Что такое бактерии прокариоты эукариоты автотрофы гетеротрофы цианобактерии кратко

Обновлено: 02.07.2024

Эукариоты - ?Прокариоты - ?Автотрофы - ?Гетеротрофы - ?Фотосинтез - ?Органические вещества - ?

Эукариоты - одноклеточные или многоклеточные живые организмы, в клетках которых содержится ядро.
Прокариоты - одноклеточные живые организмы без клеточного ядра.
Автотрофы - живые организмы, синтезирующие органические вещества из неорганических.
Гетеротрофы - живые организмы, питающиеся экзогенными органическими веществами, произведёнными другими организмами.
Фотосинтез - химический процесс, при котором энергия видимого света при участии пигментов преобразуется в энергию химических связей органических веществ.
Органические вещества - химические соединения, в состав которых входит углерод (за исключением некоторых химических соединений).

Все живущие на Земле организмы в зависимости от структуры их клеток относятся к одной из двух групп: прокариоты или эукариоты.

Организмы

Деление организмов на прокариотические и эукариотические сохранялось довольно долго (до 1990-х гг.), пока американский микробиолог К.Вёзе не обнаружил, что в среде прокариотов находится большая группа особей с существенными генетическими различиями.

В этой связи он предложил разделить прокариотов на бактерии и археи. В настоящий момент разделение живых организмов на эукариотов, бактерии и археи считается общепризнанным.

Прокариоты — это.

Прокариоты – это одноклеточные живые организмы без оформленного клеточного ядра. Они не развиваются, не переходят в многоклеточную форму и способны к автономному существованию.

Прокариоты – самая представительная форма жизни на Земле по количеству видов. Например, 1 грамм плодородной почвы может содержать порядка 10 млрд.бактериальных клеток.

Как уже отмечено выше, к прокариотам относятся бактерии (в том числе цианобактерии или сине-зелёные водоросли) и археи.

У прокариотов молекула органического вещества не отделена от цитоплазмы, а прикреплена к клеточной мембране. У них, как правило, бесполый способ размножения, а ДНК имеет кольцевую форму. У большинства прокариотов геном (что это?) представлен одиночной хромосомой.

Размножение

Прокариоты – это древнейшие и в то же время самые примитивные организмы на нашей планете. Они встречаются повсеместно: в воздухе, в воде, в почве, внутри живых организмов.

Их можно обнаружить в океанических глубинах, на горных вершинах, во льдах Антарктиды и Арктики. В атмосфере споры бактерий присутствуют на высоте до 15 км, а в грунт они проникают на глубину более 4 км.

По форме бактериальные клетки отличаются огромным разнообразием. Они могут быть в виде палочек (бациллы), округлыми (диплококи), шестиугольными, звездообразными, стебельковыми и т.д. Диплококки образуют пары, стрептококки – цепочки, стафилококки – скопления наподобие виноградных гроздей.

Строение бактериальной клетки в упрощённом виде выглядит следующим образом:

  1. клеточная оболочка (стенка);
  2. плазматическая мембрана;
  3. цитоплазма;
  4. хромосомная кольцевая ДНК (прикреплена к мембране);
  5. плазмиды (небольшие не прикреплённые к мембране кольцевые ДНК с небольшим набором генов);
  6. рибосомы;
  7. прокариотический жгутик(и).

Строение клетки бактерий

Подавляющее большинство прокариот размножается посредством простого бинарного деления, которое начинается с удвоения ДНК без образования хромосом.

Обе вновь образовавшиеся молекулы ДНК отделяются друг от друга плазматической мембраной, в результате чего клетка делится пополам. Таким образом, каждая дочерняя клетка содержит по одной равнозначной молекуле ДНК.

Процесс деления при благоприятных условиях происходит каждые 25-30 минут. Этот интервал может увеличиться под воздействием сдерживающих факторов, таких как нехватка пищи, солнечный свет, высокая температура и др.

По способу питания бактерии делятся на гетеротрофов (это как?) и автотрофов (это как?).

Первые представлены сапротрофами (питаются мёртвой органикой), паразитами (потребляют органику живых особей) и симбионтами (живут и питаются вмести с другими организмами). Вторые получают питание посредством фотосинтеза (путём преобразования солнечной энергии либо за счёт химического окисления неорганических веществ).

Животные и растения

Отличие прокариотов от эукариотов

Главное, что отличает прокариотов от эукариотов, – отсутствие клеточного ядра.

А это значит, что ДНК прокариотической клетки не организована в хромосомы и не окружена ядерной оболочкой. Эукариотические клетки устроены намного сложнее. Их ДНК упакована в хромосомы, которые располагаются как раз в ядре.

Основные отличия рассматриваемых биологических категорий сведены в таблицу:

ПрокариотыЭукариоты
Одноклеточные (за редким исключением)Одно- или многоклеточные
Не имеют сформировавшегося ядраИмеют чётко выраженное ядро (ядра) с собственной оболочкой
Наследственная информация содержится в кольцевой молекуле ДНКНаследственная информация хранится в линейной ДНК ядра, а также митохондриях и пластидах
Не имеют мембранных органоидовСодержат мембранные органоиды и немембранные структуры
Бинарное деление клеткиПрямое деление (амитоз), непрямое деление (митоз) или редукционное деление (мейоз)
Набор генов – гаплоидныйНабор генов, как правило, – диплоидный
Размножение вегетативное, споровое, почкованиемРазмножение половое с образованием гамет
Жгутик в виде белковых нитей вмонтирован в оболочку клеткиЖгутик представлен выростом клетки в виде микротрубки
Клетки имеют размер 0,1-10 мкмКлетки имеют размер 10-100 мкм

Эта статья относится к рубрикам:

Комментарии и отзывы (4)

Происхождение эукариотов является одной из самых больших тайн эволюции. Ученые до сих пор не знают, как возникло ядро и главное — почему? Есть мнение, что для качественного перехода прокариотам понадобилось войти в контакт с некими клетками или бактериями, которые либо уже существовали на планете, либо попали на Землю извне. В результате их симбиоза и возникли эукариоты.

Неприятно думать и вообще задумываться на эту тему, что нас окружают миллиарды микроскопических организмов. Хорошо, что глаз их никак не улавливает, иначе можно было бы свихнуться. А вообще, природа загадочна и удивительна!

На Марс недавно сел очередной планетоход, как раз в русло древней высохшей реки, было бы здорово, если бы этот марсоход обнаружил

там древних марсианских бактерий, пусть и мёртвых, всё равно это была бы сенсация.

Цианобактерии производят метан, а он в свою очередь усугубляет ситуацию с глобальным потеплением, поскольку этот газ создаёт парниковый эффект.

Что такое прокариоты, эукариоты, автотрофы, гетеротрофы и цианобактерии.


Прокариоты - это клетки, в которых отсутствует оформленное ядро.

Как правило они одноклеточные.

Соответственно эукариоты - это клетки, в которых присутствует оформленное ядро.

Гетеротрофы - это организмы, который питаются готовыми органическими веществами.

А автотрофы - это организмы, которые сами синтезируют органические вещества из неорганических.

Цианобактерии( или сине - зеленые водоросли ) - это бактерии, которые способны к фотосинтезу( созданию органических веществ из неорганических с использованием энергии солнечного света ).


Выберите утверждение, относящееся к цианобактериям?

Выберите утверждение, относящееся к цианобактериям.

А) автотрофы, осуществляют фотосинтез.

Б)автотрофы, паразитируют на других живых организмах В)гетеротрофы, осуществляют фотосинтез.

Г) гетеротрофы, паразитируют на других живых организмах.


Що таке автотрофи гетеротрофи ?

Що таке автотрофи гетеротрофи !


Генетический материал окружен капсидом у1?

Генетический материал окружен капсидом у


Сапротрофы, гетеротрофы и автотрофы - чем они питаются?

Сапротрофы, гетеротрофы и автотрофы - чем они питаются?


Что такое эукариоты и прокариоты?

Что такое эукариоты и прокариоты.


Что такое эукариоты и прокариоты ?

Что такое эукариоты и прокариоты ?


Органеллы эукариоты прокариоты?

Органеллы эукариоты прокариоты.


Кто относится к гетеротрофам, автотрофам, прокариотам и эукариотам?

Кто относится к гетеротрофам, автотрофам, прокариотам и эукариотам?


Что такое•эукариоты•прокариоты•пратисты?


Медуза гетеротроф или автотроф?

Медуза гетеротроф или автотроф.


Строение опорной (механической) ткани растений : Клетки живые и мертвые, с утолщенными и одревесневшими оболочками ; каменистые клетки.

Биологи делят все живое (исключая вирусы, которых обычно не считают живыми) на три неравные части, называемые надцарствами: археи, бактерии и эукариоты. Первые две группы объединяют под общим названием "прокариоты".

Прокариоты не имеют клеточного ядра, их геном находится прямо во внутренней среде клетки (цитоплазме) и обычно имеет вид единственной кольцевой молекулы ДНК (кольцевой хромосомы). У прокариот нет настоящего полового размножения, точнее говоря, в их жизненном цикле отсутствует фаза образования половых клеток и их попарного слияния в клетку с двойным набором хромосом — зиготу. У прокариот также нет внутриклеточных органелл, окруженных двойными мембранами, — митохондрий и пластид.

Археи отличаются от бактерий в основном на молекулярном уровне. Внешне, по образу жизни или по способу получения энергии различить их довольно трудно. Правда, есть некоторые типы обмена веществ, характерные только для архей (например, метаногенез) или только для бактерий (например, кислородный фотосинтез). У архей по-другому устроены мембраны и клеточные стенки. У них, в отличие от бактерий, чаще встречаются интроны — некодирующие вставки в генах — и гистоны — специальные белки, участвующие в упаковке геномной ДНК. Архей чаще, чем бактерии, встречаются в различных экстремальных местах обитания. Например, есть архей, которые чувствуют себя комфортно в кипятке, а при 80°С начинают страдать от холода. Только среди архей встречаются микробы, паразитирующие на других микробах. Главные различия архей и бактерий — в нуклеотидных последовательностях их генов. Судя по величине этих различий, эволюционные линии бактерий и архей разделились чрезвычайно давно, на самой заре клеточной жизни.

Эукариоты имеют клеточное ядро и окруженные двойной мембраной органеллы — митохондрии, служащие для кислородного дыхания, и пластиды, служащие для фотосинтеза (последние характерны только для растительных клеток). Доказано, что митохондрии и пластиды являются потомками симбиотических бактерий (см. главу "Великий симбиоз"). К эукариотам относятся разнообразные одноклеточные формы, обычно называемые "простейшими" (амебы, жгутиконосцы, инфузории, радиолярии и др.), а также многоклеточные — грибы, растения и животные. В жизненном цикле эукариот есть чередование гаплоидной и диплоидной фаз: пара гаплоидных (с одинарным набором хромосом) половых клеток сливается, образуя диплоидную (с двойным набором хромосом) клетку — зиготу. Это слияние двух половых клеток называют оплодотворением. Затем в какой-то момент происходит редукционное деление, или мейоз, в результате которого из диплоидной клетки образуются четыре гаплоидные.

По способу получения органических веществ все организмы делятся на автотрофов и гетеротрофов. Организмы, умеющие превращать неорганический углерод в органические соединения, называются автотрофными,т.е. "самостоятельно питающимися". Организмы, не способные к этому, — их называют гетеротрофами — являются по сути дела нахлебниками автотрофов: они целиком и полностью зависят от производимых ими органических соединений.

Автотрофы синтезируют органику из СО2, используя для этого энергию, полученную из какой-нибудь окислительно-восстановительной реакции (хемоавтотрофы) или путем фотосинтеза (фотоавтотрофы). Фотоавтотрофы, в свою очередь, делятся на аноксигенных (не выделяющих кислород) и оксигенных, или кислородных.

Большинство архей — хемоавтотрофы, среди бактерий широко распространены все известные типы метаболизма, эукариоты являются либо оксигенными фотоавтотрофами (растения, одноклеточные водоросли), либо гетеротрофами (животные, грибы, многие простейшие).

Подобные примитивнейшие экосистемы существуют и по сей день. Там, где ключевая вода смешивается с болотной, возникают и быстро растут комки мягкой скользкой рыжей мути довольно неприятного вида. Если долго нет дождей и течение в ручье замедляется, эта рыжая муть может заполнить все русло. Но достаточно хорошего ливня, чтобы вся эта гадость была смыта в море и ручей очистился. Если муть высушить, она превращается в кирпично-красный порошок, который отлично притягивается магнитом. По правде говоря, это самая обыкновенная ржавчина (Fe203), только склеенная чем-то слизистым и почти невесомым.

Перед нами простейшая прокариотная экосистема. Мы видим естественный геохимический процесс, к которому "пристроился" автотрофный микроорганизм. Геохимический процесс в данном случае состоит в том, что подземные ключи, богатые недоокисленным растворенным железом (Fe 2+ ), выходят на поверхность и соприкасаются с кислородом атмосферы. Кислород начинает окислять железо, которое превращается в нерастворимую ржавчину и выпадает в осадок. Этот процесс шел бы и без вмешательства микроорганизмов, только не очень быстро. Но за дело берутся непрошеные помощники — хемоавтотрофные железобактерии. Они многократно ускоряют процесс, а выделяемая ими "слизь" (она состоит в основном из углеводов) склеивает ржавчину в скользкие комки, которые нам и приходится долго разгонять, прежде чем набрать из ручья ведро воды. Впрочем, польза от этих бактерий тоже есть — именно они отвечают за образование так называемых "болотных руд", из которых можно даже выплавлять железо (если больше не из чего). В прошлом (особенно в протерозойскую эру) подобные бактерии играли ключевую роль в формировании крупнейших железорудных месторождений.

Процесс до крайности неэффективен — чтобы увеличить свою биомассу на 1 грамм, бактерии должны окислить полкило железа. И цикл в данном случае не замкнут: недоокисленное железо поступает из земных недр, где его пока еще много, а окислившись, выпадает в осадок и сохраняется в таком виде неопределенно долгое время, накапливаясь в земной коре (в том числе в виде железных руд). И тем не менее система работает. Несмотря на всю ее примитивность, она обладает известным преимуществом — железобактерии практически не зависят от других живых существ. Они вполне самодостаточны, если не считать того, что используемый ими для окисления железа кислород производится не геохимическими процессами, а другими живыми организмами — оксигенными фотоавтотрофами (растениями, одноклеточными водорослями и цианобактериями).

Одно из самых удивительных открытий в геологии за последние десятилетия состоит в том, что, как выяснилось, практически во всех геологических процессах, которые сформировали осадочный чехол нашей планеты, активно участвовали (и продолжают участвовать) микроорганизмы. Доказано, что многие месторождения руд — не только железных, но и золотых, марганцевых и многих других — имеют биологическое происхождение. Эти месторождения были некогда сконцентрированы микробами, постепенно осаждавшими на своих клеточных стенках ионы различных металлов. И если рассмотреть строение рудного вещества под микроскопом, становятся видны тельца, точь-в-точь такие, какими некогда были клетки микроорганизмов. В ходе своей жизнедеятельности микробы активно преобразуют соединения железа, серы, фосфора, образуя пириты, фосфориты и другие минералы. Как это происходит, не всегда понятно. Так что оценить масштабы этой четырехмиллиардолетней деятельности пока никто не берется. Между тем, зная механизм преобразования минералов микробами, можно было бы по внешнему виду минерала (в микромасштабе) и его составу отличить, создан ли минерал микроорганизмами или косной материей. Этот вопрос остро стоит, например, для марсианских минералов. Если бы удалось найти надежные признаки биологической активности в осадочных породах, то вопрос о жизни на Марсе был бы решен. Естественно, это касается и древней жизни на Земле.

Читайте также: