Биологическая роль фотосинтеза в биосфере конспект

Обновлено: 04.07.2024

Раздел ЕГЭ: 2.5. Обмен веществ и превращения энергии — свойства живых организмов. Энергетический обмен и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле.

Фотосинтез

Фотосинтез — это процесс преобразования энергии света в энергию химических связей органических соединений с участием хлорофилла. В фотосинтезе различают световые и темновые реакции.

Световая фаза фотосинтеза протекает на мембранах тилакоидов, несущих несколько типов белковых комплексов, основными из которых являются фотосистемы I и II, а также АТФ-синтаза. В состав фотосистем входят пигментные комплексы, в которых, кроме хлорофилла, присутствуют и каротиноиды.

Кроме пигментных комплексов, фотосистемы включают и ряд белков-акцепторов электронов, которые последовательно передают друг другу электроны от молекул хлорифилла. Последовательность этих белков называется электронтранспортной цепью хлоропластов. С фотосистемой II также ассоциирован кислородвыделяющий белковый комплекс.

В световой фазе кванты света, или фотоны, попадающие на молекулы хлорофилла, расположенные на мембранах тилакоидов, переводят их в возбужденное состояние, характеризующееся более высокой энергией электронов. При этом возбужденные электроны от хлорофилла фотосистемы I передаются через цепь посредников на переносчик водорода НАДФ, присоединяющий при этом протоны водорода, всегда имеющиеся в водном растворе:



Протоны водорода, накопившиеся в полости тилакоида в результате фотолиза воды и нагнетания при переносе электронов по электронтранспортной цепи, вытекают из тилакоида через канал в мембранном белке — АТФ-синтазе, при этом из АДФ синтезируется АТФ. Данный процесс называется фотофосфорилированием. Образовавшаяся в световых реакциях АТФ впоследствии будет использована в темновых реакциях.

Суммарное уравнение реакций световой фазы фотосинтеза можно записать следующим образом:

В ходе темновых реакций фотосинтеза происходит связывание молекул СО2 в виде углеводов, на которое расходуются молекулы АТФ и НАДФН + Н + , синтезированные в световых реакциях:


Процесс связывания углекислого газа является сложной цепью превращений, названий циклом Кальвина в честь его первооткрывателя. Темновые реакции протекают в строме хлоропластов. Для их протекания необходим постоянный приток углекислого газа извне.

фотосинтез

Таким образом, в процессе фотосинтеза энергия солнечного света преобразуется в энергию химических связей сложных органических соединений не без участия хлорофилла. Суммарное уравнение фотосинтеза можно записать следующим образом:


Реакции световой и темновой фаз фотосинтеза взаимосвязаны, так как увеличение скорости лишь одной группы реакций влияет на интенсивность всего процесса фотосинтеза только до определенного момента, пока вторая группа реакций не выступит в роли лимитирующего фактора, и возникает потребность в ускорении реакций второй группы для того, чтобы первые происходили без ограничений.

В результате фотосинтеза образуется примерно 150 млрд тонн органического вещества и приблизительно 200 млрд тонн кислорода ежегодно. Этот процесс обеспечивает круговорот углерода в биосфере, не давая накапливаться углекислому газу и препятствуя тем самым возникновению парникового эффекта и перегреву Земли. Образующиеся в результате фотосинтеза органические вещества не расходуются другими организмами полностью, значительная их часть в течение миллионов лет образовала залежи полезных ископаемых (каменного и бурого угля, нефти). Из кислорода под действием электрических разрядов образуется озон, который формирует озоновый экран, защищающий все живое на Земле от губительного действия ультрафиолетовых лучей.

Хемосинтез

Хемосинтез — это процесс синтеза органических соединений за счет химической энергии неорганических соединений. Этот процесс был открыт выдающимся русским ученым С. Н. Виноградским в 1887 году.

К группе хемосинтетиков (хемотрофов) относятся в основном бактерии: нитрифицирующие, серобактерии, железобактерии и др. Они используют энергию окисления соединений азота, серы, ионов железа соответственно. При этом донором электронов выступает не вода, а другие неорганические вещества.

Так, нитрифицирующие бактерии окисляют образованный из атмосферного азота азотфиксирующими бактериями аммиак до нитритов и нитратов:

Серобактерии окисляют сероводород до серы, а в некоторых случаях — и до серной кислоты:

H2S + O2 → 2H2O + 2S + 272 кДж,

Железобактерии окисляют соли железа:

Водородные бактерии способны окислять молекулярный водород:

Источником углерода для синтеза органических соединений у всех автотрофных бактерий выступает углекислый газ.

Хемосинтезирующие бактерии наиболее значительную роль играют в биогеохимических циклах химических элементов в биосфере, так как в процессе их жизнедеятельности образовались залежи многих полезных ископаемых. Кроме того, они являются источниками органического вещества на планете, то есть продуцентами, а также делают доступным целый ряд неорганических веществ и для растений, и для других организмов.

Фотосинтез и его значение. Космическая роль фотосинтеза

Фотосинтез — это процесс преобразования энергии света в энергию химического связывания органических соединений при участии хлорофилла.

Фотосинтез происходит в хлоропластах, куда поступает углекислый газ и вода. Зеленый пигмент хлорофилл обеспечивает поглощение энергии света, необходимой для химических превращений. Растения в дальнейшем используют созданные молекулы простого углевода для синтеза крахмала, жиров, и других веществ. Кислород выделяется в окружающую среду. Процессы, происходящие в хлоропластах, показаны

Вследствие фотосинтеза ежегодно образуется около 150 миллиардов тонн органического вещества и около 200 миллиардов тонн кислорода. Этот процесс обеспечивает углеродный цикл в биосфере, предотвращая накопление углекислого газа и, тем самым, предотвращая парниковый эффект и перегрев Земли. Органические вещества, образующиеся в результате фотосинтеза, частично потребляются другими организмами, большая часть которых за миллионы лет образовала залежи полезных ископаемых (уголь и бурый уголь, нефть).

Фотосинтез

Рис.1. Фотосинтез

Как доказал русский ученый К.А. Тимирязев, фотосинтез невозможен без хлорофилла. Исследователь писал, что именно в зеленых листьях совершается процесс, связывающий жизнь на Земле с Солнцем, позволяющий всем на планете пользоваться общим источником энергии.

Значение фотосинтеза и космическая роль зеленых растений:

  • Усвоение энергии света для создания органических соединений.
  • Создание органической массы (177 млрд. т ежегодно), необходимой для животных и человека.
  • Выделение кислорода в атмосферу Земли (около 450 млн. т в год).
  • Поддержание концентрации СО2 в воздухе на уровне 0,02–0,04%.
  • Накопление энергии.
  • Образование почвы.

Благодаря растениям поддерживается содержание молекул О2 в атмосфере нашей планеты на уровне 21%. Над крупными городами, промышленными центрами, транспортными узлами воздух беднее кислородом, запылен, содержит больше углекислого газа, токсичных веществ.

Суть одного из важнейших процессов на Земле отражает химическое уравнение:

Световая и темновая фазы фотосинтеза. Их взаимосвязь.

В 1905 году английский физиолог Ф. Блэкман обнаружил, что скорость фотосинтеза не может увеличиваться бесконечно, существуют ограничивающие её факторы. Исходя из этого, он предложил две фазы фотосинтеза:

При низкой освещенности скорость световых откликов увеличивается пропорционально увеличению интенсивности света, и, помимо этого, эти реакции не зависят от температуры, поскольку для их прохождения не требуются ферменты. На тилакоидных мембранах осуществляются световые реакции.

Наоборот, скорость темновых реакций увеличивается с ростом температуры; однако при достижении температурного порога 30 ° C этот рост прекращается, что указывает на ферментативный характер этих превращений, которые происходят в строме. Также важно отметить, что свет тоже оказывает некоторое влияние на темновые реакции, несмотря на их название.

Световая фаза фотосинтеза происходит на тилакоидных мембранах, несущих несколько типов белковых комплексов, главными из которых являются фотосистемы I и II, а также АТФ-синтаза. В составе фотосистем находятся пигментные комплексы, в которых, помимо хлорофилла, присутствуют также каротиноиды. Каротиноиды захватывают свет в областях спектра, где нет хлорофилла, и помимо этого, защищают хлорофилл от повреждения интенсивным светом.

Помимо пигментных комплексов, фотосистемы также включают ряд акцепторных белков, последовательно переносящих электроны от молекул хлорофилла друг к другу. Последовательность этих белковых молекул называется цепью переноса электронов хлоропластов.

Особый комплекс белков непосредственно связан с фотосистемой II, обеспечивающей выделение кислорода при таком процессе как фотосинтез. Этот комплекс выделения кислорода содержит ионы марганца и хлора.

В световой фазе световые кванты или фотоны, падающие на молекулы хлорофилла, которые расположены на мембранах тилакоидов, переводят их в состояние возбуждения, характеризующееся более высокой энергией электронов. В этом случае возбужденные электроны из хлорофилла фотосистемы I передаются через цепочку посредников к водородному носителю НАДФ, который присоединяет протоны водорода, которые постоянно находятся в водном растворе:

Темная фаза — это процесс преобразования углекислого газа в глюкозу в строме (пространстве между гранами) хлоропластов с участием энергии АТФ и НАДФ •Н.

Результат темновых реакций: превращение углекислого газа в глюкозу, а затем в крахмал. Помимо стромальных молекул глюкозы образуются аминокислоты, нуклеотиды и спирты.

Световая и темновая фазы фотосинтеза

Рис. 2. Световая и темновая фазы фотосинтеза

Хемосинтез. Роль хемосинтезирующих бактерий

Хемосинтез является самым старым типом автотрофного питания, образованным еще во время эволюции до фотосинтеза. В отличие от фотосинтеза при хемосинтезе, основным источником энергии является не солнечный свет, а химические реакции окисления веществ, обычно неорганических.

Хемосинтез наблюдается только у ряда прокариот. Многие хемосинтезирующие бактерии живут в местах, недоступных для других организмов: на больших глубинах, в бескислородных условиях.

Хемосинтетические организмы не зависят от энергии солнечного света, ни как растения, ни как животные. Исключением являются бактерии, которые окисляют аммиак, поскольку последний выделяется в результате гниения органических веществ.

Сходство хемосинтеза с фотосинтезом:

  • автотрофное питание,
  • энергия накапливается в АТФ, а затем используется для синтеза органических веществ.

Отличия в хемосинтезе:

  • источник энергии - различные окислительно-восстановительные химические реакции;
  • характерен только для ряда бактерий и архей;
  • клетки не содержат хлорофилла;
  • в качестве источника углерода для синтеза органических веществ используются не только CO2, но и окись углерода (CO), муравьиная кислота (HCOOH), метанол (CH3OH), уксусная кислота (CH3COOH) и карбонаты.

Хемосинтезирующие организмы генерируют энергию при окислении серы, сероводорода, водорода, железа, марганца, аммиака, нитритов и т.д. Как видите, используются неорганические вещества.

Хемосинтетические вещества подразделяются на группы в зависимости от окисляемого субстрата для производства энергии: железные бактерии, серные бактерии, археи, образующие метан, нитрифицирующие бактерии и т. д.

В хемосинтетических аэробных организмах кислород является акцептором электронов и водорода, т.е. он действует как окислитель.

Хемосинтезирующие организмы играют важную роль в круговороте веществ, особенно азота, и способствуют плодородию почвы.

В группу хемосинтетических организмов (хемотрофов) в основном входят бактерии: нитрифицирующие, сернистые, черные и т. д., использующие энергию окисления ионов азота, серы и железа. В этом случае донором электронов является не вода, а другие неорганические вещества.

Таким образом, нитрифицирующие бактерии окисляют аммиак, образующийся из атмосферного азота, от азотфиксирующих бактерий до нитритов и нитратов:

Серобактерии производят окисление сероводорода до серы и, в некоторых случаях, до серной кислоты:

Железобактерии производят окисление солей железа:

Водородные бактерии имеют способность окислять молекулярный водород:

Углекислый газ действует как источник углерода для синтеза органических соединений во всех автотрофных бактериях.

Хемосинтезирующие бактерии играют наиболее значительную роль в биогеохимических циклах химических элементов в биосфере, так как в течение их жизни образовались отложения многих минералов. Кроме того, они являются источниками органического вещества на планете, то есть производителями, а также делают доступными для растений и других организмов ряд неорганических веществ.

Источник изображения:
Рис. 2 — Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

В процессе фотосинтеза главную роль играют: хромосомы; хлоропласты; хромопласты; лейкопласты.

Фотосинтез — это процесс синтеза органических веществ из неорганических за счет энергии света. В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты, содержащих зеленый пигмент хлорофилл.

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических.

Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества — углекислый газ (CO2) и вода (H2O).

Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода — из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений.

Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C6H12O6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде.

Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

6CO2 + 6H2O → C6H12O6 + 6O2

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой, вторая — темновой. Такие названия обусловлены тем, что свет нужен только для световой фазы, темновая фаза независима от его наличия, но это не значит, что она идет в темноте.

Световая фаза протекает на мембранах тилакоидов хлоропласта, темновая — в строме хлоропласта.

В световую фазу связывания CO2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в АТФ, использование энергии на восстановление НАДФ до НАДФ*H2.

Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом. Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода.

Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

H2O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H2 + ½O2

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H2.

Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO2 объединяются с водородом, высвобождаемым из молекул НАДФ*H2, и образуется глюкоза:

6CO2 + 6НАДФ*H2 →С6H12O6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания.

На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода.

Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO2. Такой ресинтез обеспечивается циклом Кальвина. Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Фотосинтез и биосфера

Основным и практически неиссякаемым источ­ником энергии на поверхности Земли является энергия солнечного излучения, постоянным пото­ком поступающая из космоса благодаря протека­нию термоядерных реакций на ближайшем к нам светиле — Солнце.

Как показано на рис. 1, спектр поступающего на Землю солнечного излучения со­ответствует спектру излучения абсолютно черного тела, нагретого до 5900 К. Полный поток солнечно­го излучения (измеренный за пределами земной ат­мосферы), приходящийся на единицу поверхности, нормальной к направлению на Солнце, близок к 1400 Вт/м2. Значительная часть этой энергии прихо­дится на область видимого и ближнего инфракрас­ного излучения (0,3 — 1,0 мкм) — фотосинтетически активную радиацию, эффективно поглощаемую пигментами, участвующими в фотосинтезе расте­ний и фотосинтезирующих бактерий.

Какая бы часть спектра этого излучения ни по­глощалась на Земле, это в конечном счете приводит главным образом к нагреванию поверхности плане­ты и ее атмосферы, или же энергия вновь испуска­ется в космическое пространство. Какова же роль фотосинтеза, фотосинтезирующих организмов в улавливании этой энергии? Почему утверждают, что фотосинтез — это энергетическая основа биоло­гических процессов, энергетический движитель развития биосферы?

Почему говорят как о фотоавтотрофии (то есть о питании за счет света) биосфе­ры в целом, так и о фотоавтотрофии человечества, а жизнь на Земле называют космическим явлением прежде всего потому, что она существует и развивает­ся за счет энергии, поступающей к нам из космоса — от ближайшего космического светила?

Как известно, фотосинтез растений заключается в преобразовании и запасании солнечной энергии, в результате которого из простых веществ — угле­кислоты и воды — синтезируются углеводы и выде­ляется молекулярный кислород.

В общем виде этот процесс можно описать следующим уравнением (рис. 2).

Несмотря на кажущуюся простоту фотосинтеза, на Земле, пожалуй, нет более удивительного про­цесса, который смог бы в такой степени преобразо­вать нашу планету.

Биологическое значение фотосинтеза

Каждый зеленый листок – самая таинственная лаборатория из всех, какие существуют на Земле.

В нем ежесекундно осуществляется дерзновенная мечта биохимиков – создание живого из неживого. Только зеленые растения в процессе фотосинтеза способны образовывать органические вещества из неорганических. Начинается эта работа с пленения солнечного луча. Все другие организмы живут за счет вещества и энергии, приготовленной зелеными растениями. В органическом веществе аккумулируется химическая энергия, необходимая для осуществления всех процессов жизнедеятельности растений и животных, в том числе и человека.

Достоверно известно, что на Земле за год образуется до 450 млрд. т. органического вещества.

Современный газовый состав атмосферы – это результат длительного исторического развития земного шара.

Первичная атмосфера Земли состояла главным образом из водяных паров, азота и углекислого газа с небольшой примесью других газов (NH2, CH4, CO2, H2S) при почти полном отсутствии кислорода.

На определенном этапе развития живых систем появляются организмы способные улавливать солнечный свет и образовывать органические вещества из неорганических (появление фотосинтеза). В качестве побочного продукта фотосинтеза в земной атмосфере начал накапливаться кислород.

Это явилось предпосылкой для возникновения в ходе эволюции аэробного дыхания.

В процессе фотосинтеза поглощается СО2. Вовлечение СО2 в круговорот веществ приводит к снижению его содержания в атмосфере, и тем самым препятствует накоплению СО2 в различных средах.

Первоначально потребление кислорода организмами было невелико, поэтому он стал накапливаться в атмосфере. Кислород накапливался в атмосфере и в ее верхних слоях под действием ультрафиолетовых лучей превращается в озон.

По мере накопления озона происходило образование озонового слоя. Он как экран защищает поверхность земли от губительных ультрафиолетовых лучей.

В свою очередь образование озонового слоя предопределило выход организмов в наземно-воздушную среду, т.к. защитило их от жесткого космического излучения.

Поглощенные сотни миллионов лет назад земным растением солнечные лучи сохранились до наших дней в виде ископаемого энергетического топлива (каменный уголь, природный газ, торф).

Парниковые условия каменноугольного периода способствовали накоплению в ходе фотосинтеза большого количества органического вещества, а значит и энергии солнца в виде энергии химических связей.

Таким образом, фотосинтез предопределил образование биогенного вещества, которое человек использует как источник энергии.

Фотосинтез — это процесс преобразования углекислого газа в кислород под воздействием солнечной энергии. Хотя в более широком смысле этого слова подразумевается множество процессов, в результате которых происходит поглощение и преобразование квантов света.

И обладают этой способностью не только растения, но и многие микроорганизмы.

Так, большую часть кислорода вырабатывают фитопланктоны, обитающие в Мировом океане. Но и роль растений преуменьшать не стоит.

Этапы фотосинтеза

На самом деле, фотосинтез — очень сложный процесс. На первом его этапе идёт поглощение солнечной энергии и её передача другим молекулам, причастным к процессу. На втором этапе — разделение квантов света на заряды, в результате чего становится возможной передача электронов по фотосинтетической цепи.

Благодаря этому происходит создание АТФ и НАДФН. Оба этапа имеют общее название — светозависимая стадия фотосинтеза.

Энергия, что накапливается в результате поглощения квантов света, используется в дальнейшем для образования кислорода. Но наличие самого света для этого уже не требуется.

На третьем этапе происходят различные биохимические реакции, в результате которых из углекислого газа могут вырабатываться глюкоза, сахар, крахмал и т.д.

Значение фотосинтеза

Именно благодаря данному процессу Солнце является главным источником энергии на нашей планете. Многие организмы и вовсе живут лишь за счёт солнечной энергии. И они же, буквально, выдыхают её в окружающее пространство.

Это позволяет другим живым организмам пользоваться ей. К примеру, всем нам известно, что мощнейшими источниками энергии для человечества являются нефть, природный газ, торф и уголь. Но мало кто знает, что вся энергия, что выделяется при сжигании этих полезных ископаемых, была запасена в результате фотосинтеза.

Но важнейшим свойством фотосинтеза, разумеется, является поглощение углекислого газа и выработка кислорода.

Ведь именно благодаря этому и существует всё живое на нашей планете. Так что недооценивать важность этого процесса никак нельзя.

Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Рисунок 1

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Биология. 6 класс. Рабочая тетрадь №1.

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

Читайте также: