Что называют длиной ломаной кратко

Обновлено: 02.07.2024

Ломаная фигура - геометрическая фигура, которая состоит из отрезков, последовательно соединенных своими концами.
Ломаная фигура состоит из отрезков, которые называют звеньями.
Конец одного отрезка - это и начало другого.
Концы звеньев (отрезков) называют вершинами ломаной.
Длиной ломаной является сумма всех её звеньев (отрезков).
Замкнутой называется ломаная, концы которой совпадают.
А если звенья замкнутой ломаной не пересекаются между собой, то такая фигура называется многоугольником.

Как написать хороший ответ? Как написать хороший ответ?

  • Написать правильный и достоверный ответ;
  • Отвечать подробно и ясно, чтобы ответ принес наибольшую пользу;
  • Писать грамотно, поскольку ответы без грамматических, орфографических и пунктуационных ошибок лучше воспринимаются.

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

Ломаная - это геометрическая фигура, состоящая из последовательно соединённых отрезков, в которой конец одного отрезка является началом следующего.

Звенья - отрезки, из которых состоит ломаная.

Отрезок — это часть прямой, которая ограничена двумя точками, то есть она имеет и начало и конец, а значит можно измерить её длину.

Длина ломаной – это сумма длин всех её звеньев.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

2. Математика. Проверочные работы. 2 кл.: учебное пособие для общеобразовательных организаций/ Волкова А.Д.-М.: Просвещение, 2017 - с.20, 21

3. Математика. Тесты. 2 кл: учебное пособие для общеобразовательных организаций/ Волкова С.И.-М.: Просвещение, 2017 - с.20, 21, 25

Теоретический материал для самостоятельного изучения

На рисунке мы видим ломаную линию, состоящую из трёх звеньев.

Как найти длину ломаной линии? Это можно сделать двумя способами.

Первый способ. Сначала узнаем длину каждого звена с помощью линейки


Длина первого звена 4 см.


Длина второго звена 6 см.


Длина третьего звена 5 см.

Найдем сумму этих длин.

Найдем длину ломаной вторым способом.

Отложим на прямой один за другим отрезки, равные по длине звеньям ломаной. Это можно сделать с помощью циркуля. Накладываем циркуль на первый отрезок, переносим его на прямую.



Накладываем циркуль на второй отрезок, переносим его на прямую.

Накладываем циркуль на третий отрезок, переносим его на прямую.


Теперь узнаем длину ломаной. Длина ломаной 15 см. В этом случае узнавать длину каждого звена ломаной не надо.


Выводы: длину ломаной можно находить двумя способами.

Первый способ: узнаем длину каждого звена с помощью линейки и найдем сумму этих длин.

Второй способ: с помощью циркуля откладываем на прямой один за другим отрезки, равные по длине звеньям ломаной. Затем измеряем длину всего отрезка. Это и будет длина всей ломаной.

Тренировочные задания.

1. Подчеркните длину ломаной, составленной из трёх звеньев такой длины: 2 см, 3 см и 5 см

10 см 8 см 7 см

Правильный вариант:

10 см 8 см 7 см

2. Расположите ломаные линии по порядку: от самой короткой до самой длинной

В математике ломаной линией принято считать ту фигуру, которая обязательно состоит из соединённых в определённой последовательности отрезков. При изучении этой темы нужно освоить ряд важных правил. Отрезки, которые имеют общую точку, не должны лежать на одной прямой. В противном случае будет допущена грубая ошибка. Изогнутая линия может включать в себя неограниченное количество отрезков.

  • Краткое описание
  • Математическое определение
  • Основные разновидности ломаных
  • Базовые понятия
  • Особенности построения многоугольников
  • Ключевые нюансы

Определение в математике незамкнутой и замкнутой ломаной линии

Краткое описание

Специалисты называют ломаной ту геометрическую фигуру, которая представляет собой непрямую линию, состоящую исключительно из многочисленных соединённых отрезков. Учащимся нужно запомнить, что все эти фрагменты могут сходиться под абсолютно разными углами. Проще говоря, если есть даже самый маленький угол между двумя соединёнными отрезками, то это линия своеобразного ломаного типа.

Ломаная линия отличается от кривой

Прямая тоже может состоять сразу из нескольких геометрических фрагментов, но угол их соединения приравнивается к нулю. Для избежания грубых математических ошибок нужно помнить, что ломаная линия отличается от кривой, так как отдельные отрезки представляют собой прямую линию, чего нельзя сказать о кривой.

В некоторых случаях пространственная ломаная может образовывать замкнутую фигуру. Но такая ситуация возможна только тогда, когда концы крайних отрезков совпадают, а также пересекают самих себя. Рассматриваемая в математике фигура состоит из вершин и отрезков, которые и соединяют эти вершины. Но в этом случае действует правило — два последних отрезка не должны лежать на одной прямой.

Сторонами или звеньями изогнутой линии принято называть составные отрезки. Минимальное количество звеньев — два. Специалисты привыкли называть чёрными точками конечные вершины ломаной линии. Чтобы графически всё выглядело правильно, необходимо использовать обозначения в соответствии с названиями задействованных вершин.

Замкнутая ломаная

Если конечные вершины совпадают, тогда речь касается изогнутой замкнутой линии. В качестве примера можно рассмотреть многоугольник. Эта фигура представляет собой плоскую замкнутую ломаную, которая лишена каких-либо самопересечений. Вершины ломаной линии и её звенья относятся к многоугольнику. Если речь касается фигуры с тремя сторонами и вершинами, то это треугольник.

Немного сложнее разобраться с замкнутой ломаной и её четырьмя сторонами, так как это может быть прямоугольник, квадрат, параллелограмм, ромб и даже трапеция. Если фигура имеет пять или более сторон, то она называется n-угольником. Символ n указывает на точное число вершин.

Некоторые математические примеры касаются изогнутой линии с самопересечениями (пятиконечная звезда). К этой категории также можно отнести зигзаг, в котором каждый второй отрезок параллелен другому, а последние формируют одинаковый угол.

Математическое определение

Ломанной принято называть ту геометрическую фигуру, которая состоит из обычных отрезков (R1, R2, R3 и R4, Rn-1 Rn). Вершинами изогнутой принято называть точки R1…Rn, а вот все остальные отрезки — это неотъемлемые звенья. Если для любого w действует формула , а отрезки не расположены на одной прямой, то такая ломанная будет называться невырожденной. В противном случае придётся иметь дело с вырожденным примером.

Для лучшего усвоения этой темы следует рассмотреть несколько примеров. Изогнутая может иметь самопересечение, но это возможно только в том случае, если минимум два отрезка обладают общей точкой (за исключением вершины).

Обычная ломаная линия

В математике часто можно встретить фигуру, которая является обычной ломаной линией. В этом случае практикуется применение следующей записи: R1R2R3R4R5R6. Если ученику предстоит разобраться со всеми нюансами построения замкнутой ломаной из трёх звеньев и более, тогда ему понадобятся вспомогательные отрезки (к примеру: R1, R2, а также Rn -1 Rn, которые не должны лежать на одной прямой).

Замкнутую плоскую ломаную линию принято называть многоугольником. Если рассматривать многогранники, то все стороны фигуры будут называться рёбрами. Учителя России предпочитают создавать краткосрочное планирование по этой теме, так как в этом случае можно донести больше полезной информации до учеников.

Гораздо проще разобраться с изгибами зигзага, так как они используются в швейном деле, в распространённом декоративном оформлении предметов обихода в качестве орнамента. Стоит отметить, что изогнутая линия нашла широкое применение в различных отраслях:

  1. Архитектура. Изогнутые линии позволяют сооружать интересные номера.
  2. Картография (тщательное проектирование маршрутов и подробное схематическое изображение всех улиц).
  3. Химическая отрасль (различные соединения и своеобразные молекулярные структуры).
  4. Востребованный дизайн ландшафтов (утончённое оформление, расположение дорожек).
  5. Медицина (мониторы для наблюдения за сердечным ритмом).
  6. Метод освоения каллиграфических навыков в китайском языке.

Изучение этой темы в математике является обязательным, так как от этого зависит качество усвоения материала учеником.

Основные разновидности ломаных

Классическая замкнутая ломаная

Геометрическая фигура может быть построена совершенно по любому из действующих методов. Специалисты выделяют замкнутую, а также незамкнутую ломанную. Повышенное внимание уделяют самопересекающимся, непересекающимся линиям. Классическая замкнутая ломаная является многоугольником. В математике самопересекающейся принято называть ту линию, отрезки которой имеют минимум одно пересечение. По своей структуре ломаная может быть весьма разнообразной, из-за чего нужно внимательно относиться ко всем аспектам.

В начальных классах школы принято рассматривать следующий пример: ломаная включает в себя сразу пять звеньев либо сторон: ZX, XC, CV, VB, BN. Та точка, где неизбежно соединяются два звена, называется вершиной. В этом случае имеется сразу четыре вершины: X, С, V, B.

Повышенное внимание нужно уделить изучению звена ломаной. Звеньями эксперты привыкли называть стороны либо отрезки, из которых образована линия. Всего одно такое звено может быть рассмотрено только в качестве отрезка. А вот для построения ломаной необходимо задействовать как минимум два звена. Вершины — это классические точки, которые представляют собой концы одних отрезков ломаной. Обозначить точки можно только латинскими буквами.

Пример замкнутой, а также традиционной незамкнутой ломаной линии, которую часто можно встретить в геометрии и алгебре:

Ломаная и замкнутая ломаная линия

Если необходимо определить точную длину ломаной, то для этого следует поочерёдно сложить все известные данные задействованных звеньев (ZX + XC + CV + VB + BN).

Базовые понятия

Чтобы гарантировано освоить все правила, которые касаются использования изогнутой линии в математике, необходимо разобраться со звеньями. Существует ряд нюансов, которые можно сопоставить с элементарной геометрической конструкцией. Линию формируют отдельные отрезки, которые в математике называются звеньями. Если все концы ломаной соединяются в одной точке, то такая фигура будет называться замкнутой.

Все задействованные звенья могут обладать взаимными пересечениями. Вершинами специалисты привыкли называть точки соединения отрезков. О многоугольнике можно говорить только в том случае, если звенья не пересекаются между собой. Звено обозначают сразу двумя латинскими буквами. Каждая вершина изогнутой линии может обозначаться только одной буквой. Только тщательное изучение всех правил и нюансов позволит правильно решать математические задачи.

Особенности построения многоугольников

В этом случае речь касается геометрической фигуры, отличающейся итоговым количеством звеньев, углов. Последние могут быть сформированы только несколькими звеньями замкнутой ломаной, которые сходятся в одной точке. Задействованные звенья также могут носить логическое название сторон многоугольника. Общие точки двух отрезков называются вершинами. Стоит учесть, что количество сторон либо звеньев в каждой такой фигуре в точности соответствует количеству углов. Если задействовать замкнутую ломаную из трёх отрезков, то в итоге получится треугольник.

Треугольник из замкнутой ломаной

Абсолютно все многоугольники обладают одинаковыми свойствами. Самая маленькая фигура включает в себя всего три стороны. Но расположенные в непосредственной близости треугольники могут формировать совершенно новые фигуры. Если имеющиеся вершины изучаемого многоугольника являются своеобразным дополнением одной стороны, то их всегда называют соседними.

Когда многоугольник был расположен относительно одной прямой в любой плоскости, то она называется выпуклой. А вот прямая может содержать в себе одну сторону фигуры и принадлежать полуплоскости. Если отрезок соединяет не соседние вершины, то он называется диагональю. Смежный внутренний угол при некоторой вершине называется внешним.

Следует отметить тот факт, что когда все имеющиеся углы и стороны многоугольника равны между собой, то речь касается правильных отрезков. Каждая геометрическая фигура обладает определёнными параметрами. Треугольниками в алгебре принято называть обычную плоскую фигуру, которая состоит из трёх точек, не расположенных на одной прямой. Для соединения используются обычные отрезки. Точки выступают в роли вершин треугольника. Такая фигура имеет всего три угла. Специалисты различают 6 разновидностей треугольников:

  1. Элементарные разносторонние. В этом случае каждая следующая сторона отличается своей длиной.
  2. Равносторонние. Абсолютно все стороны обладают идентичной длиной.
  3. Специфические остроугольные. Сформированные углы имеют острую форму.
  4. Универсальные равнобедренные. Сразу две стороны из трёх существующих обладают одинаковой длиной.
  5. Тупоугольные. Фигура обладает одним тупым углом.
  6. Традиционные прямоугольные. Нарисованная фигура должна иметь минимум один прямой угол.

Четырёхугольником называют ту конструкцию, которая обладает четырьмя сторонами и четырьмя сторонами. Использование таких геометрических фигур обладает определёнными нюансами.

Ключевые нюансы

Существует две линии SWT и SFT одинаковой толщины, которые соединяют свободные концы одной прямой ST. В итоге образуется ломаная. Изогнутая SFT именуется внутренней ломаной, а вот SWT внешней. В качестве примера лучше всего рассмотреть фигуру, которая соответствует математической теореме, что внешняя изогнутая превышает внутреннюю.

Внутренняя и внешняя ломаная

По условиям задачи были даны две ломаные: внутренняя SFT и внешняя SWT. Необходимо доказать, что SWT больше SFT. Для решения этой задачи нужно продолжить линию SF до пересечения с отрезком WT в точке Е. Линия SWE как ломаная гораздо больше прямой SE. Ломанная FET больше имеющейся прямой FT. Если сложить между собой все эти неравенства, то в итоге можно получить: SW+ WE + FE + ET > SF + FE + FT.

Для получения достоверного результата нужно вычесть из обеих частей неравенства по СЕ:

Необходимо рассмотреть и вторую теорему, в соответствии с которой итоговая сумма пересекающихся изогнутых линий больше не пересекающихся. По условиям задачи были даны обычные пересекающиеся ломаные HLK и HRK, а также HR, LK и пересекающиеся части. Решение выглядит следующим образом: неравенства отрезков вытекают из того, что ломаная HEL гораздо больше прямой HL, а вот координаты KER превышают KR.

Нелишним также будет научиться находить общую меру сразу двух линий при помощи линейки. Это правило обязательно осваивают в начальных классах. Для поиска неизвестной общей меры обязательно нужно на большую линию наложить меньшую, потом первый остаток на меньший отрезок, а второй остаток на первый. Все эти манипуляции повторяют ровно до тех пор, пока самый последний остаток максимально не уложится в предпоследнем выполненном действии. Измерение линий всегда означает то, что учащемуся необходимо отыскать её отношение к другим отрезкам, принятым за единицу. Полученное значение называют длиной этой линии, которая может выражаться исключительно в каких-нибудь единицах.

Изучение ломаных линий очень важно, так как они окружают человека повсюду. Речь касается прямых линий, которые меняют своё первоначальное направление, замыкаются, а также пересекаются.

Определение 1. Ломаной (ломаной линией) \( \small A_1A_2. A_A_n \) называется геометрическая фигура, которая состоит из \( \small [ A_1A_2 ],\) \( \small [ A_2A_3 ]. \) \( \small [ A_A_n ]\) последовательно соединенных своими концами отрезков и никакие последовательные две отрезки\( \small [ A_A_ ]\) и \( \small [ A_A_ ]\) при \( \small k=1,2. n-2 \) не лежат на одной прямой.

Можно дать и другое определение ломаной:

Определение 2 . Если \( \small A_1, \ A_2, . \ A_n \) различные точки, никакие проследовательные три из которых не лежат на одной прямой, то совокупность отрезков \( \small [ A_1A_2 ],\) \( \small [ A_2A_3 ]. \) \( \small [ A_A_n ]\) называется ломаной или ломаной линией.

На рисунке 1 изображена ломаная состоящая из пяти отрезков \( \small [ A_1A_2 ]\) , \( \small [ A_2A_3 ]\), \( \small [ A_3A_4 ]\), \( \small [ A_4A_5 ]\), \( \small [ A_5A_6 ]\), которые последовательно соединены своими концами.


Невырожденная ломаная

Ломаная, описанная в определении 1 называется невырожденной ломаной.

На рисунке 1 ломаная \( \small A_1A_2A_3A_4A_5A_6 \) является невырожденной поскольку отрезки \( \small [ A_1A_2 ]\) и \( \small [ A_2A_3 ]\), \( \small [ A_2A_3 ]\) и \( \small [ A_3A_4 ]\), \( \small [ A_3A_4 ]\) и \( \small [ A_4A_5 ]\), \( \small [ A_4A_5 ]\) и \( \small [ A_5A_6 ]\) не лежат на одной прямой.

Вырожденная ломаная

Определение 3 . Если \( \small A_1, \ A_2, . \ A_n \) различные точки, и среди них существуют проследовательные три точки, лежащие на одной прямой, то совокупность отрезков \( \small [ A_1A_2 ],\) \( \small [ A_2A_3 ]. \) \( \small [ A_A_n ]\) называется вырожденной ломаной или вырожденной ломаной линией.


На рисунке 2 изображена ломаная \( \small A_1A_2A_3A_4A_5A_6 \). Эта ломаная является вырожденной поскольку отрезки \( \small [ A_2A_3 ]\) и \( \small [ A_3A_4 ]\) лежат на одной прямой.

Внимание! Если явно не указыается вырожденность ломаной, то подразумевается невырожденная ломаная.

Звенья ломаной

Звеньями называют отрезки, из которых состоит ломаная.

Ломаная \( \small A_1A_2A_3A_4A_5A_6 \), изображенная на рисунке 1 состоит из звеньев \( \small [ A_1A_2 ]\) , \( \small [ A_2A_3 ]\), \( \small [ A_3A_4 ]\), \( \small [ A_4A_5 ]\), \( \small [ A_5A_6 ]\).

Вершины ломаной

Конечные точки звеньев ломаной называются вершинами.

На рисунке 1 изображена ломаная \( \small A_1A_2A_3A_4A_5A_6 \), состоящая из шести вершин: \( \small A_1, \ A_2, \ A_3, \ A_4, \ A_5, \ A_6 \).

Смежные звенья ломаной

Смежные звенья ломаной − это звенья имеющие общую вершину.

На рисунке 3 смежными звеньями ломаной \( \small A_1A_2A_3A_4A_5A_6 \) являются звенья: \( \small [ A_1A_2 ]\) и \( \small [ A_2A_3 ]\), \( \small [ A_2A_3 ]\) и \( \small [ A_3A_4 ]\), \( \small [ A_3A_4 ]\) и \( \small [ A_4A_5 ]\), \( \small [ A_4A_5 ]\) и \( \small [ A_5A_6 ]\).

Смежные вершины ломаной

Смежными вершинами ломаной называют вершины одного звена ломаной.

На рисунке 3 смежными вершинами ломаной \( \small A_1A_2A_3A_4A_5A_6 \) являются вершины: \( \small A_1\) и \( \small A_2\), \( \small A_2\) и \( \small A_3\), \( \small A_3\) и \( \small A_4 \), \( \small A_4\) и \( \small A_5\), \( \small A_5\) и \( \small A_6\).

Незамкнутая ломанная

Незамкнутым является ломаная, первая и последняя точки которой не совпадают друг с другом (Рис.3).

Незамкнутая ломаная

Замкнутая ломанная

Определение 4 . Замкнутым является ломаная \( \small A_1A_2. A_A_n \), первая \( \small A_1\) и последняя \( \small A_n \) точки которой совпадают друг с другом и отрезки \( \small A_1A_2 \) и \( \small A_A_n \) не лежат на одной прямой.

Замкнутая ломаная

На рисунке 4 ломаная \( \small A_1A_2A_3A_4A_5A_6A_7 \) является замкнутым, так как точки: \( \small A_1\) и \( \small A_7\) совпадают и отрезки \( \small A_1A_2\) и \( \small A_6A_7\) не лежат на одной прямой.

Ломаная с самопересечением

Ломаная имеет самопересечение, если хотя бы два ее звена имеют общую точку, помимо общей вершины.

Ломаная с самопересечением

Ни рисунке 5 ломаная \( \small A_1A_2A_3A_4A_5A_6A_7 \) имеет самопересечение, так как звенья \( \small A_5A_6 \) и \( \small A_6A_7 \) имеют общие точки со звеном \( \small A_3A_4 \).

Простая ломаная

Ломаная называется простым, если не имеет самопересечений. Пример простой ломаной изображен на рисунке 6.

Простая ломаная

Длина ломаной

Длина ломаной равна сумме длин всех звеньев ломаной: \( \small d= A_1A_2+A_2A_3+. +A_A_n, \) где \( \small n \) − количество вершин ломаной.

Теорема. Длина ломаной больше расстояния между первым и последним точками.


Доказательство. Для доказательства теоремы рассмотрим ломаную \( \small A_1A_2A_3A_4 \) с тремя звеньями (Рис.7). Так как ломаная невырождена, то вершины \( \small A_1, \ A_2, \ A_3 \) не лежат на одной прямой. Тогда имеет место неравенство треугольников:

Для точек \( \small A_1, \ A_3, \ A_4 \) имеет место следующее нестрогое неравенство:

В выражении (2) мы не применяли строгое неравенство поскольку вершины \( \small A_1, \ A_3, \ A_4 \) ломаной не являются соседними вершинами и могут лежать на одной прямой.

В неравенстве (2) вместо слагаемого \( \small A_1 A_3\) подставим сумму \( \small A_1A_2+A_2A_3 \) из (1), которая больше, чем \( \small A_1 A_3\). Тогда получим:

Конец доказательства

Поседнее неравенство означает, что длина невырожденной ломаной больше расстояния между первым и последним точками.

Аналогично доказывается теорема для ломанной с любым количеством звеньев.

Читайте также: