Чем относительный показатель преломления отличается от абсолютного кратко

Обновлено: 02.07.2024

Из прошлых уроков вы уже знаете, что в однородной среде свет распространяется прямолинейно. Но в жизни много ситуаций, когда свет проходит через разные вещества до того, как достигнет наших глаз.

Например, через оконные стекла мы отлично видим все, что происходит на улице. А через стекла в межкомнатных дверях мы можем видеть только размытые силуэты того, что находится за дверью. Тот же самый пример можно привести и с прозрачной и мутной водой.

Значит, получаемое нашими глазами изображение как-то связано с тем, через какие среды проходит свет. Двигаясь прямолинейно в одной среде, он переходит в другую и снова двигается прямолинейно. Что же происходит при этом переходе из одной среды в другую?

Так, вам предстоит узнать новое понятие — преломление света. В ходе данного урока вы узнаете закономерности этого явления, рассмотрите различные опыты и научитесь применять полученные знания для решения задач.

Явление преломления света

Рассмотрим простой опыт. Для него нам понадобится прозрачный стакан с водой и обычный карандаш (рисунок 1).

Сначала опустим карандаш в воду вертикально (рисунок 1, а). Части карандаша в воздухе и в воде не изменились.

А теперь поменяем угол наклона карандаша (рисунок 2, б). Мы увидим интересную картинку. Нам кажется, что карандаш переломился на границе воды и воздуха.

Что произошло? Мы видим карандаш, потому что на него падает свет от какого-то источника. Его лучи отражаются от карандаша и попадают нам в глаза. Когда мы опустили карандаш в воду под каким-то углом, световые лучи дошли до наших глаз не только через воздух, но еще и через воду в стакане. При этом они поменяли направление своего распространения при переходе из одной среды в другую. В таком случае говорят, что свет преломился.

Преломление света — это явление изменения направления распространения света при переходе из одной среды в другую.

Но, если свет преломляется при переходе из одной среды в другую, почему на рисунке 1 (а) мы все равно видим карандаш без изменений? Чтобы разобраться с этим вопросом, нам необходимо более подробно изучить природу преломления света.

Скорость света и оптическая плотность среды

Свет распространяется в пространстве с определенной скоростью. Эта скорость настолько велика, что нам кажется, будто свет появляется мгновенно. Например, когда в темной комнате мы щелкаем переключателем, и включается свет.

Ученые не только рассчитали значение этой скорости, но и доказали, что скорость света различается в разных средах (таблица 1).

Вещество$c$, $\frac$
Воздух300 000
Вода225 000
Стекло198 000
Сероуглерод184 000
Алмаз124 000
Таблица 1. Значения скорости света в различных средах

Значения скорости света в вакууме и воздухе практически не отличаются, поэтому используют одно значение — $300 000 \frac$. Эта величина обозначается буквой $c$.

В других же средах наблюдается значительная разница в значениях скорости. Например, в воде скорость света меньше, чем в воздухе. При этом говорят, что вода является оптически более плотной средой, чем воздух.

Оптическая плотность — это величина, которая характеризует различные среды в зависимости от значения скорости распространения света в них.

Если пучок света падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, то часть света отразится от этой поверхности, а другая часть проникнет во вторую среду. При этом луч света изменит свое направление — происходит преломление света.

Схема преломления светового луча. Угол преломления

Рассмотрим преломление света более подробно (рисунок 2).

Перечислим элементы, обозначенные на рисунке 2:

  • MN — граница раздела воздуха и воды
  • Луч AO — падающий луч
  • Луч OB — преломленный луч
  • CD — перпендикуляр, опущенный к поверхности раздела двух сред и проведенный через точку падения O
  • Угол AOC — угол падения ($\alpha$)
  • Угол DOB — угол преломления ($\gamma$)

Угол преломления — это угол между перпендикуляром, опущенным к границе раздела двух сред в точке падения светового луча, и преломленным лучом.

Направления луча при переходе в воду изменилось. Луч света стал ближе к перпендикуляру CD. Т.е., $\gamma Рисунок 3. Преломление света на опыте с плоским зеркалом

Теперь на поверхность воды с помощью маленького фонарика направим пучок света. Сделаем это таким образом, чтобы пучок света падал под каким-то углом.

Мы увидим, как луч поменяет свое направление на границе воздуха и воды. При этом угол преломления заметно меньше угла падения ($\gamma_1 \alpha_2$).

Вода — более плотная оптическая среда, чем воздух. Из всего этого мы можем сделать следующие выводы:

  1. Если свет идет из оптически менее плотной среды в более плотную, то угол преломления всегда меньше угла падения: $\gamma \alpha$

Если в ходе опытов мы будем менять угол падения, то заметим, что угол преломления тоже будет изменяться. При этом вышеописанные нами закономерности будут исполняться.

Показатель преломления

Давайте выясним, как именно углы падения и преломления связаны друг с другом. Рассматривать будем луч света падающий из воздуха в воду.

При увеличении угла падения, будет увеличиваться угол преломления (рисунок 4). Но отношение между этими углами ($\frac<\gamma>$) не будет постоянным.

Постоянным будет оставаться другое отношение этих углов — отношение их синусов:
$\frac = \frac = \frac \approx 1.33$.

Полученное число (1.3) называют относительным показателем преломления. Обозначают эту величину буквой $n_$.

Так, для любой пары веществ с разными оптическими плотностями можно записать:

Чем больше относительный показатель преломления, тем сильнее преломляется световой луч при переходе из одной среды в другую.

В чем физический смысл этой величины? Ранее мы говорили, что оптическая плотность характеризует вещество по скорости распространения света в нем. Показатель преломления делает то же самое.

Относительный показатель преломления — это величина, показывающая, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде:
$n_ = \frac<\upsilon_1><\upsilon_2>$.

Если луч света падает из вакуума или воздуха в какое-то вещество, то используется еще одна величина — абсолютный показатель преломления.

Абсолютный показатель преломления — это величина, показывающая во сколько раз скорость света в вакууме\воздухе больше, чем в данной среде:
$n = \frac<\upsilon>$,
где $c = 3 \cdot 10^8 \frac$.

В таблице 2 представлены значения абсолютных показателей преломления некоторых веществ. Иногда их называют относительными показателями преломления относительно воздуха, потому что для воздуха $n = 1$.

Вещество$n$
Воздух1.00
Лед1.31
Вода1.33
Спирт1.36
Стекло (обычное)1.50
Стекло (оптическое)1.47 — 2.04
Рубин1.76
Алмаз2.42
Таблица 2. Абсолютные показатели преломления света различных веществ

Выразим относительный показатель преломления $n_$ через абсолютные показатели преломления $n_1$ и $n_2$:
$n_ = \frac<\upsilon_1> <\upsilon_2>= \frac>> = \frac$.

Здесь мы вернемся к вопросу о том, почему на рисунке 1 (а) мы не видим преломления.

Если падающий луч падает перпендикулярно на границу раздела двух сред, то он не испытывает преломления.

Доказывается это опытным путем. При любых других углах падения, отличных от $0 \degree$, преломление света происходит по вышеописанным закономерностям.

Закон преломления света

Итак, преломление света происходит по определенному закону.

Закон преломления света:
падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. При этом отношение синуса угла падения к синусу угла преломления — постоянная величина для двух сред:
$\frac = \frac = n_$.

Мнимое изображение, образованное преломлением света. Призмы

Преломление света, как и отражение света плоским зеркалом, создает “кажущееся” изменение положение источника света. Мы наблюдали такое изменение в самом первом опыте этого урока на рисунке 1, б.

Но, дело в том, что мнимое положение источника света в случае преломления будет различным для лучей, падающих на границу раздела двух сред под разными углами. Поэтому мнимое положение источника света при преломлении обычно подробно не рассматривают.

Тем не менее, мы часто замечаем эти изменения. Например, в прозрачной воде в закрытых водоемах или в море кажется, что предметы, лежащие на дне и находящиеся в толще воды, находятся на другом расстоянии от нас, чем они есть на самом деле.

Рассмотрим наглядный опыт с монеткой (рисунок 5).

Возьмем неглубокую широкую чашку и положим на ее дно монетку. Выберем такое положение для наблюдения, чтобы она была не видна (рисунок 5, а).

Оставаясь в этой же точке наблюдения, нальем в чашку воду. Теперь монета стала видна (рисунок 5, б). То есть, мы видим не саму монету, а ее мнимое изображение, образованное преломлением света.

В различных оптических приборах используют эти особенности преломления. Часто свет проходит сквозь тело, имеющее форму призмы (рисунок 6, а).

Световой луч, падающий на боковую грань призмы дважды преломляется (рисунок 6, б): при входе в призму и при выходе из нее. Такой луч на выходе из призмы будет отклоняться к основанию треугольника.

В оптических приборах используют не просто призмы, но и их различные сочетания. Например, на рисунке 7 изображены 3 коробки, в которых находятся треугольные призмы.

Вы можете оценить, как при разных положениях призм изменяется ход лучей на выходе из коробки. При этом падающие лучи во всех трех случаях (а, б, в) были параллельны и имели одинаковое направление.

Примеры задач

  1. Луч света переходит из скипидара в воздух. Определите абсолютный показатель преломления скипидара, если при угле падения, равном $30 \degree$, угол преломления равен $45 \degree$ (рисунок 8). Чему равна скорость распространения света в скипидаре?

Дано:
$\alpha = 30 \degree$
$\gamma = 45 \degree$
$n_2 = 1$
$c = 3 \cdot 10^8 \frac$

$n_1 — ?$
$\upsilon_1 — ?$

Посмотреть решение и ответ

Решение:

Так как световой луч проходит из скипидара (первая среда) в воздух (вторая среда), мы обозначили абсолютный показатель скипидара как $n_1$, а воздуха как $n_2$.

По определению абсолютного показателя преломления для скипидара мы можем записать:
$n_1 = \frac<\upsilon_1>$.

Выразим $\upsilon_1$ и рассчитаем:
$\upsilon_1 = \frac = \frac> \approx 2 \cdot 10^8 \frac$.

Ответ: $n_1 \approx 1.41$, $\upsilon_1 \approx 2 \cdot 10^8 \frac$.

2. Световой луч падает из воздуха в стекло. Абсолютный показатель преломления стекла равен $1.73$. Чему равен угол преломления, если отраженный луч образует с перпендикуляром, опущенным в точку падения луча на границе раздела двух сред, угол, равный $60 \degree$?

При решении задачи мы будем использовать рисунок 9.

$AO$ — падающий луч, а угол $\alpha$ — угол падения. Луч $AO$ падает на границу раздела двух сред (воздуха и стекла). Образуются отраженный луч $OB$ и преломленный луч $OC$. Им соответствуют угол отражения $\beta$ и угол преломления $\gamma$.

Теперь запишем условие задачи и решим ее.

Дано:
$n_1 = 1$
$n_2 = 1.73$
$\beta = 60 \degree$

$\gamma — ?$

Посмотреть решение и ответ

Решение:

По закону отражения света:
$\alpha = \beta = 60 \degree$.

Если $\sin \gamma = \frac$, то $\gamma = 30 \degree$.

Ответ: $\gamma = 30 \degree$.

3. На дне пруда глубиной $3 \space м$ находится источник света. Показатель преломления воды равен $1.33$, а воздуха — $1$. На какой глубине наблюдатель увидит источник света, если он смотрит вертикально вниз с лодки.

Условие задачи дает понять, что в глаз наблюдателя попадает луч, который падает перпендикулярно границе раздела двух сред. В таком случае, преломление наблюдаться не будет. Тем не менее, как и в настоящей жизни, мы все равно увидим преломленное изображение источника света. Он будет казаться ближе. В ходе решения этой задачи вы узнаете, почему так происходит.

Для начала рассмотрим рисунок 10.

Источник света $S$ находится на глубине $H$. Мы опишем его двумя лучами: $SA$ и $SO$. Луч $SA$ перпендикулярен к границе раздела двух сред. Поэтому он не преломляется. Луч $SO$ достигает границы раздела под некоторым углом. Он образует с перпендикуляром $CD$ угол падения $\alpha$. Далее этот луч преломляется под углом преломления $\gamma$ и попадает в глаза наблюдателя (точка $B$).

Продолжим преломленный луч до луча $SA$. Этот луч мы будем использовать как перпендикуляр к поверхности воды, чтобы оценивать глубину. Мы получили точку $S_1$ — мнимое изображение источника света. Соответственно длина отрезка $AS$ — это реальная глубина пруда $H$, а длина отрезка $AS_1$ — мнимая глубина $h$.

Обратите внимание, что мы взяли второй луч $SO$ не просто так — он падает под крайне малым углом $\alpha$. После преломления мы получаем такой малый угол $\gamma$, что он попадает в глаз наблюдателя. Т.е., на рисунке 8 схематическая область увеличена для нашего удобства во много раз. Мы рассматриваем настолько малые углы, что преломленный луч $SB$ достигает глаза, и мы видим мнимое изображение, образованное преломлением света.

Теперь мы можем записать условие задачи и решить ее.

Дано:
$H = 3 \space м$
$n_1 = 1.33$
$n_2 = 1$

$h — ?$

Посмотреть решение и ответ

Решение:

Рассмотрим две прямые $AS$ и $CD$. Они параллельны, а прямая $SO$ — секущая. Тогда накрест лежащие углы равны друг другу:
$\angle ASO = \alpha$.

Запишем тангенс этого угла в прямоугольном треугольнике $ASO$:
$\tg \alpha = \frac = \frac$.
Тогда, $AO = H \cdot \tg \alpha$.

Теперь попробуем выразить $AO$ из другого треугольника — $AS_1O$.
Если рассмотрим $S_1O$ как прямую, пересекающую две параллельные прямые, то $\angle AS_1O = \gamma$.

Запишем тангенс этого угла:
$\tg \gamma = \frac = \frac$.
Тогда, $AO = h \cdot \tg \gamma$.

Получается, что $H \cdot \tg \alpha = h \cdot \tg \gamma$.
Выразим отсюда мнимую глубину $h$:
$h = H \cdot \frac$.

Так как углы $\alpha$ и $\gamma$ крайне малы, мы можем смело использовать следующие приближения:
$\tg \alpha \approx \sin \alpha$,
$\tg \gamma \approx \sin \gamma$.

Тогда, $h = H \cdot \frac = H \cdot \frac$.
Так как $n_2 = 1$, мы можем записать, что $h = \frac$.

абсолютный показатель преломления вещества — величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде n=c/v
Величина n, входящая в закон преломления, называется относительным показателем преломления для пары сред.


Величина n есть относительный показатель преломления среды В по отношению к среде А, а n' = 1/n есть относительный показатель преломления среды А по отношению к среде В.

Эта величина при прочих равных условиях больше единицы при переходе луча из среды более плотной в среду менее плотную, и меньше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело) . Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая.

Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на нее из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления .

Абсолютный - относительно вауума.
Относительный - относительно любого другого вещества (того же воздуха, например) .
Относительный показатель двух веществ есть отношение их абсолютных показателей.

P.S. масло масляное, конечно
смысл в том, что показатель преломления - число, во сколько раз уменьшается скорость света в одном веществе по сравнению с другим; если "другое" - вакуум, то показатель абсолютный

Величина, равная отношению скорости света в вакууме к скорости света в данной среде, называется Абсолютным Показателем преломления среды. Это табличная величина - характеричтика данной среды.

Величина, равная отношению скорости света в одной среде и скорости цвета в другой называется Относительным показателем преломления второй среды относительно первой.


Показатель преломления вещества — это отношение скоростей света (электромагнитных волн) в вакууме и в данной среде. Показатель преломления — безразмерная величина, которая зависит от температуры и длины волны света. Показатель преломления характеризует скорость распространения света в среде и рассчитывается по формуле:

n = c / v,

n — показатель преломления;
c — скорость света в вакууме (или воздухе);
v — скорость света в среде (например, воде, оливковом масле и т. п.).

На этой странице приведена необходимая информация о методах измерения показателя преломления.

Узнайте больше о показателе преломления, его применении, способах измерения, а также о законе преломления света и многом другом.

Перейдите в один из следующих разделов, чтобы узнать больше о показателе преломления:

  • Преломление света: практический пример
  • Закон преломления света (закон Снеллиуса)
  • Полное внутреннее отражение и критический угол
  • Закон преломления света и устройство рефрактометра
  • Измерение показателя преломления: что измеряет рефрактометр?
  • Факторы, влияющие на величину показателя преломления
  • Показатель преломления: применение на практике
  • Абсолютный и относительный показатель преломления
  • Рекомендации по измерению показателя преломления
  • Совершенствуйте методику измерения показателя преломления
  • Приблизительные значения показателя преломления стандартных и эталонных веществ
  • Часто задаваемые вопросы

Преломление света: практический пример


Прежде чем углубиться в теоретическое обоснование показателя преломления, рассмотрим наглядный пример распространения света в различных средах.

На иллюстрации изображены три стакана с опущенными в них стеклянными палочками. Стаканы заполнены разными жидкостями:

Жидкость в стакане
1 Вода.
2 Вода и кедровое масло.
3 Кедровое масло.

Что мы видим в этих стаканах?

Показатель преломления воды (n = 1,333) ниже, чем стекла (n = 1,517). По этой причине стеклянную палочку видно в стакане 1 и отчасти — в стакане 2.

Зато у стеклянной палочки (n = 1,517) и кедрового масла (n = 1,516) показатели преломления почти одинаковые, поэтому кажется, что палочка при погружении в кедровое масло исчезает (частично в стакане 2 и полностью в стакане 3).

Закон преломления света (закон Снеллиуса)

Закон преломления света (закон Снеллиуса)

Закон преломления света, известный также как закон Снеллиуса, описывает взаимосвязь углов падения и преломления с показателями преломления граничащих сред. Как показано на иллюстрации, согласно этому закону отношение синуса угла падения α к синусу угла преломления β (и показателей преломления n1 и n2) — это величина, постоянная для двух данных сред:

На иллюстрации показано, как отклоняется световой луч (1, синяя стрелка), проходящий под определенным углом из оптически менее плотной (n1) в оптически более плотную среду (n2), например из воздуха в воду.

Но когда луч проходит из одной среды в другую перпендикулярно границе раздела, никакого преломления не происходит (зеленая стрелка).


Согласно закону преломления света, отношение показателей преломления граничащих сред пропорционально отношению угла падения и угла преломления светового луча. То есть:

Полное внутреннее отражение и критический угол

Полное внутреннее отражение и критический угол

Полное внутреннее отражение возникает, когда весь свет, направленный из оптически более плотной среды в оптически менее плотную, отражается обратно в оптически более плотную среду. Для понимания этого явления рассмотрим иллюстрацию слева.

Синяя стрелка: луч света преломляется, проходя из оптически более плотной среды (n2) в оптически менее плотную (n1).

Угол падения α увеличивается (зеленая стрелка): когда угол падения α возрастает (1), он может достигнуть критической величины, после которой свет не проходит в оптически менее плотную среду (n1), а отражается вдоль раздела двух сред. Такой угол падения называют критическим углом полного внутреннего отражения. Заметим, что при этом угол отражения β = 90°.

Угол падения больше критической величины: если угол падения превышает критическую величину, свет полностью отражается обратно в оптически более плотную среду (n2). Это явление называют полным внутренним отражением (2).

Показатель преломления n1 рассчитывается по величине критического угла α, когда
β = 90° —> sin β = 1.

Внимание! Луч в случае 1 (зеленая стрелка) падает под критическим углом, а полное внутренне отражение происходит в случае 2 (голубая стрелка).

Закон преломления света и устройство рефрактометра

На основе описанного выше закона преломления света созданы рефрактометры — приборы для измерения показателя преломления жидкостей и высоковязких веществ.

На иллюстрации схематически показано устройство измерительной ячейки цифрового рефрактометра, в котором использован закон преломления света. Процедура измерения связана с полным внутренним отражением и критической величиной угла падения света. Принцип действия:

Источник света (1) — светодиод (LED). Луч света от светодиода проходит через поляризационный фильтр (2), интерференционный фильтр (3) и фокусирующие линзы (4), а затем через сапфировую призму (5) на образец.

Когда угол падения превышает критическую величину, отраженный свет попадает через линзу (6) на оптический датчик с зарядовой связью (7), который фиксирует критический угол. Кроме того, современные цифровые рефрактометры автоматически контролируют температуру на поверхности раздела призма/образец для повышения точности измерения.

Измерение показателя преломления: что измеряет рефрактометр?


Цифровой рефрактометр предназначен для измерения показателя преломления и связанных с ним характеристик жидкостей по методу полного внутреннего отражения. Процедура измерения автоматизирована, благодаря чему точность результатов не зависит от оператора. Измерение выполняется в течение нескольких секунд с высокой точностью на небольших образцах (объемом от 0,5 до 1 мл).

Также для измерения показателя преломления используются ручные рефрактометры, например оптический настольный рефрактометр Аббе или обычный переносной рефрактометр. Подробнее об их достоинствах и недостатках.

Факторы, влияющие на величину показателя преломления

Влияние температуры на измерение показателя преломления

Как зависит величина показателя преломления от температуры?

Сначала узнаем, как влияет температура на жидкости. С ростом температуры увеличивается пространство, которое занимают атомы, связанные между собой в одной молекуле. При нагревании усиливаются колебания атомов, атомы отодвигаются друг от друга раздвигаются, что приводит к снижению оптической плотности среды.

Как сказано выше, показатель преломления связан со скоростью распространения света в среде. Когда температура растет, оптическая плотность среды снижается, а скорость света в ней увеличивается, что приводит к небольшому изменению угла преломления. Другими словами, чем выше температура, тем меньше показатель преломления, как показано на графике ниже на примере воды.

Из графика видно, что температура образца существенно влияет на измеряемую величину. Это означает, что температуру следует точно измерять и по возможности регулировать.

Приборы старой конструкции, например рефрактометры Аббе, приходится помещать в жидкостный термостат. В большинстве современных цифровых рефрактометров температура оптической системы регулируется с помощью элемента Пельтье. Такая конструкция обеспечивает быстрое и точное измерение показателя преломления.

Влияние температуры на измерение показателя преломления

Влияние длины волны на измерение показателя преломления

Вследствие различной дисперсии света (дисперсионного соотношения) в разных веществах показатели преломления также почти всегда различаются в зависимости от длины волны света, используемого для измерения. Дисперсионное соотношение можно рассчитать следующим образом.

Мы знаем, что скорость распространения света в среде равна:

где:
n — показатель преломления;
c — скорость света в вакууме (или воздухе);
v — скорость света в данной среде.


Длина волны в этой же среде:

где: λ0 — длина световой волны в вакууме (или воздухе).

Следовательно, величина показателя преломления (n) обратно пропорциональна как длине волны, так и скорости распространения света в среде. Это означает, что при большей длине волны показатель преломления уменьшается. Такое соотношение можно представить в виде уравнения:

В то же время для контроля качества в промышленности необходимо иметь определенную точную длину волны, чтобы сравнивать значения показателя преломления различных образцов, измеренные в одинаковых условиях.

Чаще всего в рефрактометрах используется желтая линия спектра натрия с длиной волны 589,3 нм. Желтая линия натрия уже давно используется для измерения показателя преломления. Это широко доступный, надежный и стабильный стандарт оптического излучения.


n = показатель преломления.

t = температура (°C).

D = желтая линия натрия.

Значение показателя преломления, измеренное по желтой линии натрия, обозначается символом nD.

Показатель преломления: применение на практике


Любой материал, который взаимодействует со светом, можно характеризовать показателем преломления. Во многих отраслях промышленности измерение показателя преломления используется для проверки чистоты и концентрации жидких, высоковязких и твердых образцов. Показатель преломления жидких и высоковязких материалов измеряется с высокой точностью (погрешность от ± 0,00002).

Кроме того, показатель преломления можно сопоставлять с широким диапазоном концентраций. Эту зависимость используют для анализа многих материалов в разных отраслях, например:

  • Производство пищевых продуктов и напитков: плотность (содержание сахара) по шкале Брикса для безалкогольных напитков или плотность виноградного сусла по шкале Эксле.
  • Химическая промышленность: температура замерзания (°C или °F), концентрация кислоты/щелочи, содержание органических растворителей или неорганических солей в объемных или весовых процентах.
  • Производство и клинические исследования лекарств: содержание перекиси или метилового спирта, концентрация различных веществ в моче.

В некоторых случаях измерение показателя преломления сочетают с измерением плотности, получая простой и эффективный метод контроля. Такой анализ можно полностью автоматизировать.

Требуется более подробная информация о показателях Брикса, Плато, Баллинга и Боме?

Наряду с плотностью по шкале Брикса, существуют другие сопоставимые единицы для измерения содержания сахарозы, например градусы Плато, Боме, Эксле и Баллинга. Узнайте больше об их различиях, применении, способах измерения и расчета.

Электромагнитные и корпускулярные свойства света — одно из самых удивительных явлений природы. Свет, попадая на поверхность, отражается, как отскакивал бы мячик, брошенный с высоты. На это затрачивается только часть энергии. Луч света также и проходит сквозь среду. Рассмотрим, как меняется скорость света в среде другой плотности, меняется направление распространения луча (угол между перпендикуляром, проведённым в точку падения, и преломлённым лучом отличается от угла падения).

преломление.jpg

На рис. \(1\) \(MN\) — граница раздела двух сред : воздуха и воды;
\(CO\) — нормаль (перпендикуляр к границе раздела двух сред) для измерения углов падения, отражения и преломления луча света;
\(\alpha\) — угол падения луча (измеряется между падающим лучом и нормалью);

В \(1621\) году голландским астрономом и математиком Виллебордом Снеллиусом опытным путём были открыты законы преломления света:

первый закон преломления света:
луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром, восстановленным в точке падения луча к поверхности раздела двух сред;
второй закон преломления света:
синус угла падения относится к синусу угла преломления так же, как показатель преломления второй среды к показателю преломления первой среды:
sin α sin γ = n 2 n 1 = n 21 , где n 21 — относительный показатель преломления второй среды (вода) относительно первой (воздух).

При переходе лучей из воздуха \(n_1=1\) в более плотную среду с \(n_2\), то второй закон преломления записывают следующим образом: sin α sin γ = n , где n — абсолютный показатель преломления второй среды.

Показатели преломления (и абсолютный, и относительный) являются величинами неименованными (не имеют никаких единиц измерения).

Изучая преломление света, Пьер Ферма и Христиан Гюйгенс пришли к выводу, что распространение света в различных средах связано со скоростями света в этих средах:

синус угла падения относится к синусу угла преломления так же, как скорость света в первой среде относится к скорости света во второй среде :

Если скорость света в первой среде больше, чем скорость света во второй среде, это значит, что вторая среда является оптически более плотной, чем первая.

Относительным показателем преломления второй среды относительно первой n 21 называют физическую величину, равную отношению скоростей света в этих средах.

Если луч света переходит из вакуума в какую-либо среду, то получаем уравнение абсолютного показателя преломления среды:

Абсолютным показателем преломления среды называют физическую величину, равную отношению скорости света в вакууме к скорости света в данной среде:
n = c υ , где \(c\) — скорость света в вакууме, а υ — скорость света в среде.

Физический смысл показателя преломления
Относительный показатель преломления n 21 показывает, во сколько раз меняется скорость света при переходе его из одной среды в другую;

абсолютный показатель преломления \(n\) показывает, во сколько раз меняется скорость света при переходе его из вакуума в среду.

Зависимость отражения и поглощения от частоты колебаний имеет избирательный характер: колебания с одной частотой вещество отражает или поглощает сильно, а с другой - слабо. Атмосфера Земли сильно поглощает короткие волны видимого спектра, и значительно слабее — его длинные волны. Поэтому сигнал об опасности — красного цвета.

Читайте также: