Какие существуют подходы к изучению информатики в общеобразовательной школе

Обновлено: 02.07.2024

Одно из самых распространенных определений информатики можно найти в школьных учебниках по информатике, доступное для понимания учащимися выглядит так: “Информатика - наука, изучающая процессы сбора, передачи, переработки, хранения с использованием компьютеров.

Термин “информатика” происходит от двух ИНФОРМация и и автоМАТИКА, что явно указывает на связь информатики с автоматическими способами обработки информации. Поэтому импонирует определение, которое можно написать в виде формулы (О.М.Белоцерковскйй, А.А.Дородницын)

Информатика = НаrdWaге + SoftWare + ВгаnWаге.

НаrdWaге означает ту часть дисциплины, которая соответствует аппаратной части или аппаратной ветви информатики, SoftWare -программной ее ветви, а ВгаnWаге— алгоритмической, (bгаin — мозг). В этой триаде‚ центральное место отводится последней части информатики, поскольку именно она пронизывает все остальные, делает науку информатику самодостаточной для своего развития и эволюции.

Школьная информатика определяется как ветвь информатики, занимающаяся исследованием и разработкой программного, технического, учебно-методического и организационного обеспечения применения ЭВМ в школьном учебном процессе. Программное (или математическое) обеспечение школьной информатики поддерживает информационную, управляющую и обучающую системы средней школы, включает в себя программистские средства для проектирования и сопровождения таких систем, а также средства общения с ними, ориентированные на школьников, учителей и работников аппарата управления органами просвещения.

В области технического обеспечения школьная информатика имеет своей целью экономически обосновать выбор технических средств для сопровождения учебно-воспитательного процесса школы; определить параметры оборудования типовых школьных кабинетов вычислительной техники (КВТ); найти оптимальное соотношение использования серийных средств и оригинальных разработок, ориентированных на среднюю школу.

Учебно-методическое обеспечение школьной информатики состоит в разработке учебных программ, методических пособий, учебников по школьному курсу информатики, а также по всем школьным предметам, которые могут испытывать методологическое влияние информатики, и по курсам, при преподавании которых планируется использование средств информатики.

Основные содержательные линии(разделы):

1) линия информации и информационных процессов;

2) линия представления информации;

3) линия компьютера;

4) линия формализации и моделирования;

5) линия алгоритмизации и программирования;

6) линия информационных технологий.
Цели являются прогнозируемыми результатами обучения. Результаты при изучении информатики могут иметь различные качественные уровни. Наиболее распространены понятия:

Проводя параллель с обычной грамотностью, под компьютерной грамотностью можно понимать умение считать, читать, писать, рисовать, искать информацию с помощью ЭВМ. Признак высокой, сформировавшейся грамотности — самостоятельность и эффективность работы с применением ЭВМ. Это первая характеристика качества обучения школьника.

• понятие об алгоритме, его свойствах, средствах и методах описания алгоритмов, программе как форме представления алгоритма для ЭВМ; основы программирования на одном из языков программирования;

• практические навыки обращения с ЭВМ;

• принцип действия и устройство ЭВМ и ее основных элементов;




3. Представление об устройстве и принципах действия ЭВМ. В этом компоненте компьютерной грамотности выделяются две основные составляющие:
а) структура ПК и функции его основных устройств;
б) физические основы и принципы действия основных элементов компьютера.
Этот компонент имеет важнейшее мировоззренческое значение, хотя и труден для освоения учащимися.

4. Представления об областях применения и возможностях ЭВМ, социальных последствиях компьютеризации. Формирование этого компонента компьютерной грамотности также не является задачей исключительно курса информатики и выходит за его пределы. Сферы применения и роль ЭВМ в повышении эффективности труда целесообразно раскрывать учащимся в процессе практического использования компьютера для решения различных задач в ряде учебных предметов.

Нетрудно заметить, что даже при сохранении всех компонентов компьютерной грамотности усиленное акцентирование внимания на том или ином из них может приводить к существенному изменению конечной цели преподавания предмета информатики. Если, к примеру, начнет доминировать компонент общение, то курс становится преимущественно пользовательским, нацеленным, в частности, на освоение компьютерных технологий. При доминирующей компоненте программирование цели курса сведутся к подготовке программистов и т.д.
2. Этапы развития основных подходов к изучению информатики в школе

• Первый этап (1— VI Кл.) — пропедевтический.На этом этапе происходит первоначальное знакомство школьников с компьютером, формируются первые элементы информационной культуры в процессе использования учебных игровых программ, простейших компьютерных тренажеров и т.д. на уроках математики, русского языка и других предметов.

• Второй этап (VII - IХ кл.) — базовый курс,обеспечивающий обязательный общеобразовательный минимум подготовки школьников по информатике. Он направлен на овладение школьниками методами и средствами информационной технологии решения задач, формирование навыков сознательного и рационального использования компьютера в своей учебной, а затем профессиональной деятельности.

• Третий этап (Х— ХI кл.) — продолжение образования в области информатики как профильного обучения,дифференцированного по объему и содержанию в зависимости от интересов и направленности до профессиональной подготовки школьников.

- I этап (1985-1990гг.) – становление линии алгоритмизации в курсах информатики для младших школьников как отражение логики первого курса ОИВТ для старшей школы

- II этап (1990-1995гг.) – ориентация на развитие личности и мышления младших школьников как результат поисков собственного содержания в процессе становления непрерывного курса школьной информатики

- III этап (1995-2000гг.) – реализация системно-информационного подхода в изучении теоретических аспектов информатики учащимися 1-7 классов

- IV этап (2000-2004гг.) – целенаправленный отбор теоретических знаний и практических умений общеобразовательной направленности в процессе эксперимента по совершенствования структуры и содержания общего образования.

Современные направления:

- Изучение информатики и ИКТ в рамках модуля интегрированного курса или самостоятельного учебного предмета (факультатива)

- Применение педагогических технологий на базе средств ИКТ при изучении различных предметов

- Использование средств ИКТ во внеклассной работе.

Одно из самых распространенных определений информатики можно найти в школьных учебниках по информатике, доступное для понимания учащимися выглядит так: “Информатика - наука, изучающая процессы сбора, передачи, переработки, хранения с использованием компьютеров.

Термин “информатика” происходит от двух ИНФОРМация и и автоМАТИКА, что явно указывает на связь информатики с автоматическими способами обработки информации. Поэтому импонирует определение, которое можно написать в виде формулы (О.М.Белоцерковскйй, А.А.Дородницын)

Информатика = НаrdWaге + SoftWare + ВгаnWаге.

НаrdWaге означает ту часть дисциплины, которая соответствует аппаратной части или аппаратной ветви информатики, SoftWare -программной ее ветви, а ВгаnWаге— алгоритмической, (bгаin — мозг). В этой триаде‚ центральное место отводится последней части информатики, поскольку именно она пронизывает все остальные, делает науку информатику самодостаточной для своего развития и эволюции.

Школьная информатика определяется как ветвь информатики, занимающаяся исследованием и разработкой программного, технического, учебно-методического и организационного обеспечения применения ЭВМ в школьном учебном процессе. Программное (или математическое) обеспечение школьной информатики поддерживает информационную, управляющую и обучающую системы средней школы, включает в себя программистские средства для проектирования и сопровождения таких систем, а также средства общения с ними, ориентированные на школьников, учителей и работников аппарата управления органами просвещения.

В области технического обеспечения школьная информатика имеет своей целью экономически обосновать выбор технических средств для сопровождения учебно-воспитательного процесса школы; определить параметры оборудования типовых школьных кабинетов вычислительной техники (КВТ); найти оптимальное соотношение использования серийных средств и оригинальных разработок, ориентированных на среднюю школу.

Учебно-методическое обеспечение школьной информатики состоит в разработке учебных программ, методических пособий, учебников по школьному курсу информатики, а также по всем школьным предметам, которые могут испытывать методологическое влияние информатики, и по курсам, при преподавании которых планируется использование средств информатики.

Основные содержательные линии(разделы):

1) линия информации и информационных процессов;

2) линия представления информации;

3) линия компьютера;

4) линия формализации и моделирования;

5) линия алгоритмизации и программирования;

6) линия информационных технологий.
Цели являются прогнозируемыми результатами обучения. Результаты при изучении информатики могут иметь различные качественные уровни. Наиболее распространены понятия:

Проводя параллель с обычной грамотностью, под компьютерной грамотностью можно понимать умение считать, читать, писать, рисовать, искать информацию с помощью ЭВМ. Признак высокой, сформировавшейся грамотности — самостоятельность и эффективность работы с применением ЭВМ. Это первая характеристика качества обучения школьника.

• понятие об алгоритме, его свойствах, средствах и методах описания алгоритмов, программе как форме представления алгоритма для ЭВМ; основы программирования на одном из языков программирования;

• практические навыки обращения с ЭВМ;

• принцип действия и устройство ЭВМ и ее основных элементов;

3. Представление об устройстве и принципах действия ЭВМ. В этом компоненте компьютерной грамотности выделяются две основные составляющие:
а) структура ПК и функции его основных устройств;
б) физические основы и принципы действия основных элементов компьютера.
Этот компонент имеет важнейшее мировоззренческое значение, хотя и труден для освоения учащимися.

4. Представления об областях применения и возможностях ЭВМ, социальных последствиях компьютеризации. Формирование этого компонента компьютерной грамотности также не является задачей исключительно курса информатики и выходит за его пределы. Сферы применения и роль ЭВМ в повышении эффективности труда целесообразно раскрывать учащимся в процессе практического использования компьютера для решения различных задач в ряде учебных предметов.

Нетрудно заметить, что даже при сохранении всех компонентов компьютерной грамотности усиленное акцентирование внимания на том или ином из них может приводить к существенному изменению конечной цели преподавания предмета информатики. Если, к примеру, начнет доминировать компонент общение, то курс становится преимущественно пользовательским, нацеленным, в частности, на освоение компьютерных технологий. При доминирующей компоненте программирование цели курса сведутся к подготовке программистов и т.д.
2. Этапы развития основных подходов к изучению информатики в школе

• Первый этап (1— VI Кл.) — пропедевтический.На этом этапе происходит первоначальное знакомство школьников с компьютером, формируются первые элементы информационной культуры в процессе использования учебных игровых программ, простейших компьютерных тренажеров и т.д. на уроках математики, русского языка и других предметов.

• Второй этап (VII - IХ кл.) — базовый курс,обеспечивающий обязательный общеобразовательный минимум подготовки школьников по информатике. Он направлен на овладение школьниками методами и средствами информационной технологии решения задач, формирование навыков сознательного и рационального использования компьютера в своей учебной, а затем профессиональной деятельности.

• Третий этап (Х— ХI кл.) — продолжение образования в области информатики как профильного обучения,дифференцированного по объему и содержанию в зависимости от интересов и направленности до профессиональной подготовки школьников.

- I этап (1985-1990гг.) – становление линии алгоритмизации в курсах информатики для младших школьников как отражение логики первого курса ОИВТ для старшей школы

- II этап (1990-1995гг.) – ориентация на развитие личности и мышления младших школьников как результат поисков собственного содержания в процессе становления непрерывного курса школьной информатики

- III этап (1995-2000гг.) – реализация системно-информационного подхода в изучении теоретических аспектов информатики учащимися 1-7 классов

- IV этап (2000-2004гг.) – целенаправленный отбор теоретических знаний и практических умений общеобразовательной направленности в процессе эксперимента по совершенствования структуры и содержания общего образования.

Современные направления:

- Изучение информатики и ИКТ в рамках модуля интегрированного курса или самостоятельного учебного предмета (факультатива)

- Применение педагогических технологий на базе средств ИКТ при изучении различных предметов

Преподавание информатики в общеобразовательной школе следует вести, опираясь на нормативные документы Министерства образования РФ, где представлен Государственный стандарт общего образования, прописаны обязательный минимум содержания, а также требования к уровню подготовки выпускников, как на базовом уровне, так и на профильном.

C момента введения в школе общеобразовательного предмета “Основы информатики и вычислительной техники” накопился значительный опыт его преподавания, который во многом аккумулирован в современном базовом курсе информатики. В настоящее время сложились все предпосылки к расширению задач обучения информатике в общеобразовательной школе, дальнейшему совершенствованию системы обучения.

На ступени начального общего образования изучаемый предмет представляет собой пропедевтический курс, то есть предварительный вводный курс, систематически изложенный в сжатой и элементарной форме. Задача изучения предварительного курса - формирование у младших школьников не только элементов компьютерной грамотности, но и получения начальных знаний основ информатики, осуществление пропедевтики ее фундаментальных понятий и способов применения. В настоящее время научно обоснована целесообразность раннего обучения информатике, способствующего развитию продуктивности обучения и устойчивости внимания, а также повышению общего уровня интеллекта школьников.

Обучение информатике и информационным технологиям можно реализовать в начальной школе несколькими вариантами силами учителей начальной школы (возможно с привлечением учителей информатики).

1-й вариант. Бескомпьютерное изучение информатики в рамках 1 урока в интеграции с такими предметами как: математика, риторика, рисование, труд, музыка, окружающий мир. Обучение проводит учитель начальных классов без деления класса на группы.

2-й вариант. Организация компьютерной поддержки предмета "Информатика" в рамках одного урока без деления на группы. В этом случае необходимо:

ü наличие хотя бы одного компьютера с CD-ROM устройством, аудиосистемой (колонки) и медиапроектором с настенным экраном или телевизором с большим экраном, подключенным к компьютеру. Этот компьютер в кабинете может быть использован как "электронная" доска, то есть в режиме "вызова" к нему учащихся для выполнения команд, предусмотренных учебной компьютерной программой;

ü наличие электронных средств обучения;

ü готовность учителей начальной школы к использованию компьютерной поддержки на уроках информатики.

3-й вариант. Урок информатики с делением на группы в кабинете информатики школы в рамках одного урока. Это возможно, если имеется материальная база (компьютерный класс, компьютерные программы), готовность учителя к преподаванию предмета.

При изучении предмета можно использовать следующие учебно-методические комплекты:

Бененсон Е.П., Паутова А.Г. Информатика и ИКТ.

Информатика и ИКТ. 1-4 классы

Любой из представленных УМК может быть использован при изучении модуля “Практика работы на компьютере” предмета “Технология”.

Авторская программа. УМК 5 – 7 кл.; учебник 5 кл.; рабочая тетрадь 5 кл.; учебник 6 кл.; рабочая тетрадь 6 кл.; задачник 5 – 6 кл.;

методичка 5 – 6 кл.; учебник 7 кл. Дополнительно: плакаты 5 – 6 кл.

Под ред. Макаровой Н.В.

Информатика и ИКТ. 5-6 кл.

Соответствует федеральному компоненту государственного стандарта общего образования 2004 г.

Авторская программа. УМК 7 – 9 кл. (8 – 9 кл.): учебник 7 кл.;

учебник 8 кл.; учебник 9 кл.; методичка 7 – 11 кл.

Дополнительно: плакаты 7 – 9 кл.

Как самостоятельный учебный предмет федерального компонента государственного образовательного стандарта общего образования “Информатика и ИКТ” вводится в 8 классе в объеме 35 часов (по 1 часу в неделю), и в 9 классе – в объеме 70 часов (по 2 часа в неделю).

Для реализации требований федерального компонента государственного образовательного стандарта основного общего образования по информатике и ИКТ целесообразно использовать программу автора И.Г. Семакина и соответствующий УМК.

Соответствует федеральному компоненту государственного стандарта общего образования 2004 г.

Авторская программа. УМК 8 – 9 кл.: учебник 8 кл.; учебник 9 кл.;

задачник-практикум 8 – 11 кл. (в 2-х т.); структурированный конспект базового курса; методичка.

Дополнительно: плакаты 7 – 9 кл.

Соответствует федеральному компоненту государственного стандарта общего образования 2004 г.

Авторская программа. УМК 7 – 9 кл. (8 – 9 кл.): учебник 7 кл.; учебник 8 кл.; учебник 9 кл.; методичка 7 – 11 кл.

Дополнительно: плакаты 7 – 9 кл.

Если для изучения информатики и ИКТ в 5-7 классах использовался УМК (автор Макаровой Н.В.) целесообразно использовать учебно-методический комплект по информатике и ИКТ 8–9 кл. этого же автора.

Под ред. Макаровой Н.В.

Информатика и ИКТ. 8–9 классы

В соответствии с Концепцией модернизации российского образования на период до 2010 года на старшей ступени общеобразовательной школы предусматривается профильное обучение. При этом ставится задача создания системы специализированной подготовки (профильного обучения) в старших классах общеобразовательной школы, ориентированной на индивидуализацию обучения и социализацию обучающихся, в том числе с учетом реальных потребностей рынка труда, отработки гибкой системы профилей и кооперации старшей ступени школы с учреждениями начального, среднего и высшего профессионального образования.

Учащиеся старшей ступени обучения независимо от профиля обучения могут выбрать любой элективный курс по информатике. Время на элективные курсы отводится за счет компонента образовательного учреждения.

Для реализации элективных курсов по информатике в старшей школе могут быть использованы программы, изданные Национальным фондом подготовки кадров по итогам конкурса учебных материалов для обеспечения элективных курсов в старшей школе:

Таким образом, из предложенных вариантов мы можем сформировать наиболее удобную и интересную концепцию содержания обучения.

Раздел: Педагогика
Количество знаков с пробелами: 106950
Количество таблиц: 19
Количество изображений: 0

С процессом развития информационного общества связано интенсивное становление новой образовательной парадигмы, основывающейся на изменении фундаментальных представлений о человеке и его развитии через образование.

Содержательные изменения по обеспечению соответствия образования запросам и возможностям общества периода информатизации и глобальной массовой коммуникации отражает сегодня так называемый компетентностный подход в образовании.

С позиций компетентностного подхода смыслом образования становится развитие у обучаемых способности к самостоятельному решению проблем в различных сферах и видах деятельности на основе использования социального опыта, элементом которого становится и собственный опыт обучаемых. Очевидно, что уровня общего образования недостаточно для формирования у учащихся компетенций, достаточных для эффективного решения проблем во всех сферах деятельности. Цель школы — формирование ключевых компетенций.

Под ИКТ – компетентностью подразумевается уверенное владение учащимися всеми составляющими навыками ИКТ – грамотности для решения возникающих вопросов в учебной и иной деятельности, при этом акцент делается на сформированность обобщенных познавательных, этических и технических навыков.[19. 7]

Таблица №1.Структура ИКТ – компетентности

Умение точно интерпретировать вопрос

Умение детализировать вопрос

Нахождение в тексте информации, заданной в явном или в неявном виде

Идентификация терминов, понятий

Обоснование сделанного запроса

Выбор терминов поиска с учетом уровня детализации

Соответствие результата поиска запрашиваемым терминам (способ оценки)

Формирование стратегии поиска

Создание схем классификации для структурирования информации

Использование предложенных схем классификации для структурирования информации

Умение сравнивать и сопоставлять информацию из нескольких источников

Умение исключать несоответствующую и несуществующую информацию

Умение сжато и логически грамотно, изложить обобщенную информацию

Выработка критериев для отбора информации в соответствии с потребностью

Выбор информационных ресурсов согласно выработанным и или указанным критериям

Умения остановить поиск

мировоззренческое — формирование представлений об информации как одном из трех основополагающих понятий наук (вещества, энергии, информации), на основе которых строится современная научная картина мира;

алгоритмическое — развитие у учащихся алгоритмического и системного мышления;

технологическое — знакомство учащихся с современными компьютерными информационными технологиями.

познакомить учащихся с областями применения компьютера в современном обществе;

познакомить учащихся с компьютерными программами для работы с различными видами информации: числовой, звуковой, видео, текстовой, графической.

Для достижения данной цели автор ставит перед собой следующие задачи :

Изучить и систематизировать учебно-методические материалы Л.Л. Босовой, А.В. Горячева, Н.В. Макаровой и других авторов по заявленной проблеме.

Глава I . Сравнительный анализ учебно-методических комплексов по информатике Горячева А.В., Матвеевой Н.В., Макаровой Н.В., Босовой Л.Л.

Стандарты 2004 года и ФГОС

Изучая природу, особенности своего края на уроках окружающего мира, ребята не только ведут наблюдения, проводят простейшие опыты, знакомятся с природой и историей на экскурсиях, но и получают сведения о родной стране из источников массовой информации. Таким образом, они усваивают, что средства массовой информации (радио, телевидение, пресса, Интернет) имеют, важное значение в нашей жизни. Для занятий внеурочной проектной деятельностью ребята учатся осуществлять поиск информации сами в энциклопедиях и других изданиях, в том числе из школьной библиотеки, на видеокассетах, в электронных энциклопедиях, из рассказов взрослых, на экскурсиях, в Интернете.

Межпредметные связи, особенно хорошо просматриваются в начальной школе на уроках технологии, где учащиеся применяют различные способы компьютерного поиска информации:

просмотр подобранной по теме информации, поиск файлов с помощью файловых менеджеров, использование средств поиска в электронных изданиях, специальных поисковых системах;

сохраняют найденные результаты, анализируют полученные сведения, представляют информацию в наглядном виде (таблицы, схемы, диаграммы).

В 3-4 классах на уроках технологии и во внеурочной деятельности учащиеся осваивают правила компьютерного письма, учатся выполнять основные операции при создании текстов.

Таким образом, при переходе в основную школу выпускники начальной школы будут уметь:

оценивать потребность в дополнительной информации;

определять возможные источники информации и способы её поиска;

организовывать информацию тематически, упорядочивать по алфавиту, по числовым значениям;

наращивать свои собственные знания, сравнивая, обобщая и систематизируя полученную информацию и имеющиеся знания, обновляя представления о причинно-следственных связях;

при работе с информацией применять средства информационных и коммуникационных технологий, выполняя при этом правила поведения в компьютерном классе.

Если сравнить стандарты 2004 года и ФГОС, то можно увидеть, что изменились цели, структура стандарта, планируемые личностные, предметные, метапредметные результаты, в ФГОС введена оценка достижения планируемых результатов. Эти изменения хорошо просматриваются в сравнительной таблице.

Таблица № 2 Сравнительная таблица стандартов.

Стандарты 2004

1)Развитие личности школьника , его творческих способностей, интереса к учению, формирование желания и умения учиться;

2)Освоение системы знаний, умений и навыков, опыта осуществления разнообразных видов деятельности.

Развитие личности обучающегося на основе усвоения универсальных учебных действий, познания и освоения мира составляет цель и основной результат образования.

Структура стандарта

В образовательном стандарте первого поколения приведены:

ОУУН и способы деятельности, которым должен овладеть ученик;

Система требований к содержанию обучения по учебному предмету, включающая:

цели изучения учебного предмета;

обязательный минимум содержания основных общеобразовательных программ по данному учебному предмету;

требования к уровню подготовки выпускников по данному учебному предмету.

ФГОС включает в себя требования:

к результатам освоения основной образовательной программы начального общего образования;

к структуре основной образовательной программы начального общего образования, в том числе требования к соотношению обязательной части основной образовательной программы и части, формируемой участниками образовательного процесса;

к условиям реализации основной образовательной программы начального общего образования, в том числе кадровым, финансовым, материально – техническим и иным условиям.

Планируемые результаты освоения

Стандарт ориентирован на достижение результатов образования через реализацию:

требований к формированию ОУУН и способов деятельности;

требований к уровню подготовки выпускников по каждому учебному предмету.

К числу планируемых результатов освоения ООП отнесены:

личностные результаты - готовность и способность обучающихся к саморазвитию, сформированность мотивации к учению и познанию, ценностно-смысловые установки выпускников;

метапредметные результаты – освоение обучающимися универсальных учебных действий (познавательные, регулятивные, коммуникативные);

предметные результаты – освоенный обучающимися в ходе изучения учебных предметов опыт специфической для каждой предметной области деятельности по получению нового знания, его преобразованию и применению.

В основной школе, ещё в большей степени информатика имеет очень большое число междисциплинарных связей, причём как на уровне понятийного аппарата, так и на уровне инструментария, поэтому сегодня разработана новая программа основного общего образования. Необходимость разработки новой программы обусловлена, с одной стороны, пересмотром содержания общего образования в целом, с другой стороны, потребностью развития информационных и коммуникационных технологий (ИКТ) и связанной с этим необходимостью уделить в курсе информатики большее внимание вопросам алгоритмизации и программирования. При этом учитывается важная роль, которую играет алгоритмическое мышление в формировании личности. Сегодня человеческая деятельность в технологическом плане меняется быстро, на смену существующим технологиям и их конкретным техническим воплощениям быстро приходят новые, которые специалисту приходится осваивать заново. В этих условиях велика роль фундаментального образования, обеспечивающего профессиональную мобильность человека, готовность к освоению новых технологий, в том числе информационных. Поэтому в содержании курса информатики основной школы сделан акцент на изучении фундаментальных основ информатики, выработке навыков алгоритмизации, реализующих в полной мере общеобразовательный потенциал этого курса.

Существует ряд вопросов, необходимость включения которых в учебные планы бесспорна.

Сравнительный анализ УМК по информатике

Так, постепенно, урок за уроком, учащиеся учатся отгадывать загадки, находить общее и особенное в предметах, их составе и действиях. Объектами могут выступать, любые предметы (имена, животные, люди, учреждения).

Наконец, учащиеся усваивают, что события, а значит, и изменения состояний могут происходить не только с отдельными объектами, но и со всей системой в целом (то есть в каждой системе есть внутреннее событие, когда только один объект переходит в другое состояние и внешнее событие, когда меняется вся система).

При описании объектов и их состояний Горячев А.В. предлагает обучить их также схеме (алгоритму) рассуждений. Схемой рассуждений по Горячеву А.В. являются графы.

Таким образом, логико-алгоритмический компонент курса информатики и ИКТ в начальной школе по методике А.В. Горячева предназначен для развития логического, алгоритмического и системного мышления, создания предпосылок успешного освоения учащимися инвариантных, фундаментальных знаний и умений в областях, связанных с информатикой, которые вследствие непрерывного обновления и изменения в аппаратных и программных средствах выходят на первое место в формировании научного информационно-технологического потенциала общества.

УМК по информатике Н.В. Матвеевой отличается системным представлением учебной информации. При этом происходит:

Развитие системных представлений на основе усвоения школьниками представлений о связях и отношениях объектов реальной действительности между собой и возникающих при этом системных эффектах.

Формирование алгоритмического похода к решению текстовых задач, что является наиболее значимой проблемой в процессе обучения в старших классах.

Практическая направленность знаний с опорой на актуальный опыт ребенка работы с информацией (ее анализ, синтез и разные способы поиска, хранения, обработки и передачи).

Наблюдать за объектами окружающего мира; обнаруживать изменения , происходящие с объектом и по результатам наблюдений, опытов, работы с информацией учатся устно и письменно описывать объекты наблюдения.

Соотносить результаты наблюдения с целью , соотносить результаты проведения опыта с целью.

Письменно представлять информацию о наблюдаемом объекте, т.е. создавать текстовую или графическую модель наблюдаемого объекта с помощью компьютера с использованием текстового или графического редактора.

Понимать, что освоение собственно информационных технологий (текстового и графического редакторов) не является самоцелью, а является способами деятельности в интегративном процессе познания и описания (под описанием понимается создание информационной модели : текста, рисунка и пр.).

В процессе информационного моделирования и сравнения объектов выявлять отдельные признаки , характерные для сопоставляемых предметов; анализировать результаты сравнения, объединять предметы по общему признаку. Создание информационной модели может сопровождаться проведением простейших измерений разными способами. В процессе познания свойств изучаемых объектов осуществляется сложная мыслительная деятельность с использованием уже готовых предметных, знаковых и графических моделей .

Начиная обучение информатике со второго класса, следует научить детей видеть окружающую действительность с точки зрения информационного подхода, постепенно вводить в их мышление и речь термины информатики (источник/приемник информации, канал связи и пр.), наряду с обучением работе на компьютере.

Основная цель изучения этого раздела – знакомство учащихся с базовыми понятиями системно-информационной концепции изучения информатики – объектом и моделью. Все уроки этого модуля носят теоретический характер (в то же время остальные темы подкреплены обязательными уроками – практикумами) и построены на основе системного подхода к анализу информации окружающей действительности.

Знания, полученные из этого раздела, в той или иной мере используются при изучении основ моделирования, а также при освоении технологии работы в прикладных программных средах.

При изучении объектов широко используются межпредметные связи: учитель называет учебный предмет, а дети называют объекты, которые они изучают (например, на уроках русского языка ребята знакомятся с такими объектами, как части речи, члены предложения, на уроках истории – с историческими событиями и личностями). В результате обсуждения на доске и в тетрадях учащихся выстраивается следующая схема:

Многообразие объектов

Материальные Нематериальные Явления


объекты объекты


Объекты, созданные

человеком

Объекты живой природы Объекты неживой природы

Учащийся описывает объект, изображенный на подготовленной дома картинке (репродукции), не показывая его. Остальные пыта­ ются отгадать, что изображено на картинке.

Учитель делает вывод в конце игры: чтобы описать объект, можно привести самые разнообразные его характеристики.

количественные (объем, размер, вес и т. д.),

качественные (форма, цвет и т. д.).

Как сформировать представление о параметрах объекта

Вариант диалога:

Вопрос : На какой вопрос могут отвечать свойства, записанные на доске справа?

Ответ: Какой, каков.

Вопрос : На какой вопрос могут отвечать свойства, записанные на доске слева?

Ответ : Сколько.

Ответ : Цвет, материал, форма, автор (музыки, рассказа).

Ответ: Рост, вес, возраст, зарплата.

Вопрос : Каким может быть свет?

Ответ: Красным, серым, голубым.

Вопрос : каким может быть рост? Приведите примеры.

Ответ: Рост человека – 180 см, рост маленького ребенка – 130 см, рост собаки, например таксы, - 20 см.

Можно продолжить вопросы такого же плана. Важно, чтобы в про­цессе диалога учащиеся уяснили, что есть название свойства, а есть его значения. Можно также коснуться свойств, которые не имеют зна­ чений.

Вариант диалога:

Вопрос : Добрый, ласковый, вкусный – это свойства?

Вопрос: Кто или что может обладать такими свойствами?

Ответ: Человек (добрый, ласковый), пирог (вкусный).

Вопрос: А есть ли у таких свойств конкретные значения? Можно ли измерить количество доброты, ласковости, вкуса?

Параметр – признак или величина, характеризующая какое-либо свойство объекта и принимающая различные значения. Величина определяет количественную характеристику объекта, признак определяет качественную характеристику объекта.

Полезная в хозяйстве

Уроки, посвящённые формированию представлений учащихся о моделях, являются, с одной стороны, прагматическими, так как основаны на анализе множества примеров, с другой стороны – мировоззренческими, так как дают представление о методах изучения окружающего мира.

Учитель предлагает ученикам привести примеры моделей. Ответы учеников учитель фиксирует в таблице на доске (таблица), ученики записывают их в тетрадь. При обсуждении, возможно, будут предложены и нематериальные модели объектов. Их следует записывать наравне с материальными, не выделяя, сделать акцент на возможности построения различных моделей для объекта в зависимости от цели.

Макет поверхности земли

Макет, отражающий внутреннее устройство Земли

Сувенирная модель автомобиля

Опытный образец автомобиля

Тренажер для обучения вождению

Затем следует обсуждение получившейся таблицы.

Учитель приводит определение модели: Модель – аналог (заменитель) оригинала, отражающий некоторые его свойства.

Значение цели при создании модели объекта

Вариант диалога:

Вопрос: Почему для каждого объекта предлагается несколько различных моделей?

Ответ: Потому что каждая модель отражает определенное свойство объекта.

Вопрос: Чем определяется выбор свойств, которые будут отражать модель?

Ответ: Манекен нужен для пошива одежды, поэтому он должен отражать внешние свойства человека; скелет нужен для изучения строения человека, поэтому он отражает только костное строение человека… То есть свойства, которые должна отражать модель, определяются целью, создания ее, поэтому в зависимости от цели для реального объекта можно создать различные модели.

Свойства объекта, которые должна отражать модель, определяются поставленной при его изучении целью, поэтому в зависимости от цели для реального объекта можно создать различные модели.

В результате, опираясь на интуитивное понимание ученикам того, что такое модель, и выявив общие черты моделей на различных примерах, учитель вместе с учениками сумеет сформулировать определенные модели объекта, подчеркнув значение цели при создании модели.

Информационная модель – целенаправленно отобранная информация об объекте, которая отражает наиболее существенные, для исследователя, свойства этого объекта.

Значение цели при создании информационной модели

Важно акцентировать внимание учеников на значении цели создания информационной модели. Для лучшего усвоения этого положения желательно рассмотреть несколько примеров реальных объектов, для которых, в зависимости от заданной цели, можно создать разные варианты моделей. Примеры объектов следует выбирать так, чтобы жизненный опыт и знания, полученные на уроках, позволяли ученикам придумать несколько вариантов информационной модели.

Формы представления информационной модели

Следует обратить внимание учеников на то, что информационная модель может быть представлена в различных формах. Так, если учащиеся создают информационную модель мобильного телефона, то информацию о его внешнем виде лучше всего представить в графической форме, а информацию о функциональных возможностях – в виде текста или таблицы.

Информатика – это школьная дисциплина, которая не случайно включена в учебный план общеобразовательной школы. Появление этого предмета в учебном плане школы можно рассматривать как следствие объективной необходимости, как следствие формирования и реализации новых целей и нового содержания общего образования, который трудно осуществить в рамках устоявшихся дисциплин.

Можно выделить четыре важных момента, характеризующих современный процесс обучения информатики:

Первый момент : обучение информатике, в силу специфики ее содержания, требует высокой философско-методологической культуры учителя информатики. Отсюда не следует, что на уроке информатики следует преподавать философию, а это означает, что сам учитель должен знать и понимать смысл и значение общих философских законов и законов о развитии познания. Также глубоко понимать значение и смысл, как философских категорий, так и понятий информатики. Владеть методикой формирования понятий , что предполагает необходимость представления о понятии, как о развивающемся динамическом информационном объекте, понимать и использовать в своей деятельности принципы методологии и принципы развивающего, личностно - ориентированного и эвристического обучения. Поэтому на первый план в современном образовании выходит обучение приемам и способам мышления и деятельности, а не просто передачи информации.

Наступление третьего этапа и влечет за собой проникновение в информатику элементов философии, лингвистики, психологии, семантики, семиотики и т.д. А это, в свою очередь, влечет за собой изменение в целом методики обучения, появляется необходимость разработки новых частных методик и технологий, некоторые из которых будут представлены в других главах данного пособия.

Таким образом, все изменения, которые происходят с методической системой обучения информатике – это не лукавые умствования и чья-то воля, а следствие перехода от индустриального к информационному общества. Информационное общество – это качественно иные отношения, это новое содержание деятельности членов общества и, следовательно, – новое содержание образования. Изменение содержания образования влечет за собой изменение средств и методов обучения и организации учебного процесса.

Четвертый момент: Революционность времени еще выражается в появлении новых педагогических технологий, способствующих внедрению передовых средств и методов в обучении. Прежде всего, это касается технологий развивающего обучения. Самым популярным, на сегодняшний день, является технология в основе, которой лежит содержательное обобщение (В.В. Давыдов, Д.Б. Эльконин). Данная технология затрагивает в основном внешние качества ребенка, не используя богатый внутренний мир человека. Эти проблемы были решены в личностно - ориентированной технологии, где при изложении любого теоретического материала используют субъектный опыт школьника (И.С. Якиманская). Прогрессивные подходы предложены в методологии эвристического обучения, когда ученик совместно с учителем выстраивают собственную образовательную траекторию (А. В. Хуторской).

Выбор той или иной технологии обусловлен, прежде всего, личностью самого педагога, нельзя искусственно навязывать человеку те или иные методы работы, пусть даже и достаточно прогрессивные. Необходимо пропустить через себя любые предлагаемые технологии, чтобы в процессе деятельности действия учителя выглядели естественно (были личностно окрашены), без физического и психологического напряжения. Но определенные требования к деятельности учителя информатики все же существуют, что может быть выражено в принципах: организационных, деятельностных, содержательных и т.д. Мы рассмотрим основные моменты организации учебной деятельности на уроках информатики, свойственные развивающему обучению.

1. Принцип мотивации учебной деятельности. Для хорошего усвоения материала необходимо наличие внутренней мотивации у школьника на получение качественных знаний, при этом учитель формирует среду и создает условия для формирования внешней (по отношению к ученику) мотивации. Причем внешняя мотивация является основой для построения учебного процесса.

2. Принцип целенаправленного планирования собственной учебной деятельности . Поэтапное формирование алгоритмического мышления, как одна из педагогических задач учителя информатики, должна перерасти в данную компетентность. Умелое планирование собственной учебной деятельностью позволит в дальнейшем эффективно планировать и выстраивать собственную жизнь.

3. Принцип самоконтроля и ответственности за свои учебные достижения . Немаловажным фактором развития личности является формирование ответственности каждого за результаты своей деятельности, первоначально учебной, которая в процессе интериоризации должна перерасти к ответственности в профессиональной деятельности.

4. Принцип системного анализа учебного процесса (принцип рефлексии на собственную деятельность). Этот принцип обусловлен необходимостью соотнесения цели своей деятельности и полученного или получаемого результата, когда идет анализ проблем возникающих в процессе обучения.

5. Принцип системного анализа своих учебных достижений (принцип рефлексии на учебные достижения). Всесторонний анализ позволяет выявить и определить наиболее эффективные пути достижения поставленной цели, и закрепить способы деятельности дающие постоянный положительный результат).

1. Принцип осознания условия и содержания учебной задачи .

2. Принцип осознания двух независимых результатов от процесса решения учебной задачи : первый результат – осознание цели выполнения данной учебной задачи как результата своей учебной деятельности (например, освоен новый способ мышления, новый способ решения задачи и т.д.), второй результат - получен правильный или неправильный ответ.

3. Принцип осознания способа выполнения отдельных действий и системы способов выполнения задачи в целом (абстрагирование, теоретическое мышление, системный анализ, формализация, моделирование, сравнительный анализ и т.д.).

4. Принцип системного анализа хода решения задачи .

5. Принцип поиска альтернативных решений .

6. Принцип поиска оптимального решения .

5. Принцип организации осознания процесса учения , что означает целенаправленные усилия учителя на осознание не только объекта познания, но и процесса познания . Если процесс осознания объекта познания обращен на собственно объект познания (компьютер, программное обеспечение, память компьютера, учебную задачу и т.д.), то при осознании процесса познания внимание обращено не во вне, а как бы внутрь, то есть на то, как протекает процесс познания компьютера, каковы этапы процесса познания (сначала узнавание из множества других объектов, затем знакомство с внешними признаками и свойствами, потом познание функций и структуры, выделение отдельных составляющих элементов и познание из свойств, функций и признаков и т.д.). Соблюдение этого принципа способствует формированию правильного взаимоотношения учащихся с окружающей действительностью.

6. Принцип ускорения , который означает, что если учителю удастся реализовать все принципы развивающего обучения, то проявляется как бы побочный эффект – ускорение развития учащихся. Происходит это вследствие освоения способов деятельности (в том числе мыслительной, умственной), а не просто освоения отдельных знаний (фактов, событий и пр.). Здесь происходит смещение акцентов, когда внимание обращено именно формирование способов деятельности, чем целенаправленного формирования элементов знания. Такой подход многократно увеличивает эффект обучения.

Вот таковы основные требования к урокам с использованием методологии развивающего обучения.

Существует мнение, что организация развивающего обучения – сложная задача. Нет, не сложнее организации традиционного урока, если учитель понимает, что надо делать. Развивающее обучение – это непременное условие организации образовательного процесса в информационном обществе.

Почему? Что не устраивает школу информационного общества в традиционных методиках обучения?

Чтобы ответить на этот вопрос необходимо рассмотреть возможные типы развития вообще. Подобная классификация была приведена Р.С. Немовым 3 , для развития в целом, что применимо, в том числе и для мышления:

1) развитие эволюционное – медленное и достаточно устойчивое изменение в психологии и поведении человека, происходящее в периоды возрастного развития между его кризисами;

2) развитие ситуационное – быстрое, недостаточно устойчивое и требующее подкрепления изменения в психике и поведении ребенка, происходящее под влиянием ситуационных социальных факторов;

3) развитие революционное – быстрое и глубокое преобразование психики и поведения человека, происходящее при его переходе из одного возраста в другой; развитие революционное - это ключевое понятие теории, утверждающей, что развитие психики и поведения человека зависит не от генотипа, а от воздействия среды, которая своим влиянием производит революцию в психологии и поведении человека, создавая нечто такое, чего не было с самого начала даже в зародыше.

Уже из определений видно, что развитие – это не память, не интеллект, не знания, умения и навыки, а нечто совсем другое, что зависит от памяти, интеллекта, знаний и навыков, но являет собой нечто более сложное, нечто целое, которое исследует наука психология, так как развитие связано с преобразованиями психики и поведения человека.

Что нам дает понимание этого важного обстоятельства, если основной предмет нашего разговора не психология, а методика обучения информатике, а конкретно - методика формирования понятий?

Письменная или устная речь – это и объекты нашего внимания со своими свойствами и признаками и процессы ввода/вывода информации. Способы представления (ввода/вывода) информации в данном контексте не ограничиваются устной и письменной речью – все виды искусства являют собой великое разнообразие способов представления информации, или здесь имеются в виду все возможные виды явного выражения представлений человека о мире, в котором он живет и о чувствах, которые он испытывает.

Учителю информатики на современном этапе развития содержания и методической системы обучения информатике необходимо четко уяснить для себя: что я, учитель информатики, хочу изменить в ходе своих уроков информатики, как хочу организовать урок, какие задачи подберу, что скажу ученикам, какие задания дам на дом, как организую взаимодействие учащихся между собой и т.д., чтобы целенаправленно воздействовать не только на их знания, умения и навыки в области информационных технологий или программирования, а чтобы воздействовать на их развитие, то есть на мышление. Что и как следует делать на уроке, чтобы изменить способы мышления, и как потом убедиться, что в процессе этого осознанного воздействия на личность посредством вышеперечисленных приемов и способов произошли именно те, планируемые изменения мышления, а не просто, чтобы изменилось количество знаний, умений и навыков.

1 Аргинская И.И. и др. Обучаем по системе Занкова. – М.: Просвещение, 1991 – 220 с. – с. 9.

2 Рубинштейн Л.С. Проблемы общей психологии. – М., 1973 – с.191

3 Немов Р.С. Психология. (Книга 2 Психология образования) - учебник для студентов высших педагогических учебных заведений в 3-х книгах. – М.: - Владос, 1998с. 596

5 Зеленский В.В. Аналитическая психология. Словарь. Рекомендовано МО РФ в качестве учебного пособия в системе дополнительного образования. С.-П., 1996, с.137

Читайте также: