \displaystyle y\) тоже должен быть равен \( \displaystyle 0\), или \( \displaystyle y=^>+2 -8=0\).

Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!

Конечно, ты можешь проверить наш ответ алгебраическим путем – посчитаешь корни через теорему Виета или Дискриминант.

Что у тебя получилось? То же самое?

Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!

Вариант 2. С разбивкой на несколько функций

Возьмем все тоже наше уравнение: \( \displaystyle ^>+2 -8=0\), но запишем его несколько по-другому, а именно:

Можем мы так записать? Можем, так как преобразование равносильно. Смотрим дальше.

Построим отдельно две функции:

Построил? Сравним с тем, что вышло у меня:



Соответственно, решением данного уравнения являются:

Что скажешь? Согласись, этот способ решения намного легче, чем предыдущий, и даже легче, чем искать корни через дискриминант!

А если так, попробуй данным способом решить следующее уравнение.

Что у тебя получилось? Сравним наши графики:

  • \( \displaystyle _>=2^>\)
  • \( \displaystyle _>=5 -3\)


По графикам видно, что ответами являются:

Теперь посмотрим уравнения чууууть-чуть посложнее, а именно решение смешанных уравнений, то есть уравнений, содержащих функции разного вида.

Решение смешанных уравнений

Теперь попробуем решить следующее уравнение:

Конечно, можно привести все к общему знаменателю, найти корни получившегося уравнения, не забыв при этом учесть ОДЗ, но мы попробуем решить графически, как делали во всех предыдущих случаях.

В этот раз давай построим 2 следующих графика:

  • \( \displaystyle _>=\frac\) – графиком является гипербола
  • \( \displaystyle _>= -2\) – графиком является прямая, которую ты легко построишь, прикинув значения \( \displaystyle x\) и \( \displaystyle x\) в голове, даже не прибегая к калькулятору.

Осознал? Теперь займись построением.

Вот что вышло у меня:


Глядя на этот рисунок, скажи, что является корнями нашего уравнения \( \displaystyle \frac-x+2=0\)?

Правильно, \( \displaystyle _>=-1\) и \( \displaystyle _>=3\). Вот и подтверждение:


Попробуй подставить наши корни в уравнение. Получилось?

При \( \displaystyle _>=-1:\frac-\left( -1 \right)+2=-3+1+2=0\).

Все верно! Согласись, графически решать подобные уравнения – одно удовольствие!

Попробуй самостоятельно графическим способом решить уравнение:

Даю подсказку: перенеси часть уравнения в правую сторону, чтобы с обоих сторон оказались простейшие для построения функции. Намек понял? Действуй!

Теперь посмотрим, что у тебя вышло:

\( \displaystyle 2^>=x+1\), соответственно:

  • \( \displaystyle _>=2^>\) – кубическая парабола.
  • \( \displaystyle _>=x+1\) – обыкновенная прямая.


Как ты уже давно у себя записал, корнем данного уравнения является \( \displaystyle _>=1\).

Прорешав такое количество примеров, уверена, ты понял, как можно легко и быстро решать уравнения графическим путем. Настало время разобраться, как решать подобным способом системы.

Решение систем уравнений с помощью графиков

Графическое решение систем, по сути, ничем не отличается от графического решения уравнений.

Мы будем строить два графика, и их точки пересечения будут являться корнями данной системы.

Один график – одно уравнение, второй график – другое уравнение. Все предельно просто!

Начнем с самого простого – решение систем линейных уравнений.

Решение систем линейных уравнений

Допустим, у нас есть следующая система:

Для начала преобразуем ее таким образом, чтобы слева было все, что связано с \( \displaystyle y\), а справа – что связано с \( \displaystyle x\). Иными словами, запишем данные уравнения как функцию в привычном для нас виде:

А теперь просто строим две прямые. Что в нашем случае является решением? Правильно! Точка их пересечения! И здесь необходимо быть очень-очень внимательным! Подумай, почему?

Намекну: мы имеем дело с системой, в системе есть и \( \displaystyle x\), и \( \displaystyle y\)… Смекаешь?

Все верно! Решая систему, мы должны смотреть обе координаты, а не только \( \displaystyle x\), как при решении уравнений!

Еще один важный момент – правильно их записать и не перепутать, где у нас значение \( \displaystyle x\), а где значение \( \displaystyle y\) !

Записал? Теперь давай все сравним по порядку:


И ответы: \( \displaystyle x=1\) и \( \displaystyle y=-1\). Сделай проверку – подставь найденные корни в систему и убедись, правильно ли мы ее решили графическим способом?

Все сошлось? Идем дальше!

Решение систем нелинейных уравнений

А что если вместо одной прямой, у нас будет квадратное уравнение? Да ничего страшного! Просто ты вместо прямой построишь параболу! Не веришь? Попробуй решить следующую систему:

Какой наш следующий шаг? Правильно, записать так, чтобы нам было удобно строить графики:

А теперь так вообще дело за малым – построил быстренько и вот тебе решение! Строим:


Графики получились такими же? Теперь отметь на рисунке решения системы и грамотно запиши выявленные ответы!

Все сделал? Сравни с моими записями:


При \( \displaystyle _>=-1\), \( \displaystyle _>=0\).

При \( \displaystyle _>=2\), \( \displaystyle _>=-3\).

Все верно? Молодец! Ты уже щелкаешь подобные задачи как орешки! А раз так, дадим тебе систему посложнее.

Решите систему уравнений: \( \displaystyle \left\< \beginy=^>+2x+2;\\y-^>=2.\end \right.\)

Что мы делаем? Правильно! Записываем систему так, чтобы было удобно строить:

Итак, поехали! Выдохнул? Теперь начинай строить!

Ну как? Красиво? Сколько точек пересечения у тебя получилось? У меня три! Давай сравнивать наши графики:


Так же? Теперь аккуратно запиши все решения нашей системы:

При \( \displaystyle _>=-1\), \( \displaystyle _>=1\).

При \( \displaystyle _>=0\), \( \displaystyle _>=2\).

При \( \displaystyle _>=2\), \( \displaystyle _>=10\).

А теперь еще раз посмотри на систему:

Представляешь, что ты решил это за каких-то 15 минут?

Согласись, математика – это все-таки просто, особенно когда, глядя на выражение, не боишься ошибиться, а берешь и решаешь! Ты большой молодец!

Решение неравенств с помощью графиков

Решение линейных неравенств

После последнего примера тебе все по плечу! Сейчас выдохни – по сравнению с предыдущими разделами этот будет очень-очень легким!

Начнем мы, как обычно, с графического решения линейного неравенства. Например, вот этого:

Неравенство нестрогое, поэтому \( \displaystyle 4\) — не включается в промежуток, и решением будут являться все точки, которые находятся правее \( \displaystyle 4\), так как \( \displaystyle 5\) больше \( \displaystyle 4\), \( \displaystyle 6\) больше \( \displaystyle 4\) и так далее:


Ответ: \( x\in \left( 4;+\infty \right)\)

Вот и все! Легко? Давай решим простое неравенство с двумя переменными:

Решение неравенства с двумя переменными


\( 2 -3

Такой график у тебя получился? А теперь внимательно смотрим, что там у нас в неравенстве? Меньше? Значит, закрашиваем все, что находится левее нашей прямой.

А если было бы больше Правильно, тогда закрашивали бы все, что находится правее нашей прямой. Все просто.


Решение квадратных неравенств

Теперь будем разбираться с тем, как графически решать квадратные неравенства.

Но прежде, чем перейти непосредственно к делу, давай повторим некоторый материал, касающийся квадратной функции \( \displaystyle a^>+bx+c=0\).

А за что у нас отвечает дискриминант? Правильно, за положение графика относительно оси \( \displaystyle Ox\) (если не помнишь этого, то тогда точно прочти теорию о квадратичных функциях).

В любом случае, вот тебе небольшая табличка-напоминалка:



Теперь, когда мы освежили в памяти весь материал, перейдем к делу – решим графически неравенство \( \displaystyle -^>+10 -21

Симметрично отражаем наши точки на другую ветвь параболы:



А теперь возвращаемся к нашему неравенству \( \displaystyle -^>+10 -21

Ответ: \( \displaystyle x\in \left( -\infty ;3 \right)\cup \left( 7;+\infty \right)\)


Долгий способ, правда? Сейчас я покажу тебе более простой вариант графического решения на примере того же неравенства: \( \displaystyle -^>+10 -21


Возвращаемся к нашему неравенству \( \displaystyle -^>+10 -21

Согласись, это намного быстрее.

Запишем теперь ответ: \( \displaystyle x\in \left( -\infty ;3 \right)\cup \left( 7;+\infty \right)\)

Рассмотрим еще один способ решения, который упрощает и алгебраическую часть, но главное не запутаться.

Вариант 3


\( \displaystyle -^>+10 -21

Ответ: \( \displaystyle \left[ 2;4 \right]\).

Решение смешанных неравенств

Теперь перейдем к более сложным неравенствам!


\( \displaystyle 4x

У тебя так же? Отлично!

Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть \( \displaystyle _>=^>\).

Смотри, что получилось в итоге:


А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график \( \displaystyle _>=4x\)? Смело бери карандаш и закрашивай данную область! Она и будет решением нашего сложного неравенства!


На каких промежутках по оси \( \displaystyle Ox\) у нас \( \displaystyle _>=^>\) находится выше, чем \( \displaystyle _>=4x\)? Верно, \( \displaystyle x\in \left( -2;0 \right)\cup \left( 2;+\infty \right)\).

Это и есть ответ!

Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!

Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике

В следующих вебинарах вы сможете отработать навык решения уравнений, неравенств и систем алгебраическим способом.

Решение линейных уравнений (алгебраически)

Цель урока — научиться решать линейные уравнения любого уровня сложности. Линейные уравнения – основа всей алгебры. Научитесь решать линейные уравнения, и вам будет намного проще осваивать всё остальное.

Приёмы, которые мы узнаем на этом уроке, применяются не только в линейных, но во всех типах уравнений, от квадратных до логарифмических. Все приёмы будем разбирать на конкретных примерах и сразу же отрабатывать.

Мы решим разберём все возможные типы линейных уравнений, решив 65 уравнений.

ЕГЭ №15. Решение уравнений и неравенств методом интервалов

В этом видео мы узнаем (вспомним) метод интервалов, поймём как и почему он работает. Вспомним, как решать квадратные, рациональные неравенства, а также неравенства с модулем и иррациональные.




Целевая аудитория: для 10 класса

Представлен описательный конспект урока. Презентация к уроку требует серьёзной технической доработки. Презентация содержит сканированные изображения низкого качества. Формулы и решения в презентациях к урокам математики необходимо вводить с помощью редактора формул, тогда данные записи будут выглядеть корректно. При визуализации решений необходимо отстроить очерёдность их показа, чтобы данная информация была представлена последовательно.

Физкультминутки

Физкультминутки обеспечивают кратковременный отдых детей на уроке, а также способствуют переключению внимания с одного вида деятельности на другой.

Свидетельство о публикации презентации

Конкурсы для учителей

Диплом и справка о публикации каждому участнику!

350 лет Петру I

8 марта

Маркер СМИ

© 2007 - 2022 Сообщество учителей-предметников "Учительский портал"
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель: Никитенко Евгений Игоревич

Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание материалов и разрешение любых спорных вопросов с третьими лицами.
При этом администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.

Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.


Фотографии предоставлены

Организационный момент (2 минуты);

Проверка домашней работы;

Актуализация знаний (5 минут);

Решение задач (34 минуты);

Подведение итогов (2 минуты);

Домашнее задание (2 минуты).

Организационный момент (2 минуты).

Приветствие учеников. Проверка готовности учащихся к уроку: проверка наличия тетрадей, учебников. Проверка отсутствующих на уроке.

Проверка домашней работы.

Проверка домашней работы происходит в том случае, если у многих учеников возникли вопросы при ее решении.

Актуализация знаний (5 минут).

Учитель. На прошлых уроках мы познакомились с понятием показательной функции, научились решать показательные уравнения, неравенства и системы показательных уравнений и неравенств, так давайте вспомним, что называется показательной функцией?

Ученик. Показательной функцией называется функция y=ах, где а заданное число, а > 0, а ≠ 1.

Учитель. Какова область определения функции y=0,3x?

Ученик. Область определения данной функции все действительные числа.

Учитель. Каково множество значения функции y=3x?

Ученик. Множество значений данной функции – действительные положительные числа.

Учитель. При каком условии показательная функция является возрастающей?

Ученик. Функция будет являться возрастающей, если а > 1.

Учитель. При каком условии показательная функция является убывающей?

Ученик. Функция будет являться убывающей, если 0

Учитель. Возрастает или убывает функция у=0,5 х и почему?

Ученик. Даная функция убывает, так как основание данной функции меньше единицы.

Учитель. Возрастает или убывает функция у=2 х и почему?

Ученик. Даная функция возрастает, так как основание данной функции больше единицы.

Учитель. Определите при каком значении а функция у=а х проходит через точку А(1; 2)?

Ученик. Функция у=а х будет проходить через точку А(1; 2) при а = 2.

Учитель. Какие способы решения показательных уравнений вы знаете?

Ученик. Приведение к одному основанию, вынесение общего множителя за скобки, введение новой переменной.

Учитель . Какие методы мы использовали для решения показательных уравнений и неравенств?

Ученик . Для решения показательных уравнений и неравенств мы использовали графический и аналитический методы.

Учитель . Что означает решить систему уравнений?

Ученик . Решить систему уравнений – значит найти все те значения неизвестной при которых каждое уравнение этой системы обращается в верное равенство.

Учитель . Что означает решить систему неравенств?

Ученик . Решить систему неравенств – значит найти все те значения которые удовлетворяют каждому неравенству этой системы.

Решение задач (34 минут).

Учитель . Запишите в тетради число, классная работа, тема урока – решение систем показательных уравнений и неравенств.

Запись на доске и в тетрадях:

Решение систем показательных уравнений и неравенств

На прошлом уроке вы научились решать системы показательных уравнений и неравенств, сегодня мы постараемся укрепить ваши знания, умения и навыки по этой теме. Поэтому сразу приступим к решению упражнений по теме. Решим систему из номера №241 под цифрой 2. Прочитайте задание.

Ученик. Решите систему уравнений.

Запись на доске и в тетрадях

Что необходимо для того чтобы решить систему уравнений?

Для того, чтобы решить систему уравнений необходимо найти все те значения неизвестных при которых каждое уравнение этой системы обращается в верное равенство.

Каким способом будем решать показательные уравнения?

Для того чтобы решить показательные уравнения приведем обе части уравнений к одинаковым основаниям.

В левой части второго уравнения мы имеем произведение степеней с одинаковым основанием, как можно преобразовать это выражение?

По свойству степеней левую часть второго уравнения можно представить в виде 3 6х+у .

И левая и правая части наших уравнений имеют в основании одно и то же число, в соответствии с этим, как можно преобразовать систему?

Так как и в левой и в правой части уравнений степени с одинаковым основанием, то мы имеем право избавиться от оснований степеней, и приравнять их показатели.

Мы получили систему уравнений с двумя переменными. Каким методом будем решать данную систему?

Для решения данной системы уравнений необходимо воспользоваться методом подстановки.

Как применим этот метод к нашей системе уравнений?

Для того чтобы решить систему уравнений методом подстановки необходимо:

Ответ записывается парой чисел (х; у).

Учитель. Решим систему из номера №242 под цифрой 2. Прочитайте задание.

Ученик. Решите систему уравнений.

Запись на доске и в тетрадях

Что необходимо для того чтобы решить систему уравнений?

Для того, чтобы решить систему уравнений необходимо найти все те значения неизвестных при которых каждое уравнение этой системы обращается в верное равенство.

В обоих уравнениях степени с одинаковыми основаниями и показателями, но разными знаками. Каким способом будем решать данную систему?

Для того чтобы решить данную систему необходимо сложить оба уравнения.

У нас получилось показательное уравнение, в правой части которого сумма степеней с одинаковым основанием. Каким способом следует воспользоваться для решения этого уравнения?

Так как получилось показательное уравнение в правой части которого сумма степеней с одинаковыми основаниями, необходимо вынести общий множитель за скобки.

Далее задание решается по аналогии.

Остальные задачи решаются по аналогии.

Учитель. Решим систему из номера №244 под цифрой 1. Прочитайте задание.

Ученик. Решите систему.

Запись на доске и в тетрадях

Что необходимо для того чтобы решить систему?

Для того, чтобы решить систему необходимо найти все те значения неизвестных которые удовлетворяют неравенству и при которых уравнение этой системы обращается в верное равенство.

Так как данная система содержит как уравнение, так и неравенство, то применить какой-либо известный способ решения систем мы не можем, а значит что мы должны сделать для решения данной системы?

Для решения данной системы мы должны отдельно решить уравнение и неравенство, а затем выделить те значения неизвестной, которые удовлетворяют как уравнению, так и неравенству или установить что их нет.

Для начало давайте решим неравенство. В левой части неравенства мы имеем степень с основанием 5, а в правой – число 625, можем ли мы выразить число 625 в виде степени с основанием 5?

Да, можно. 625 можно представить как 5 4

В основании степеней число 5, а 5 > 1. Как данный факт применим к решению нашего неравенства?

Так как 5 > 1, то по свойству показательных функций у = 5 2х + 1 будет являться возрастающей функцией, то решением неравенства 5 2х + 1 > 5 4 будут являться числа удовлетворяющие неравенству 2х + 1 > 4.

Показательное уравнение входящие в состав нашей системы и в правой и в левой части имеет одно и тоже основание – 11. Как данный факт применим к решению нашего уравнения?

Так как и в левой и в правой части показательного уравнения находятся степени с одинаковым основанием, то от оснований можно избавиться и приравнять их показатели. Далее решаем полученное квадратное уравнение.

6х 2 – 10х = 9х – 15

6х 2 – 19х + 15 = 0

Какие числа удовлетворяют решению данной системы?

Так как 3,(3) > 1,5 и 3 > 1,5, то оба эти числа будут являться решением системы.

Ответ: х 1 = 3,(3) и х 2 = 3

Ответ: х 1 = 3,(3) и х 2 = 3

Подведение итогов (2 минуты).

Учитель. Сегодня мы с вами продолжили решать системы показательных уравнений и неравенств. Вспомнили, как решаются отдельно друг от друга показательные уравнения и неравенства. Вспомнили, как решать системы. На следующем уроке мы вспомним материал по изученной главе, подготовимся к контрольной работе.

Все кто сегодня работал молодцы.

Домашнее задание (2 минуты).

Учитель. Дома вам необходимо повторить параграф 14, решить №243-244 (нечетные).

Запись на доске и в дневниках:

Параграф 14, №243-244 (нечетные).

Учитель. Урок окончен, можете быть свободны.

По теме: методические разработки, презентации и конспекты


План-конспект урока по алгебре 7 класс по теме:Решение задач с помощью систем уравнений

Открытый урок для 7 класса по алгебре по теме "Решение задач с помощью систем уравнений" подготовленный для методической недели в школе № 1462 на 19 апреля 2013 года.


План-конспект урока по алгебре в 7 классе по теме: "Решение систем линейных уравнений"

Методическая разработка урока по алгебре в 7 классе с использованием ЭОР и ссылками на мультимедийные ресурсы.


Конспект урока алгебры в 7 классе на тему "Решение систем линейных уравнений способом подстановки"

Урок изучения нового материала с применением новых обучающих структур.


открытый урок по алгебре 8 класс на тему "Решение систем неравенств с одной переменной"

открытый урок по алгебре 8 класс на тему "Решение систем неравенств с одной переменной" Урок полностью соответствует ФГОС+ презентация к уроку.

Читайте также: