Что такое ионизирующее излучение обж 8 класс кратко

Обновлено: 02.07.2024

Презентация к уроку ОБЖ в 8 классе "Ионизирующее излучение: природа, единицы измерения, биологические эффекты".

ВложениеРазмер
ioniziruyushchee_izluchenie_powerpoint.pptx 659.35 КБ

Предварительный просмотр:

Подписи к слайдам:

На всё живое на земле извечно действовало излучение – ионизирующее излучение , т.е. естественный радиационный фон земли . Проходя через ткань, ионизирующее излучение переносит энергию и ионизирует атомы в молекулах, которые играют важную биологическую роль. Поэтому облучение любыми видами ионизирующего излучения влияет на здоровье.

Альфа-лучи Бета-лучи Гамма-лучи Поток положительно заряженных атомов гелия Поток отрицательно заряженных электронов, скорость которых близка к скорости света и которые обладают большей проникающей способностью, чем альфа-лучи Лучи, подобные рентгеновским, но обладающие еще большей проникающей способностью и представляющие собой электромагнитные волны

Практическая работа. Используя таблицу 8 (учебник, стр.90), назовите: - наименее опасное для человека излучение; - наиболее опасные для человека виды излучений и способы защиты от их воздействия.

В качестве единицы измерения радиоактивности принято одно ядерное превращение (распад) в секунду . В Международной системе единиц измерения эта единица получила название беккерель ( Бк ). Широко используется и внесистемная единица – кюри ( Ки ).

Важной характеристикой всех радиоактивных элементов является период полураспада - время, в течение которого их радиоактивность уменьшается в 2 раза. Период полураспада : для калия-41 – доли секунды; для йода-131 – 8 суток; для урана-238 – несколько млрд лет;

Доза Определение Единицы измерения Экспозиционная доза Величина, используемая для характеристики степени ионизации воздуха под воздействием рентгеновского и гамма-излучения Р (Кл/кг) Поглощенная доза Количество энергии радиоактивного излучения, поглощенной человеком Гр Эквивалентная доза Величина, используемая для учета разных видов излучений Зв (100 бэр=1 Зв)

Проверочная работа. Используя таблицу 9 (учебник, стр. 93), ответьте на вопросы: Какая доза облучения является смертельной для человека? При какой дозе облучения наступает лучевая болезнь? Какие бывают степени лучевой болезни? Каковы симптомы 1-ой, 2-ой и 3-ей степени облучения?

Биологическое действие ионизирующих излучений: - неся в себе огромную опасность, оно не ощутимо человеком; существует скрытый период проявления действия ионизирующего излучения, которым может быть продолжительным; одним их последствий являются наследственные заболевания, возникающие в результате мутаций; получаемые человеком дозы излучений накапливаются в организме; наиболее чувствительны к облучению дети в период роста.

Вопросы для закрепления материала: Какова природа радиоактивной опасности? Какие особенности биологического действия ионизирующего излучения делают его одним из самых коварных врагов всего живого? Назовите основные виды ионизирующих излучений. Альфа-излучение обладает слабой проникающей способностью: его задерживает даже лист бумаги. Чем же обусловлена его способность вызывать значительные биологические повреждения живых клеток?

1. Способность солей урана испускать таинственные лучи открыл: Анри Беккерель; Пьер Кюри; Мария Кюри.

2. В каком году между государствами был подписан договор об ограничении испытаний ядерного оружия: в 1963; в 1945; в 1972.

3. Объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором может произойти радиоактивное заражение людей, животных и растений,: химически опасный объект; радиационно опасный объект; пожароопасный объект.

4. Бета-излучение - это поток: ядер атомов гелия; электронов; нейтронов.

5. Это излучение наиболее опасное, надежная защита от него – противорадиационное укрытие или глубокий подвал: гамма-излучение; нейтронное излучение; альфа-излучение; бета-излучение;

6. Лучевая болезнь может возникнуть при дозе облучения: свыше 50 бэр; свыше 100 бэр; свыше 300 бэр.

Домашнее задание: Учебник: параграф 4.2, ответить на вопросы на стр. 94.

По теме: методические разработки, презентации и конспекты


Игра решает задачи воспитания, функциональных режимов психики и индивидуальных свойств личности учащихся. В разработке представлен сценарий интерактивной игры по физике для 11 класса "Суд над видимым .


Методическая разработка урока по физике "Свойства ионизирующих излучений"

Урок в котором в качестве учебного элемента рассмотрен вопрос о питании на радиоактивно-зараженных территориях и о радиопротекторных свойствах пищи.

Влияние радиоактивных излучений на живые организмы. Защита от опасного воздействия на организм человека радиоактивных излучений.

Уро к изучения нового ма териала в 9 классе. Содержит конспект и презентацию к уроку.


Ионизирующие излучение

конспект к уроку 8 классе.


Биологическое действие ионизирующих излучений

Биологическое действие ионизирующих излучений.

Применение ионизирующего излучения в науке, технике и медицине

Внеклассное мероприятие по теме "Применение ионизирующего излучения в науке, технике и медицине".

Ионизирующее излучение представляет собой поток частиц, способных вызывать ионизацию вещества. При ионизации происходит отрыв электрона или нескольких электронов от атома, или молекулы, которые при этом превращаются в положительно заряженные ионы. Оторванные от атомов или молекул электроны могут присоединяться другими атомами, или молекулами, образуя отрицательно заряженные ионы.

Разряд заряженного электрометра, находящегося в воздухе, происходящий независимо от качества электрической изоляции прибора, заметил еще Шарль Кулон в 1785 г., но только в XX веке удалось объяснить обнаруженные им закономерности действием космических лучей, представляющих собой одну из составляющих естественного ионизирующего излучения.

Результат действия ионизирующего излучения называют облучением. Несмотря на многообразие явлений, которые возникают в веществе под действием ионизирующего излучения, оказалось, что облучение может быть охарактеризовано единой величиной, называемой дозой облучения.

Действие ионизирующего излучения в широком диапазоне доз скрыто от непосредственных ощущений человека и поэтому оно кажется ему одним из наиболее опасных факторов воздействия.

виды ионизирующих излучений

Виды ионизирующих излучений

Ионизирующее излучение (ИИ) — поток микрочастиц или электромагнитные поля, способные ионизировать вещество. В жизни, под ионизирующим излучением понимают проникающую радиацию - поток гамма-лучей и частиц (альфа, бета, нейтронов и др.).

Это, по сути, поток элементарных частиц, ионов и электромагнитных волн, не видимых и не ощущаемых человеком. Однако, их действие может быть коварно. При определенном уровне облучения нарушаются биохимические и физические процессы в живых организмах. Это воздействие может привести к лучевой болезни и даже к смерти. Различные виды ионизирующего излучения различают по их ионизирующей и проникающей способности.

Чаще всего ионизирующие излучения делят на:

  • корпускулярное ионизирующее излучение и
  • электромагнитное (фотонное) ионизирующее излучение.

Корпускулярное ИИ состоит из частиц вещества – элементарных частиц и ионов, в т.ч. ядер атомов. Корпускулярное ИИ делят на:

  • заряженные частицы, в том числе,
  • легкие заряженные частицы (электроны и позитроны);
  • тяжелые заряженные частицы (мюоны, пионы и другие мезоны, протоны, заряженные гипероны, дейтроны, альфа-частицы, и другие ионы);
  • электрически нейтральные частицы (нейтрино, нейтральные пионы и другие мезоны, нейтроны, нейтральные гипероны).

ионизирующее излучение

Альфа-излучение (поток ядер гелия, возникающий в результате альфа распада ядер элементов) обладает высокой ионизирующей, но слабой проникающей способностью: пробег альфа-частиц в сухом воздухе при нормальных условиях не превышает 20 см, а в биологической ткани – 260 мкм. То есть слой воздуха 9-10 см, верхняя одежда, резиновые перчатки, марлевые повязки, даже бумага полностью защищают организм от внешних потоков альфа-частиц.

*Попадание источников альфа-частиц внутрь организма с воздухом, водой и пищей уже очень опасно.

защита от альфа излучения
защита от бета излучения

Бета-излучение (поток электронов или позитронов, возникающий в результате бета-распада ядер) имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность. Поскольку максимальные энергии бета-частиц не превышают 3 МэВ, то от них гарантированно защитит оргстекло толщиной 1,2 см, либо слой алюминия в 5,2 мм. А вот на ускорителе с максимальной энергией электронов 7 МэВ от электронов защитит слой алюминия в 1,5 см, либо слой бетона шириной в 2 см.

Гамма-излучение - сопутствующее ядерным превращениям электромагнитное излучение. Сегодня к гамма-излучению относят также жесткое рентгеновское излучение. Обладает очень высокой проникающей способностью. Оградить себя от гамма-излучения практически невозможно, однако можно ослабить его до приемлемого уровня. Защитные средства, обладающие экранирующим действием от такого рода радиации, выполняются из свинца, чугуна, стали, вольфрама и других металлов с высоким порядковым номером.

*Интенсивность гамма лучей (Cs-137) уменьшают в два раза сталь толщиной 2,8 см., бетон – 10 см., грунт – 14 см., дерево – 30 см.

защита от гамма излучения
защита от нейтронного излучения

Нейтронное излучение – поток нейтронов – тяжелых частиц, входящих в состав ядра. Для защиты от этого излучения можно использовать убежища, противорадиационные укрытия, дооборудованные подвалы и погреба. Потоки нейтронов, как и потоки гамма-излучения невозможно полностью экранировать. Быстрые нейтроны сначала надо замедлить в воде, полиэтилене, парафине, можно в бетоне, а затем их необходимо поглотить, например, в кадмиевой фольге, за которой должен стоять достаточный слой свинца, чтобы экранировать возникающее при захвате нейтронов ядрами кадмия высокоэнергетическое гамма-излучение. Поэтому защита от нейтронов, как правило, делается комбинированной .

По подсчетам научного комитета по действию атомной радиации ООН, средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет приблизительно 350 мкЗв, то есть немного больше средней дозы облучения через радиационный фон, который образуется космическими лучами.

Для улучшенной консервативной оценки эквивалентной дозы, в целях индивидуальной дозиметрии профессионально облучаемых работников и мониторинга рабочих мест вводят модельную, т.н. рабочую величину, именуемую амбиентным эквивалентом дозы.

К основным радиоактивным явлениям относятся: a -распад, ß± -превращения (распады) и y-излучение. К явлениям ß-превращений относятся следующие самопроизвольные процессы: ß- -превращение (ß- -распад), ß+ -превращение (ß+-распад), электронный захват (e). Также к явлениям радиоактивности относят: спонтанное деление, кластерную активность,нейтронную активность, протонную активность, бета-задержанные распады ядер.


На этом уроке мы поговорим о видах ионизирующих излучений и поверхностно изучим природу каждого из излучений. Также мы познакомимся с тем, какие эффекты оказывает на человека радиация и как вообще можно измерить уровень облучения количественно.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Ионизирующее излучение: природа, единицы измерения, биологические эффекты"

Радиоактивность – это явление самопроизвольного превращения одних атомных ядер в другие, сопровождаемое испусканием частиц и электромагнитного излучения. Сегодня ряд предприятий используют радиоактивные вещества, в связи с чем, вводится понятие радиационно опасного объекта. Радиационно опасный объект – это объект, на котором используют, хранят, перерабатывают или транспортируют радиоактивные вещества. Именно на таких объектах и происходят радиационные аварии. Радиационная авария – это авария на радиационно опасном объекте, которая приводит к выбросу или выходу радиоактивных продуктов или появлению ионизирующих излучений в количествах, превышающих установленные нормы для данного объекта.

Так вот, что же это за излучения такие и как можно измерить их количество? Ионизирующее излучение – это излучение, которое влечет за собой образование электрических зарядов разных знаков при взаимодействии с окружающей средой. Еще в начале прошлого века, Эрнест Резерфорд доказал, что существует три вида радиоактивных излучений: альфа-, бета- и гамма-излучение. Позднее, когда был открыт нейтрон, выяснилось, что существует еще и нейтронное излучение.


Рассмотрим каждый из видов излучения, не вдаваясь в подробности. Некоторые радиоактивные элементы испускают альфа-лучи. Альфа-лучи, на самом деле, представляют собой поток ядер атомов гелия. Эффект от облучения альфа-частицами напоминает эффект ожога. Альфа-частицы обладают низкой проникающей способностью (всего несколько микрон). Таким образом, они способны поразить только кожу, а защититься от альфа-частиц можно обычной одеждой.


Другие радиоактивные элементы испускают бета-лучи. Бета-лучи, на самом деле, представляют собой поток электронов. Такой поток может проникать на несколько сантиметров, поэтому защититься обычной одеждой от бета-лучей можно лишь частично. Однако, костюм радиационной защиты, который сделан из прорезиненного и просвинцованного материала практически полностью задерживает бета-лучи.


Существуют также некоторые элементы, которые, находясь в особом состоянии, испускают гамма-лучи. Гамма-лучи, действительно являются лучами, а не потоком частиц. Это электромагнитное излучение, обладающее очень высокой проникающей способностью: оно способно пронизывать человека насквозь. От гамма-излучения не спасает даже костюм радиационной защиты – укрыться от этого излучения можно только в бункере (и то, хоть бункер и ослабляет излучение в несколько сотен раз, но полностью от него не защищает).


Наконец, нейтронное излучение представляет собой поток нейтронов, который тоже обладает очень высокой проникающей способностью. Это излучение еще более опасно, поскольку поток нейтронов обладает значительно большей энергией, чем гамма-излучение, а, значит, может нанести больший вред. Спастись от этого излучения можно только в бункере.


Существует несколько основных величин, с помощью которых можно охарактеризовать воздействие радиации количественно. В первую очередь – это поглощённая доза. Поглощённая доза – это отношение ионизирующей энергии, переданной веществу к массе этого вещества. В международной системе единиц измерения СИ, с которой вы знакомы из курса физики, поглощенная доза измеряется в грэях. Один грэй – это поглощённая доза, при которой облучаемому веществу массой один килограмм передается энергия в один джоуль. Существует также и внесистемная единица измерения поглощённой дозы, которая называется рад. От названия этой единицы измерения пошло название приборов, с помощью которых измеряют различные характеристики ионизирующего излучения.


Ещё одной важной величиной является мощность излучения. Мощность излучения характеризует приращение дозы в единицу времени (измеряется в грэях в секунду). Зная мощность излучения, можно вычислить поглощенную дозу при нахождении в радиоактивной зоне в течение того или иного времени.


Необходимо отметить, что внешнее облучение не столь опасно, как внутреннее облучение. Под внутренним облучением понимается воздействие радиации на организм изнутри – когда радиоактивные частицы попали в организм через дыхательные пути, или, например, с пищей.


В этом случае уже альфа-излучение становится значительно более опасным, поскольку обладает огромной энергией, по сравнению, с гамма-лучами. В связи с этим вводится такая величина, как коэффициент качества – это величина, характеризующая эффективность того или иного излучения. Чтобы выразить количественно эффект воздействия радиации на человека, вводится величина, которая называется эквивалентной дозой. Эквивалентная доза определяется как произведение поглощенной дозы и коэффициента качества. Единицей измерения эквивалентной дозы является зиверт. Условно принято считать, что коэффициент качества для гамма-излучения равен единице. Исходя из этого, были подсчитаны коэффициенты качества для других видов излучений. Для бета-лучей, коэффициент качества также равен единице, а вот для альфа-лучей, коэффициент качества составляет двадцать. Для нейтронного излучения коэффициент качества может быть равен трём, семи или десяти (в зависимости от скорости нейтронов).


Доза облучения может быть однократной и многократной. Доза, полученная в первые четверо суток, считается однократной, а если облучение продолжалось в течение более длительного времени, то доза считается многократной.


В чем состоит его опасность радиоактивного излучения. Дело в том, что значительную часть организма человека составляет вода. Радиоактивное излучение ионизирует воду, то есть, способствует появлению в ней электрически заряженных радикалов (подробнее о радикалах вы узнаете из курса химии). Суть в том, что образовавшиеся радикалы влияют на клетки организма самым нежелательным образом. Это может вызвать различные нарушения, заболевания и даже мутацию клеток. Более подробно с радиационными эффектами мы познакомимся в одном из следующих уроков.


Рассмотрим таблицу, в которой приведены поглощенные дозы и соответствующие последствия.


Естественный радиационный фон, хоть и наносит некоторый вред, но не имеет никаких ярко выраженных последствий. Доза в ноль целых двадцать пять сотых грэя считается дозой оправданного риска в чрезвычайных ситуациях. Дозы до одного грэя вызывают не очень значительные изменения и еще могут рассматриваться, как состояние предболезни. Однако, дозы свыше одного грэя вызывают острую лучевую болезнь. Дозы более трех грэй считаются критическими: получившие такую дозу требуют немедленного лечения. Дозы более десяти грэй являются стопроцентно смертельными.

Дозы до одного грэя вызывают незначительные изменения. Но всё же, существует немалый риск различных заболеваний, некоторые из которых приведены в следующей таблице. Вероятность заболевания той или иной болезнью приведена из расчета, что поглощённая доза составляет один грэй. Как видно из таблицы, как минимум у одного из тысячи облученных людей выявляются те или иные последствия облучения даже при дозе в один грэй, не говоря уже о больших дозах.

Следует отметить, что биологическое действие радиации совершенно неощутимо человеком.


Вы можете находиться в зоне с радиационным фоном в десятки раз превышающим естественный, и при этом ничего не чувствовать. Дело в том, что скрытый период действия радиации может быть достаточно продолжительным. Кроме того, полученные дозы облучения имеют свойство накапливаться в организме, из-за чего, постепенно увеличивается вероятность заболевания. Также, различные органы обладают различной чувствительностью к радиации – об этом подробнее мы поговорим позже.


На сегодняшний день, люди получают основную дозу радиации в повседневной жизни (если, конечно, речь не идет об аварии). Дело в том, что большую часть времени люди проводят в зданиях, которые построены из строительных материалов, содержащих естественные радиоактивные источники.


Например, бетон или кирпич содержат в себе радон. Также радон исходит из земной коры, внося большой вклад в естественный радиационный фон. Он проникает в здания через трещины, пустоты, а также может попасть в дом с водой. В силу того, что радон в семь с половиной раз тяжелее воздуха, он скапливается в подвалах, но обнаружить его без специальных приборов довольно сложно, так как радон не имеет ни цвета, ни запаха. Таким образом, вы ежедневно получаете некоторую дозу радиации, которая постепенно накапливается в организме. Но, не пугайтесь: хоть с этим и ничего не поделаешь, всё же, доза естественного облучения довольно мала и не представляет собой прямой угрозы для жизни и здоровья человека.


Итоги урока:

· Существует четыре основных вида ионизирующих излучений: альфа-излучение, бета-излучение, гамма-излучение и нейтронное излучение.

· Альфа-излучение представляет собой поток ядер атомов гелия. Данное излучение обладает низкой проникающей способностью, поэтому от него легко защититься обычной одеждой.

· Бета-излучение – это поток электронов. Данное излучение обладает более высокой проникающей способностью, чем альфа-лучи. Для защиты от такого излучения требуется специальный костюм.

· Гамма-лучи представляют собой электромагнитное излучение, с очень высокой проникающей способностью. От этого излучения могут спасти толстые бетонные или свинцовые перекрытия (то есть, требуется специальное укрытие).

· Нейтронное излучение представляет собой поток нейтронов с очень высокой проникающей способностью. Уберечься от такого излучения можно только в специальном бункере (и то частично). На следующем уроке мы охарактеризуем очаги поражения при радиационных авариях, а также познакомимся с принципами защиты.

Несмотря на загадочное название, ионизирующее излучение постоянно присутствует вокруг нас. Каждый человек регулярно подвергается его воздействию, как от искусственных, так и от природных источников.


Что такое ионизирующее излучение?

Говоря научным языком, данное излучение представляет собой вид энергии, которая высвобождается из атомов какого-либо вещества. Существует две формы – электромагнитные волны и мельчайшие частицы. У ионизирующего излучения есть второе название, не совсем точное, зато очень простое и известное каждому – радиация.

Радиоактивность существует далеко не у всех веществ. В природе имеется весьма ограниченное количество радиоактивных элементов. Но ионизирующее излучение имеется не только вокруг условного камня с определенным составом. Слабая доля радиации присутствует даже в солнечном свете! А еще в воде из глубоководных источников. Не во всех из них, но во многих содержится особый газ – радон. Его действие на организм человека в больших количествах очень опасно, впрочем, как и действие других радиоактивных компонентов.

Человек научился применять радиоактивные вещества в благих целях. За счет реакций распада, сопровождающихся радиоактивным излучением, работают атомные электростанции, двигатели подводных лодок, медицинские приборы.

Влияние на организм человека

Ионизирующее излучение может оказывать действие на человека как снаружи, так и изнутри. Второй вариант происходит, когда источник излучения оказывается проглоченным или попавшим в организм вместе с вдыхаемым воздухом. Соответственно, активное внутреннее воздействие оканчивается, как только вещество будет выведено.

При получении большой дозы ионизирующего излучения, нарушается функционирование тканей и органов человека. Появляются покраснения на коже, выпадают волосы, могут появиться специфические ожоги. Но самыми коварными являются отложенные последствия. Люди, длительное время пребывающие в зоне незначительного излучения, часто заболевают онкологическими заболеваниями спустя несколько десятилетий.

Как защититься от ионизирующего излучения?

Активные частицы имеют крайне маленький размер и огромную скорость. Поэтому они спокойно проникают через большинство барьеров, останавливаясь только перед стенами из бетона и свинца большой толщины. Именно поэтому все производственные или медицинские места, где по роду деятельности присутствует ионизирующее излучение, имеют соответствующие заграждения и кожухи.

Защититься от ионизирующего излучения природного происхождения так же нетрудно. Достаточно ограничить пребывание под прямыми лучами солнца, не увлекаться загаром и осторожней вести себя в путешествии по незнакомым местам. В частности, стараться не пить воду из неизученных родников, особенно в местностях с повышенным содержанием радона.

Виды, источники и влияние ионизирующего излучения на человека

Ионизирующее излучение – это электромагнитное излучение (рентгеновское, гамма) и излучение частиц (альфа, бета), сопровождающиеся выделением энергии. Ионизирующее излучение появляется только при наличии источника излучения (изотопа радиоактивного элемента или рентгеновской трубки). Оно известно в медицине в форме рентгеновского излучения. Используется при диагностике заболеваний сердца и легких, а также при диагностике травм.

Виды ионизирующего излучения

Виды ионизирующего излучения

Ионизирующее излучение можно разделить на два вида:

  1. Искусственное – радиоактивные изотопы не встречаются в природе, их генерируют рентгеновские аппараты;
  2. Естественное – встречается в природе, например, в почве, растениях и в космосе.

Электромагнитное ионизирующее излучение используется при проведении радиологических исследований (в просторечии рентгеновских исследований), таких как рентген или КТ (компьютерная томография). С его помощью врач может:

  • осмотреть тело и увидеть структуры органов и тканей;
  • обнаружить множество серьезных заболеваний костей, легких, сердца и других органов.

Ионизирующее излучение частиц можно разделить на:

  • ядерное;
  • космическое;
  • излучение, производимое в ускорителях.

По типу частиц ионизирующее излучение может быть альфа, бета, нейтронное и протонное.

Источники ионизирующего излучения

Источники ионизирующего излучения

Источниками ионизирующих излучений являются искусственные и естественные явления, объекты:

  1. Естественные источники – это в первую очередь радиоактивные элементы, присутствующие в земной коре и атмосфере, а также космические лучи;
  2. Искусственные источники – это радиоактивные элементы, производимые в ядерных реакторах (например, плутоний) или устройствах, генерирующих ионизирующее излучение (рентгеновские аппараты, кобальтовые бомбы).

Рассматриваемое излучение всегда сопровождало человека. Каждый день население поглощает радиацию, которая приходит из космоса и исходит от камней и почвы. Источником естественного ионизирующего излучения, среди прочего, является космическое пространство.

Космические лучи, которые состоят из ядер высокоэнергетических атомов (в основном протонов), были открыты в начале 20 века. Человечество и все живое на планете частично защищены от космических лучей атмосферой Земли, которая поглощает энергию падающих частиц. В результате столкновений молекул с ядрами газа (азота, кислорода) в атмосферу испускается вторичное излучение.

Чем толще слой атмосферы, через который проходит излучение, тем слабее оно становится. Следовательно, люди получают гораздо меньшую дозу радиации на уровне моря, чем люди, поднимающиеся в высокие горы.

Важно знать! Люди, летающие по трансконтинентальным маршрутам, получат дозу радиации, примерно равную дозе, связанной с рентгеновским снимком легких.

Источником ионизирующего излучения также являются поверхность и внутренние части Земли, которые содержат богатые ресурсы радиоактивных элементов. В частности, во второй половине XX века в разных регионах планеты началась добыча урановых руд.

Помимо естественных источников ионизирующего излучения, существуют также искусственные источники. Техногенное ионизирующее излучение возникает в результате изменений, происходящих внутри атомных ядер. Эти изменения сопровождаются изменением энергии ядер, а часто и числа нуклонов. Этому особенно подвержены изотопы элементов, содержащие несоответствующее количество нейтронов.

Источники искусственного ионизирующего излучения:

  • медицинское оборудование (рентгеновские аппараты, кобальтовые бомбы);
  • атомные электростанции (реакторы);
  • исследовательские устройства, например, ускорители частиц.

Для справки! Искусственные радиоактивные изотопы, являющиеся источником радиации, широко используются в медицине, промышленности и науке.

Другие источники ионизирующего излучения – испытания ядерных бомб и аварии атомных электростанций. При определенных условиях они могут стать причиной смерти всего живого на планете. Но и без этого рассматриваемое явление может стать причиной серьезных негативных последствий.

Влияние ионизирующего излучения на организм человека

Влияние ионизирующего излучения на организм человека

Эффект зависит в основном от нескольких факторов:

  • размер и интенсивность принятой дозы;
  • вид излучения;
  • размер и тип области, обработанной ионизирующим агентом;
  • возраст и пол облученного человека;
  • индивидуальная чувствительность;
  • масса тела;
  • время года (температура окружающей среды).

Действие ионизирующего излучения на организм человека становится причиной специфических биологических эффектов. В силу основных механизмов образования их можно разделить на детерминированные и стохастические.

Детерминированные эффекты являются следствием поглощения человеческим организмом такой большой дозы ионизирующего излучения, что оно вызывает разрушение или необратимое повреждение определенного количества клеток. Проявление детерминированных эффектов – лучевая болезнь.

Стохастические (случайные) эффекты возникают в результате повреждения генетического материала отдельной клетки и проявляются в виде рака или наследственных заболеваний. Доза, вызывающая эти заболевания, может быть сколь угодно низкой, и их начало определяется случайностью.

Если ионизирующее излучение поражает живую ткань, оно может вызвать:

  • молекулярно-липидное повреждение, разрыв цепей ДНК;
  • клеточные изменения – повреждение мембранных структур, ядра и клеточных органелл (нарушение клеточного метаболизма, деградация компонентов клетки и повреждение ее генетического материала).

Естественные и искусственные источники ионизирующего излучения могут привести к прямой или косвенной ионизации материальной среды. Чтобы снизить вред, ученные разрабатывают и внедряют разные способы защиты от ионизирующего излучения – от защитных костюмов, правил использования специальной техники, до восстановления озонового слоя. Последний естественным образом защищает планету от космических лучей.

Читайте также: