Сообщение на тему конъюгация

Обновлено: 04.07.2024

1) у водорослей конъюгат — своеобразный половой процесс, при котором происходит слияние содержимого двух внешне сходных вегетативных клеток. 2) У инфузорий — обмен половыми ядрами и последующее их попарное слияние; инфузории при этом сближаются по двое сторонами, на которых находится ротовое отверстие. При слиянии макронуклеус (вегетативное ядро) постепенно разрушается, а микронуклеус (половое ядро) двукратно делится путём мейоза, после чего 3 ядра разрушаются, а 1 делится снова и каждая из его половинок обменивается на половинку ядра партнёра, т. е. происходит их слияние и образуется синкарион, в результате чего восстанавливается двойной набор хромосом. Затем синкарион делится и часть продуктов деления превращается в макронуклеус, а другая часть — в микронуклеусы. Иногда из одной клетки в другую переходит при этом небольшое количество цитоплазмы. В деталях процесс К. у инфузорий сильно варьирует. 3) У бактерий — способ переноса генетического материала от одной бактериальной клетки к другой. При этом две бактерии соединяются тонким мостиком, через который из одной клетки (донора) в другую (реципиент) переходит отрезок нити дезоксирибонуклеиновой кислоты (ДНК). Наследственные свойства реципиента изменяются в соответствии с количеством генетической информации, заключённой в переданном кусочке ДНК (см. Генетика микроорганизмов). 4) Конъюгация хромосом — попарное временное сближение гомологичных хромосом, во время которого между ними может произойти обмен гомологичными участками. После К. хромосомы расходятся. (Подробнее см. Мейоз.)

Рис. 1. Схема конъюгации у инфузорий: 1 — микронуклеус (ми) и макронуклеус (ма); 2 — первое деление микронуклеусов, видны 4 хромосомы в каждом; 3 — второе деление, при котором число хромосом редуцируется до 2; 4 — по 3 из образовавшихся микронуклеусов уплотняются и гибнут; 5 — третье деление микронуклеуса; 6 и 7 — обмен ядрами (♂ — подвижное ядро, ♀ — остающееся в клетке ядро; при их слиянии восстанавливается двойной набор хромосом); 8 — 10 — образование нового макронуклеуса за счёт деления микронуклеуса.

Рис. 2. Электронномикроскопическое изображение конъюгации у кишечной палочки; удлинённая клетка — донор, круглая — реципиент.

Найдено 2 изображения:

конъюгация ж. 1) Половой процесс у инфузорий и некоторых водорослей. 2) Способ перенесения генетической информации от одной бактериальной клетки к другой.

Видео на тему: КОНЪЮГАЦИЯ

конъюгация синапсис, конъюгирование, слияние Словарь русских синонимов. конъюгация сущ., кол-во синонимов: 6 • аллосиндез (2) • ассоциация (19) • конъюгирование (1) • синапсис (2) • слияние (21) • спаривание (11) Словарь синонимов ASIS.В.Н. Тришин.2013. . Синонимы: конъюгирование, синапсис, слияние


Многие, вероятно, не знали, что бактерии могут заниматься половым размножением. Это не совсем то, что можно себе представить. Сегодня рассмотрим процесс бактериальной конъюгации, что такое конъюгация в микробиологии и ее влияние на генетическую изменчивость бактерий.

значение конъюгации

Половое размножение бактерий

Это не станет большим шоком, но у бактерий нет полового пути размножения, по крайней мере, в обычном смысле. Бактериальные клетки размножаются путем создания клонов самих себя. Материнская клетка копирует свою ДНК-хромосому, затем разделяет ее клетку пополам, удерживая одну хромосому и отдавая ее новой дочерней клетке. По соглашению, эти клетки называются материнскими и дочерними, но на деле они являются клонами.

У них есть тот же самый генетический материал. В бактериальной популяции этот процесс продолжается, одна клетка делится на две снова и снова и снова, в результате чего появляются огромные популяции, которые являются всеми клонами друг друга. Это называется вертикальным переносом генов, когда ДНК передается от матери к потомству. И это то, что происходит в природе подавляющее большинство времени.

конъюгация примеры

Бактерии - хитрые маленькие существа

Что такое конъюгация? У бактерий есть некоторые гениальные способы генерации генетического разнообразия. Например, бактерии способны обмениваться генами со своими соседями.

Это называется переносом горизонтального гена и относится к способности некоторых бактериальных клеток приобретать новые гены из соседних в их среде. Теперь вместо того, чтобы быть дочерней ячейкой клона, клетка имеет новое генетическое разнообразие, смесь между переданной по вертикали ДНК материнских клеток и переносимой по горизонтали соседней клеточной ДНК.

Помните, что у бактерий нет полового размножения? В эволюционном смысле это имеет решающее значение для разрешения смешивания и сопоставления генов, что приводит к генетическому разнообразию в пределах одного вида. Теперь мы можем видеть, что у бактерий нет обычного пола, у них есть горизонтальные механизмы переноса генов для генерации генетического разнообразия. В биологии это конъюгация.

конъюгация это в биологии

Горизонтальный перенос гена

Существует три способа, которыми бактерии способны выполнять горизонтальный перенос генов:

  • трансдукция использует бактериальные вирусы, называемые бактериофагами, для переноса ДНК из одной инфицированной клетки в другую;
  • трансформация - это способность некоторых клеток принимать свободно плавающие ДНК, обнаруженные в окружающей среде;
  • конъюгация позволяет переносить ДНК через структуру, называемую пилюсом, то есть из одной клетки в другую.

Что такое конъюгация?

Для конъюгации две живые бактериальные клетки должны вступать в прямой контакт друг с другом. Контакт между клетками осуществляется с помощью сопряжения особого придатка (пилус), напоминающего волос на поверхности бактерии. Он имеет белковую основу, подобную структуре волоса, которая простирается от бактериальной клетки.

Некоторые придатки используются для прикрепления к поверхностям, но специальное сопряжение применяется исключительно для прикрепления к другим клеткам и облегчения переноса ДНК.

Клетка, которая будет передавать ДНК, называется донорской и строит конъюгированный пилус. Его конъюгация представляет собой полую трубчатую структуру, которая соединяет цитоплазму донорной клетки с цитоплазмой реципиента.

конъюгация микробиология

Перенос плазмиды

Когда цитоплазма клетки-донора и реципиента физически связана, настало время для переноса ДНК. Если донорская клетка содержит плазмиду, круглую часть внехромосомной ДНК, то ее можно перенести в клетку-реципиент. Это делается путем копирования плазмиды и отправки цепи копируемой ДНК получателю через сопряжение пилуса. Конечным результатом является копия плазмиды как у донора, так и у реципиента. Возможно, наиболее интересным является тот факт, что плазмида несет гены, которые позволяют клетке-реципиенту стать самим донором конъюгации! Теперь клетка-получатель также может распространять плазмиду на новые клетки, с которыми она сталкивается в своей среде.

конъюгация микробиология

Значение конъюгации

Бактериальное конъюгация - это передача генетического материала между бактериальными клетками путем прямого контакта или мостоподобной связью. Это механизм горизонтального переноса генов, как и трансформация, и трансдукция. Бактериальное сопряжение часто рассматривается как бактериальный эквивалент полового размножения или спаривания, поскольку оно связано с обменом генетическим материалом. Однако это не половое размножение, так как обмен гаметой не происходит.

Во время конъюгации (микробиология) донорская клетка обеспечивает конъюгативный или мобилизуемый генетический элемент, который чаще всего является плазмидой или транспозоном. Большинство конъюгативных плазмид имеют системы, гарантирующие, что клетка-получатель уже не содержит подобный элемент. Передаваемая генетическая информация часто выгодна получателю. Преимущества могут включать устойчивость к антибиотикам, ксенобиотическую толерантность или способность использовать новые метаболиты.

Такие полезные плазмиды можно рассматривать как бактериальные эндосимбионты. А другие элементы как бактериальные паразиты, конъюгацию как механизм, разработанный ими для обеспечения их распространения. Этот процесс был открыт в 1946 году Джошуа Ледербергом и Эдвардом Татумом.

конъюгация примеры

Механизм конъюгации

Сначала донорская клетка производит пилус. Он присоединяется к ячейке-получателю и объединяет две клетки. Мобильная плазмида зазубривается, и одна нить ДНК затем переносится в клетку-реципиент. Обе синтезируют комплементарную цепь для получения циркулярной плазмиды, а также размножают пилусы. Обе клетки в настоящее время являются жизнеспособным донором для F-фактора.

F-плазмида представляет собой эписому (плазмиду, которая может интегрироваться в бактериальную хромосому посредством гомологичной рекомбинации). Она несет в себе происхождение репликации и источник передачи. В данной бактерии, свободной или интегрированной, может быть только одна копия F-плазмиды, а бактерии, обладающие копией, называются F-позитивными и обозначаются F + . Клетки, у которых отсутствуют F-плазмиды, называются F-отрицательными (F - ), они могут функционировать как ячейки-получатели.

Хотя есть некоторые споры о точном механизме конъюгации, может показаться, что пилусы не являются структурами, через которые происходит обмен ДНК, однако все же трансформация ДНК продолжается. Несколько белков, закодированных в локус, открывают канал между бактериями. Считается, что фермент, расположенный у основания пилуса, инициирует слияние мембран.

Примеры

Яркий пример конъюгации демонстрируют бактерии, связанные с азотфиксирующими тризобиями, которые представляют собой интересный случай внутреннего сопряжения. Например, индуцирующая опухоль (Ti) плазмида Agrobacterium и индуцирующая корневую опухоль (Ri) плазмида A. rhizogenes содержат гены, которые способны переносить растительные клетки. Экспрессия этих генов эффективно преобразовывает растительные клетки в опин-продуцирующие растения. Опины используются бактериями в качестве источников азота и энергии. Зараженные клетки образуют коронарные желчные или корневые опухоли.

Таким образом, плазмиды Ti и Ri являются эндосимбионтами бактерий, которые в свою очередь являются паразитами зараженного растения. Плазмиды Ti и Ri также могут переноситься между бактериями. Такие передачи создают вирулентные штаммы от ранее авирулентных штаммов.

что такое конъюгация

Что такое конъюгация? Это удобное средство для переноса генетического материала со множеством целей. Сообщалось об успешных передачах от бактерий к дрожжам, растениям, клеткам млекопитающих, диатомовым и изолированным митохондриям млекопитающих. Конъюгация имеет преимущества перед другими формами генетического переноса, включая минимальное нарушение клеточной оболочки цели и способность передавать относительно большие количества генетического материала.

Передача генетического материала между клетками бактерий. Прямой перенос фрагмента ДНК от донорских бактериальных клеток к реципиентным при непосредственном их контакте. Открытие конъюгации бактерий. Особенности переноса хромосомы у Hfr-штаммов.

Рубрика Биология и естествознание
Вид доклад
Язык русский
Дата добавления 09.11.2013
Размер файла 113,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Одним из путей передачи генетического материала между клетками бактерий является конъюгация.

Конъюгация - это прямой перенос фрагмента ДНК от донорских бактериальных клеток к реципиентным при непосредственном контакте этих клеток. Биологическая значимость этого процесса стала проясняться после внедрения в медицинскую практику антибиотиков. Устойчивость к антибиотикам можно получить в результате мутации, что происходит один раз на каждые 106 клеточных делений. Однако, однажды изменившись, генетическая информация может быстро распространяться среди сходных бактерий благодаря конъюгации, поскольку каждая третья из близкородственных бактерий способна именно к этому типу генетического переноса. Для реализации процесса необходим F-фактор -- плазмида, кодирующая информацию, необходимую для конъюгации.

Открытие конъюгации бактерий принадлежит Дж. Ледербергу и Е. Татуму (1946). Они использовали два ауксотрофных мутанта Е. coli, каждый из которых в отдельности не обладал способностью синтезировать две аминокислоты. Один был ауксотрофным по аминокислотам А и В, но синтезировал кислоты С и D, а другой мутант наоборот. На минимальной среде эти мутанты раздельно не росли. При высеве смеси их на ту среду появлялись колонии, клетки которых обладали способностью синтезировать все 4 аминокислоты, т. е. это были генетические рекомбинанты двух реципрокио дефектных (взаимодополняющих) родительских клеток. Однако в этом опыте не исключалась возможность появления рекомбинантного потомства под влиянием веществ, обладающих трансформирующей активностью.

Наиболее убедительные доказательства образования генетических рекомбинантов в результате конъюгации были получены Б. Дэвисом. В одно колено U-образной трубки, разделенной стеклянным пористым бактериальным фильтром, помещался один ауксотрофный штамм бактерий, в другое - другой. Наличие пористого фильтра исключало физический контакт бактерий, но не препятствовало диффузии трансформирующих веществ из одного колена в другое. Спустя некоторое время из содержимого каждого колена производился высев бактерий на минимальную среду, однако ни в одном из них прототрофов не было обнаружено, т.е. рекомбинанты не образовывались. Когда же оба родительских штамма засевали в одно и то же колено трубки, что позволяло клеткам вступать в прямой контакт, рекомбинанты появлялись.

Наличие такого контакта между клетками удалось наблюдать в 1957 г. непосредственно с помощью электронного микроскопа. Позже было установлено, что конъюгирующие клетки соединяются через конъюгационный мостик, образованный половой ворсинкой F-пили донорной клетки.

Типы донорных клеток

В зависимости от состояния F-фактора и его положения в клетке различают три типа донорных клеток - F + , Hfr и F'.

В клетках первого типа F-фактор находится в свободном состоянии. При скрещивании их с реципиентными клетками происходит передача F-факторов и F - -клетки превращаются в донорные. F-фактор реплицируется и передается при скрещивании, независимо от репликации хромосомы клетки. Поэтому достаточно небольшого числа F + -клеток в популяции, чтобы в короткий срок все F - -клегки превратились в донорные.

Второй тип донорных клеток происходит от F + -клеток в результате включения F-фактора в бактериальную хромосому. Это осуществляется следующим образом. ДНК F-фактора, подобно бактериальной хромосоме, является кольцевой. В F-факторе содержится несколько участков, гомологичных (по нуклеотидной последовательности) ряду участков хромосомы. Эту гомологию обеспечивают IS-элементы, которые содержатся в F-факторе и хромосоме. Всего в F-факторе содержится одна копия IS2, две копии IS3 и транспозон Тn 1000. Эти мигрирующие генетические элементы служат специфическими сайтами интеграции F-фактора в хромосому. По одному из них может совершаться спонтанное спаривание (синапс) F-фактора и хромосомы. Затем путем кроссинговера F-фактор включается в последовательность хромосомы.

Так в процессе сайт-специфической рекомбинации, опосредованной IS-элементами, образуется штамм Hfr (от англ, high frequency of recombination - высокая частота рекомбинаций). Hfr-штаммы обладают той особенностью, что при скрещиаании с F'-клетками передают им хромосомные маркеры (гены) с частотой, в 1000 раз большей, чем клетки F + , т.е. а этом случае в потомстве обнаруживается гораздо больше рекомбинантов, чем при скрещивании F + и F - .

Характерным для данного типа клеток является и то, что образующиеся рекомбинанты почти всегда являются женскими, т.е. F-фактор передается чрезвычайно редко. Это обусловлено особенностями переноса хромосомы у Hfr-штаммов. Разрыв хромосомы и начало переноса определяются F-фактором. Перенос начинается всегда с проксимального О-конца (от англ. origin - начало) и идет в направлении, противоположном месту включения F-фактора.

Передача маркеров осуществляется последовательно по всей длине хромосомы. Последним передается F-фактор. Для передачи всей хромосомы необходимо 90-120 мин. Так как конъюгационный мостик непрочен (к тому же в процессе столь длительной передачи может нарушиться целостность хромосомы из-за ее хрупкости), F-фактор от Hfr-бактерий к F - -клеткам почти не передается.

Третий тип донорных клеток (F)' происходит от Hfr-штаммов следующим образом: F-фактор может спонтанно отделяться, от хромосомы, переходя в свободное состояние, унося при этом хромосомные маркеры. При конъюгации с F - -клетками F'-клетки с высокой частотой передают F-фактор. Кроме того, передаются и те хромосомальные маркеры, которые стали частью F-фактора. Это явление - перенос хромосомальных генов от донорной к реципиентной клетке F-фактором - получило название сексдукции. Клетки, в которых включился F-фактор, приобретают свойство донорных, но в отличие от F + -клеток они способны передавать реципиентным клеткам не только F-фактор и собственную хромосому, но и те гены которые привнесены F-факгором, т.е. они обладают свойствами как F + , так и Hfr-штаммами, за что и получили название промежуточных доноров.

генетический реципиентный хромосома бактерия

Подобные документы

Обмен генетического материала у бактерий при трансформации, конъюгации и трансдукции. Перенос фрагмента ДНК от донорских бактериальных клеток к реципиентным при непосредственном контакте. Перенос, гены специальных и необходимых при конъюгации структур.

реферат [18,9 K], добавлен 27.05.2010

Этапы проведения экспериментов по переносу генетического материала, применение технологий для изучения процессов дифференцировки, канцерогенеза. Условия культивирования клеток. Виды и назначение селекции. Перенос генов, опосредованный хромосомами и ДНК.

учебное пособие [25,1 K], добавлен 11.08.2009

Формы и размеры бактериальных организмов и их краткая характеристика. Строение бактериальной клетки, движение бактерий. Спорообразование и его биологическая роль, размножение бактерий. Передача признаков с помощью процессов трансдукции и трансформации.

лекция [25,5 K], добавлен 25.03.2013

Метод воспроизводства структуры индивидуального белка или фрагмента ДНК. Рестриктазы как группа бактериальных нуклеаз, специфически расщепляющих ДНК. Способность очищенной плазмиды проникать из питательной среды внутрь клеток чужеродных бактерий.

реферат [21,2 K], добавлен 11.12.2009

Споры – форма бактерий с грамположительным типом строения клеточной стенки. Роль спорообразования бактерий и грибов для практики. Строение и особенности химического состава бактериальной споры. Микробиологическое обоснование пастеризации и стерилизации.

КОНЪЮГА́ЦИЯ (от лат. conjugatio – со­еди­не­ние), 1) фор­ма по­ло­во­го про­цес­са, при ко­то­ром не про­ис­хо­дит об­ра­зо­ва­ния спе­ци­аль­ных по­ло­вых кле­ток (га­мет). У во­до­рос­лей (не­ко­то­рые зе­лё­ные и ди­а­то­мо­вые) и низ­ших гри­бов – слия­ние со­дер­жи­мо­го двух внеш­не сход­ных без­жгу­ти­ко­вых кле­ток. У ин­фу­зо­рий – вре­мен­ное со­еди­не­ние двух осо­бей (сто­ро­на­ми, где на­хо­дит­ся ро­то­вое от­вер­стие), при ко­то­ром они об­ме­ни­ва­ют­ся час­тич­но или пол­но­стью ге­не­ра­тив­ны­ми яд­ра­ми – мик­ро­нук­ле­уса­ми и ци­то­плаз­мой (см. Ин­фу­зо­рии ). В ре­зуль­та­те К. ме­ня­ет­ся ге­но­тип и фи­зио­ло­гич. со­стоя­ние осо­бей. У бак­те­рий при К. 2 бак­те­ри­аль­ные клет­ки со­еди­ня­ют­ся вре­мен­ным ци­то­плаз­ма­ти­че­ским мос­ти­ком, че­рез ко­то­рый про­ис­хо­дит од­но­на­прав­лен­ный пе­ре­нос ге­не­ти­че­ско­го ма­те­риа­ла (от­рез­ка ни­ти ДНК) от од­ной бак­те­ри­аль­ной клет­ки (до­но­ра) к дру­гой (ре­ци­пи­ен­ту). 2) К. хро­мо­сом – по­пар­ное вре­мен­ное сбли­же­ние го­мо­ло­гич­ных хро­мо­сом в про­цес­се ре­дук­ци­он­но­го кле­точ­но­го де­ле­ния (мей­о­за), во вре­мя ко­то­ро­го ме­ж­ду ни­ми мо­жет про­изой­ти об­мен уча­ст­ка­ми – крос­син­го­вер. По­сле К. хро­мо­со­мы рас­хо­дят­ся.

Читайте также: