Астрономия 11 класс законы кеплера конспект

Обновлено: 03.07.2024

Гравитационное взаимодействие проще всего наблюдать на космических объектах, обладающих огромной массой. В окружающей нас повседневности действие гравитации между предметами наблюдать сложно, даже если вес предметов составляет сотни и тысячи килограммов. В микромире силы гравитационного взаимодействия малы настолько, что ими можно пренебречь, потому на первый план выходят другие виды взаимодействий между элементарными частицами и атомами.

Гравитация удерживает живых существ и предметы на поверхности планеты, определяет характер движения планет вокруг Солнца. Именно гравитационное воздействие определяет тот факт, что планеты удерживаются вокруг своих звезд, а спутники не могут уйти в космическое пространство и продолжат движение по орбите вокруг своей планеты.

Закон всемирного тяготения или как его еще называют, теория гравитации, был открыт именно при наблюдении за планетами Солнечной системы.

Если наблюдать за движением небесных тел с Земли, то может показаться, что все эти тела движутся по сложной траектории. Так, например, древний ученый Птолемей, первооткрыватель законов движения планет, поместил Землю в центр вселенной и предположил, что другие планеты и звезды движутся вокруг Земли по большим и малым орбитам.

Рисунок 1 . 24 . 1 . Условное изображение наблюдаемого движения Марса на фоне неподвижных звезд.

Законы движения планет, установленные Птолемеем никем из исследователей не оспаривалась на протяжении 14 веков и только в середине 16 столетия была заменена Коперником на гелиоцентрическую систему, согласно которой все планеты движутся вокруг Солнца.

На основе гелиоцентрической системы объяснить траектории движения небесных тел стало намного проще. На основании трудов Коперника и наблюдений за движением планет астронома из Дании Браге немецкий астроном Кеплер сформулировал три эмпирических закона движения планет в Солнечной системе.

Первый закон Кеплера

Планеты Солнечной системы движутся по эллиптическим орбитам. В одном из фокусов такой орбиты находится Солнце.

Мы проиллюстрировали первый закон Кеплера рисунком. На нем изображена планета, чья масса меньше массы звезды. Звезда находится в одном из фокусов эллипса, по которому движется планета. Точкой Р мы обозначили ближайшую к звезде траекторию, носящая название перигелия. Точка А – это наиболее удаленная от звезды точка траектории, которая называется афелием. Большая ось эллипса располагается между точками афелии и перигелия.

Рисунок 1 . 24 . 2 . Эллиптическая орбита планеты массой m M . a – длина большой полуоси, F и F ' – фокусы орбиты.

В Солнечной системе все планеты за исключением Плутона движутся по орбитам, которые близки к круговым.

Второй закон Кеплера, или закон площадей

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рисунок 1 . 24 . 3 . Закон площадей – второй закон Кеплера.

Эквивалентом второго закона Кеплера можно считать закон сохранения момента импульса. На рисунке, расположенном выше, изображен вектор импульса тела p → и составляющие его p r → и p ⊥ → . Площадь, заметенная радиус-вектором за малое время Δ t , приближенно равна площади треугольника с основанием r Δ θ и высотой r :

∆ S = 1 2 r 2 ∆ θ или ∆ S ∆ t = 1 2 r 2 ∆ θ ∆ t = 1 2 r 2 ω ; ( ∆ t → 0 ) .

Здесь ω = ∆ θ ∆ t ; ( ∆ t → 0 ) – угловая скорость.

Момент импульса L по абсолютной величине равен произведению модулей векторов p r → и p ⊥ → :

L = r p ⊥ = r ( m v ⊥ ) = m r 2 ω так как v ⊥ = r ω .

Из этих отношений следует:

∆ S ∆ t = L 2 m , ∆ t → 0

Поэтому, если по второму закону Кеплера ∆ S ∆ t = co n s t , то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии v P → и афелии v A → направлены перпендикулярно радиус-векторам r P → и r A → из закона сохранения момента импульса следует:

r P v p = r A u A

Третий закон Кеплера

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.

Формула третьего закона Кеплера имеет вид:

T 2 a 3 = c o n s t или T 1 2 a 1 3 = T 2 2 a 2 3

Точность, с которой третий закон Кеплера выполняется для всех планет, составляющих Солнечную систему, составляет выше 1 % .

На рисунке изображены две орбиты, по которым небесные тела движутся вокруг звезды. Одна из орбит круговая с радиусом R , а другая – эллиптическая с большой полуосью a . Если R = a , то согласно третьему закону Кеплера периоды обращения планет по таким орбитам будут одинаковы.

Рисунок 1 . 24 . 4 . Круговая и эллиптическая орбиты. При R = a периоды обращения тел по этим орбитам одинаковы.

Третий закон Кеплера

Рисунок 1 . 24 . 5 . Модель законов Кеплера.

Законы Кеплера очень долго были правилами, полученными эмпирически на основе наблюдений за движением небесных тел. Для того, чтобы получить возможность опираться на них в создании рабочих теорий, не хватало теоретического обоснования законов.

Таким обоснованием стало открытие закона всемирного тяготения Исааком Ньютоном:

Закон всемирного тяготения:

где M и m – массы Солнца и планеты, r – расстояние между ними, G = 6 , 67 · 10 – 11 Н · м 2 / к г 2 – гравитационная постоянная.

Ньютон был первым из исследователей, кто пришел к выводу о том, что между любыми телами в космосе действуют гравитационные силы, которые и определяют характер движения этих тел. Частным случаем такого взаимодействия является сила тяжести, воздействующая на тела, расположенные на поверхности и вблизи планет.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T 2 ~ R 3 , где Т – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:

F ~ ω 2 R = 2 π 2 R T 2 .

Если T 2 ~ R 3 , то F ~ 1 R 2 .

Свойство консервативности гравитационных сил позволяет ввести понятие потенциальной энергии. Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m , находящегося на расстоянии r от неподвижного тела массы M , равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях.

Рисунок 1 . 24 . 6 . Вычисление потенциальной энергии тела в гравитационном поле.

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам. Работа ∆ A i гравитационной силы F → на малом перемещении ∆ s i → = ∆ r i → есть:

∆ A i = - G M m r i 2 ∆ r i

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ Δ A i на малых перемещениях:

В пределе при Δ r i → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение:

E p = A r ∞ = - G M m r

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость v , его полная механическая энергия равна

E = E k + E p = m v 2 2 - G M m r = c o n s t

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1 . 24 . 6 ).

При E = E 1 0 тело не может удалиться от центра притяжения на расстояние r > r m a x . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Рисунок 1 . 24 . 7 . Диаграмма энергий тела массой m в гравитационном поле, создаваемом сферически симметричным телом массой M и радиусом R .

При E = E 2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории.

При E = E 3 > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Первая и вторая космические скорости

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

m v 1 2 R 3 = G M m R 3 2 = g m , отсюда v 1 = G M R 3 = g R 3 = 7 , 9 · 10 3 м / с .

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

E = m v 2 2 2 - G M m R 3 = 0 , отсюда v 2 = 2 G M R 3 = 2 g R 3 = 11 , 2 · 10 3 м / с .

Мы проиллюстрировали понятие первой и второй космической скорости рисунком. Если скорость космического корабля равна v 1 = 7 . 9 · 10 3 м / с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих v 1 , но меньших υ 2 = 11 , 2 · 10 3 м / с , орбита корабля будет эллиптической. При начальной скорости v 2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

Рисунок 1 . 24 . 8 . Космические скорости. Указаны скорости вблизи поверхности Земли. 1 : v = v 1 – круговая траектория; 2 : v 1 v v 2 – эллиптическая траектория; 3 : v = 11 , 1 · 10 3 м / с – сильно вытянутый эллипс; 4 : v = v 2 – параболическая траектория; 5 : v > v 2 – гиперболическая траектория; 6 : траектория Луны.

Цель урока: формирование понятия о космическом явлении – движении космических тел.

– о законах движения космических тел в центральном поле тяготения (законах Кеплера);
– о траекториях движения (орбитах) космических тел и их основных характеристиках;
– об астрономической единице измерения межпланетных расстояний.

– формирование научного мировоззрения в ходе знакомства с историей человеческого познания и объяснения причин небесных явлений, обусловленных движением космических тел.

– формирование умений решать задачи на применение законов движения космических тел.

Ученики должны знать:

– законы движения космических тел в центральных полях тяготения Кеплера;
о связи между формой орбиты и скоростью движения космических тел;
– значение астрономической единицы расстояний.

Ученики должны уметь: решать задачи на применение законов движения космических тел.

Наглядные пособия и демонстрации: презентация, для экономии времени каждый ученик заполнит рабочий лист (приложение).

Организационный момент (слайд 1)

Проверка домашнего задания

Объяснение нового материала

Формирование понятий о движении космических тел и законах Кеплера (слайд 4). Учащиеся делают записи на листах опорного конспекта.

До Кеплера (слайд 5) считалось, что движение небесных тел может происходить только по “совершенной кривой” – окружности. Иоганн Кеплер впервые разрушил этот предрассудок. Используя многолетние наблюдения положения Марса, выполненные датским астроном Тихо Браге, Кеплер установил три закона движения планет относительно Солнца.

I закон Кеплера (слайд 6)

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Следовательно, орбиты всех планет имеют общий фокус, расположенный в центре Солнца.

Эллипс – геометрическое место точек, сумма расстояний которых от двух заданных, называемых фокусами, есть величина постоянная и равная 2а, где а – большая полуось эллипса.

Внимание вопрос на “5” (слайд 7): Кто предложил остроумный и гениально простой способ вычерчивания эллипса с помощью двух иголок и связанной в кольцо нити? Способ был доложен на заседании Эдинбургского Королевского общества, но не автором, потому что ему было тогда только 15 лет”.

Ответ: Джеймс Клерк Максвелл

Рассмотрим важнейшие точки и линии эллипса (слайд 8,9).

а – большая полуось,
b – малая полуось,
F1, F2 – фокусы,
r – радиус вектор,
А – афелий,
П – перигелий.

Перигелий – ближайшая к Солнцу точка орбиты, а афелий – самая удаленная от Солнца точка орбиты. Обе эти точки лежат на большой оси орбиты по разные стороны от Солнца. Степень вытянутости эллипса характеризуется эксцентриситетом е (слайд 10).

с – расстояние от центра до фокуса, а – большая полуось.

При совпадении фокусов с центром (слайд 11) (е = 0) эллипс превращается в окружность, при е = 1 становится параболой, при е > 1 – гиперболой.

Орбиты планет – эллипсы (слайд 12), мало отличаются от окружностей, так как их эксцентриситеты малы. Например, еЗемли=0,017, еМарса= 0,091.

II закон Кеплера (закон равных площадей) (слайд 13).

Радиус-вектора планеты за равные промежутки времени описывает равновеликие площади.

Радиус-вектор планеты – это расстояние от Солнца до планеты.

Площади S1 и S2 равны (слайд 14), если дуги описаны заодно и тоже время. Дуги, ограничивающие площади различны, следовательно, линейные скорости движения планет будут разными. Чем ближе планета к Солнцу, тем ее скорость больше. В перигелии скорость планеты максимальна, а в афелии – минимальна.

Таким образом, второй закон Кеплера количественно определяет изменение скорости движения планеты по эллипсу.

III закон Кеплера (слайд 15).

Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Т1, а1 – звездный период обращения и большая полуось одной планеты, а Т2, а2 – другой планеты (слайд 16,17).

Большая полуось земной орбиты (слайд 18) принята за астрономическую единицу расстояний: 1 а. е. = 149000000000 м. Звездный период Земли 1 год = 365 суток.

Этот закон имеет огромное значение для определения относительных расстояний от Солнца, так как звездный период нетрудно вычислить по известному синодическому периоду.

Кеплер лишь описал, как движутся планеты, но не объяснил причин движения. Это удалось сделать лишь во второй половине 17 века Ньютону.

Работа у доски, самостоятельное решение задач в тетради.

Задача №1. (слайд 19) Противостояния некоторой планеты повторяются через 2 года. Чему равна большая ось ее орбиты? Ответ: 1,59а.е.

Задача №2. (слайд 20) Какова продолжительность сидерического периода вращения Юпитера вокруг Солнца, если он в 5 раз дальше от Солнца, нежели Земля?

Дидактическая игра “Веришь – не веришь” (слайд 21)

Учитель читает утверждение, если ученик с ним согласен, то записывает в тетради “5”, если не согласен – “0”.

По теме: методические разработки, презентации и конспекты


Презентация к уроку астрономии в 11 классе "Большие планеты Солнечной системы"

Данная презентация к уроку по астрономии в 11 классе "Большие планеты Солнечной системы" дает возможность наглядно показать учащимся 8 больших планет в Солнечной системе, а также проверить усвое.

Презентация к уроку астрономия "Маяки звёздного неба"

Презентация для уроков астрономии.

Презентация к уроку астрономии (физики) по теме "Физические методы исследования в астрономии"

Данную презентацию можно использовать на уроках физики (в теме "Атомы и звезды", 9 класс) и астрономии. Использую этот материал на занятиях курса по выбору "Занимательная Вселенная" (9 класс). Презент.


Презентация к уроку астрономии "Движение и фазы Луны"

Презентация к уроку астрономии "Движение и фазы Луны".

Время и календарь. Презентация к уроку астрономии. 11 класс

Презентация к уроку астрономии в 11 классе.


Презентация к уроку астрономии 11 класса "Малые тела Солнечной системы"

Презентация к уроку астрономии "Малые тела Солнечной системы".


Презентация к уроку астрономии 11 класса "Введение в астрономию"

Введение в астрономию, основные объекты изучения, способы изучения, развитие науки.


Вы уже знаете, что революционная идея Николая Коперника о гелиоцентрической системе мироустройства дала невероятный толчок развитию астрономии. Однако, если вы помните, Коперник в своём учении не отказался от мыслей Аристотеля о "совершенстве" орбит планет. Лишь в начале XVII века австрийский астроном Иоганн Кеплер открыл кинематические законы движения планет. На этом уроке мы познакомимся с формулировками трёх законов Кеплера. А также узнаем, какую роль они сыграли для дальнейшего развития астрономии.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Законы движения планет Солнечной системы"

Вы уже знаете, что революционная идея Николая Коперника о гелиоцентрической системе мироустройства дала невероятный толчок развитию астрономии. Однако, если вы помните, Коперник в своём учении не отказался от мыслей Аристотеля о "совершенстве" орбит планет. Поэтому для объяснения многих явлений (например, попятного движения планет), в его теории всё ещё присутствовали эпициклы и деференты.


Лишь переехав в Прагу и став учеником датского астронома Тихо Браге, Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки.

Представим себе проблему, с которой столкнулся Кеплер, следующим образом. Мы находимся на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, обращается вокруг Солнца по неизвестной нам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Вопрос: как по данным наблюдений, сделанных на одном вращающемся вокруг оси и вокруг Солнца шарике, определить орбиту и скорость движения других планет?

Кажется, что вопрос достаточно сложный, даже при современном уровне компьютеров. А у Кеплера их не было и, тем не менее, ему удалось найти ответ!

Наблюдая за движением Марса в пространстве, а также воспользовавшись многолетними определениями координат и конфигураций этой планеты, проведёнными Тихо Браге, Кеплер обратил внимание на то, что Марс движется неравномерно. Он решил построить орбиту Марса. Для этого он сделал небольшое приближение, посчитав орбиту Земли круговой (что не противоречило наблюдениям). Затем он рассуждал примерно так. Пусть нам известно угловое расстояние Марса (точка М на рисунке) от точки весеннего равноденствия во время одного из противостояний планеты, то есть его прямое восхождение α1.


Т1 — это положение Земли во время противостояния с Марсом.

Теперь Кеплер был поставлен перед необходимостью сделать выбор одного из двух возможных решений: считать, что орбита Марса представляет собой окружность, и допустить, что на некоторых участках орбиты вычисленные координаты планеты расходятся с наблюдениями; или же считать, что все наблюдения были правильными, а орбита планеты действительно не является окружностью. Будучи уверенным в точности своих наблюдений и наблюдений Тихо Браге, Кеплер выбрал второе решение и установил, что наилучшим образом положения Марса на орбите совпадают с кривой, которая называется эллипсом. При этом Солнце располагается не в его центре. В результате им был сформулирован закон, который впоследствии назвали первым законом Кеплера: все планеты обращаются по эллипсам, в одном из фокусов которых находится Солнце.


На рисунке точка О — это центр эллипса, а F1 и F2 — его фокусы.

Проходящий через фокусы эллипса отрезок, концы которого лежат на эллипсе, называется его большой осью.

А отрезок, проходящий через центр эллипса перпендикулярно большой оси, называется малой осью эллипса.

Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях, называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются малыми буквами a и b.

Отличие эллипса от окружности характеризуется величиной его эксцентриситета. Он равен половине отношения фокусного расстояния эллипса к его большой полуоси:


Отметим, что в случае, когда эксцентриситет эллипса равен нулю, фокусы и центр эллипса сливаются в одну точку — эллипс превращается в окружность.

Теперь предположим, что Солнце расположено в фокусе F1. Тогда ближайшая к Солнцу точка орбиты планеты называется перигелием. А наиболее удалённая от Солнца точка, называется афелием.

Например, у земной орбиты эксцентриситет равен 0,017, то есть орбита действительно почти круговая. В перигелии наша планета находится в начале января. Расстояние до Солнца составляет около 147 миллионов километров. Афелий Земля проходит в начале июля, а афелийное расстояние составляет чуть более 152 миллионов километров.

Но вернёмся к Кеплеру и построенной им траектории Марса. Изучив расположения полученных точек, он увидел, что скорость Марса по орбите меняется. Но при этом радиус-вектор планеты (то есть линия, соединяющая центр Солнца с центром планеты) за равные промежутки времени описывает равновеликие площади.

Обнаруженная закономерность впоследствии получила название второго закона Кеплера (иногда его называют законом площадей).


Чтобы лучше понять его физический смысл, вспомните своё детство. Наверняка, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты обращаются вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета.

Объяснить данный закон можно на основе закона сохранения энергии. Из физики вам известно, что полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остаётся неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна в каждой точке орбиты планеты. Приближаясь к Солнцу потенциальная энергия планеты уменьшается, в следствии уменьшения расстояния до Солнца. Поэтому её кинетическая энергия должна увеличиваться. А сделать это можно лишь за счёт увеличения скорости.

Таким образом, скорость движения планеты по орбите меняется, принимая максимальное значение в перигелии и минимальное в афелии.


Свой третий закон Кеплер сформулировал лишь в 1618 году. Он гласит, что квадраты сидерических периодов обращения двух планет относятся как кубы больших полуосей их орбит:


И действительно, третий закон заслуживает самой высокой оценки. Ведь он позволяет вычислить относительные расстояния планет от Солнца, используя уже известные их периоды обращения вокруг него. При этом не нужно вычислять расстояния от Солнца до каждой планеты, достаточно измерить это расстояние для одной из них, например, Земли. Кстати, для простоты вычислений, величину большой полуоси́ орбиты Земли приняли равной одной астрономической единице (1 а. е.). Эта единица измерения стала основой для вычисления всех остальных расстояний в Солнечной системе.

Ещё раз обратим ваше внимание на то, что Кеплер открыл свои законы исходя только из собственных наблюдений, и наблюдений Тихо Браге. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведённого им анализа. Если бы вы спросили его об орбитальном движении планет в других звёздных системах, он также не нашёл бы ответа на этот вопрос.

Однако гений Кеплера в том и заключался, что он смог увидеть то, во что остальные отказывались верить. А строгое математическое доказательство его законы получили лишь после того, как Ньютоном были открыты закон Всемирного тяготения и закон сохранения момента импульса (известный нам второй закон Ньютона). Но об этом в следующий раз. А сейчас давайте решим с вами одну небольшую задачку. Определите период обращения астероида Россия, если большая полуось его орбиты равна 2,55 а. е.

Нажмите, чтобы узнать подробности

Изучить основные закономерности движения планет; конфигурации планет-соединение, противостояние и элонгации. Доказать, что в космосе действует закон всемирного тяготения, который управляет движением всех космических тел – от планет до галактик.

Развивать познавательную активность, внимание, речевую компетентность.

Воспитывать интерес к изучению астрономии.

Тип урока: формирование новых знаний.

1. Организационный момент.

2. Проверка д/з.

3. Формулирование цели и задач урока.

4. Мотивация учебной деятельности.

5. Изучение нового материала.

Основные закономерности движения планет.

Конфигурации планет: соединение, противостояние, элонгации.

Закон всемирного тяготения.

Сидерический и синодический периоды обращения планет.

Горизонтальный параллакс и определение расстояний до планет.

Законы движения планет – законы Кеплера

Гелиоцентрическая система Н. Коперника.

Планеты движутся по круговым орбитам (считалось с древнейших времён – по окружности).

Планеты движутся равномерно.


Но между предвычисленным и наблюдаемым положением планет существовало различие - это выявил австрийский астроном – основоположник теоретической астрономии ИОГАН КЕПЛЕР (27.12.1571 – 15.11.1630).

Он впервые решился пересмотреть причины движения планет вокруг Солнца, Луны вокруг Земли. Он ошибался в оценке природы притягивающей силы, но догадывался, что Солнце искажает притяжением пути планет, которые стремятся двигаться по прямой.


Работая в Праге учеником у Тихо Браге (1546-1601, Дания) он унаследовал результатов кропотливых и многолетних наблюдений Тихо Браге за планетой Марс - подробные таблицы наблюдения движения Марса и на их основе (этих данных) вывел законы движения планет (но не объяснил их т.к. не был открыт И. Ньютоном закон всемирного тяготения), преодолев предрассудки о равномерном движении по “самой совершенной” кривой - окружности. Открытие этих законов явилось важнейшим этапом в развитии гелиоцентризма.

Позднее, после открытия Ньютоном закона всемирного тяготения, законы Кеплера были выведены как точное решение задачи двух тел.


Открытые законы носят имя Кеплера.
Для построения орбиты планет (на примере Марса) Кеплер перейдя от экваториальной системы координат к системе координат, указывающих его положение в плоскости орбиты принял в приближении орбиту Земли окружностью. Для построения орбиты применил способ показанный на рисунке, отсчитывая прямое восхождение от точки весеннего равноденствия на положение нескольких противостояний Марса. Проведя по полученным точкам плавную кривую получил эллипс и нашел формулу описывающую орбиту планеты X=е*sin (а)+M.
CD- "Red Shift 5.1" - нахождение сегодняшнего положения Марса и его характеристика по выведенным таблицам.

1 ый закон Кеплера. [открыт в 1605 году, напечатан в 1609г в книге “Новая астрономия ….”= вместе с 2-м законом].


Определение: Орбита каждой планеты есть эллипс, в одном из фокусов которого находится Солнце.


Эллипс- замкнутая кривая, у которой сумма расстояний от любой точки до фокусов постоянна (const).

Если расстояние F1F2 обозначить 2с, а длину веревки считать 2а, то в системе координат, где ось ОХ совпадает с линией F1F2, а начало совпадает с серединой отрезка F1F2, эллипс задается уравнением х 2 : а 2 + у 2 : в 2 = 1. Числа а и в задают размеры полуосей эллипса. Если а = в, то эллипс превращается в окружность.

Форма эллипса (степень отличая от окружности - “сплюснутость”) характеризуется эксцентриситетом: е=с/а (форм.14), где а большая полуось орбиты, а с=OF расстояние от центра эллипса до его фокуса.

При е=с=0 эллипс превращается в окружность, а при е=1 в отрезок.

Приложение IХ.

карликовая планета

Большая полуось орбиты Земли (среднее расстояние Земли от Солнца) - расстояние, принятое за астрономическую единицу. 1а.е.=149 597 868 ± 0,7 км ≈ 149,6 млн. км.


Для эллиптической орбиты планеты характерны относительно Солнца точки:

Перигелий (греч. пери – возле, около) ближайшая к Солнцу точка орбиты планеты (для Земли 1-5 января). В перигелии южное полушарие Земли получает солнечной энергии на 6% больше, чем северное полушарие.

Афелий (греч. апо – вдали) наиболее удаленная от Солнца точка орбиты планеты (для Земли 1-6 июля).

Учитывая греческие названия планет, характерные точки эллиптической орбиты ее спутников будут иметь собственные названия. Так Луна – Селена (переселений, апоселений), Земля – Гея (перигей, апогей).

2 ый закон Кеплера. [открыт в 1601 году, напечатан в 1609г в книге “Новая астрономия ….”= вместе с 1-м законом].

Определение: Радиус-вектор планеты за равные промежутки времени описывает равные площади.


Называют законом площадей.

Заштрихованные площади фигур равны за равные промежутки времени. Из чертежа дуги разные, отсюда υпυа, т.е в перигелии υmax, а в афелии υmin.

По закону сохранения энергии полная механическая энергия замкнутой системы, между которыми действует сила тяготения, остается неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергии планеты неизменна во всех точках орбиты. По мере приближения к Солнцу кинетическая энергия планеты возрастает а ее потенциальная энергии уменьшается.

В соответствии со вторым законом Кеплера, орбитальная скорость обратно пропорциональна радиус-вектору. Поэтому скорость движения Земли по орбите также не постоянна, а изменяется от 29,5 км/с в афелии (июль) до 30,3 км/с в перигелии (январь). Соответственно, и расстояние от осеннего до весеннего равноденствия на орбите Земля проходит быстрее, чем противоположную, летнюю часть, а весна и лето в Северном полушарии на 6 суток продолжительнее осени и зимы. Например, Земля проходила точку перигелия, ближайшую к Солнцу, в 1998 году 04 января в 21 часов 15 минут 1 секунду всемирного времени UT. При этом ее расстояние от Солнца составляло 147099552 км. Противоположную точку орбиты, афелий, Земля проходила 3 июля 1998 года в 23 часа 50 минут 11 секунд всемирного времени UT. При этом Земля была от Солнца на расстоянии 152095605 км, т.е. на 5 миллионов километров больше. Это изменение расстояния до Солнца также хорошо заметно по изменению его видимого углового размера, который от 32´34" в январе уменьшается до 31´30" в июле.

Поток энергии от Солнца, падающий на Землю, изменяется обратно пропорционально квадрату расстояния. Поэтому зимы в северном полушарии менее суровые, чем в южном, а лето в северном полушарии более прохладное.

3 ый закон Кеплера. (Гармонический закон) [открыт в 1618 году, напечатан в 1619г в книге “Гармония мира”].

Определение: Квадраты звездных (сидерических) периодов обращения планет относятся между собой как кубы больших полуосей их орбит.


Законы Кеплера применимы не только для планет, но и к движению их естественных и искусственных спутников.

Читайте также: