Сообщение кпд простых механизмов

Обновлено: 18.05.2024

В данном разделе вы уже познакомились с устройством и принципом работы двух простых механизмов: рычага и блока. Используя эти механизмы, мы совершаем какую-то работу.

До этого мы рассматривали идеализированные условия. Учитывали только следующие величины: приложенная к механизму сила, вес поднимаемого тела, плечи сил рычага.

Мы не учитывали ни силу трения между деталями механизмов, ни веса самого рычага, ни веса веревки в блоке, с помощью которой мы поднимаем груз. Если в лабораторных условиях эти величины могут показаться незначительными, то, например, вес каната в блоке подъемного крана уже сложно назвать незначительной величиной.

Следовательно, и работу таких механизмов тогда нужно рассчитывать по-другому. Для этого в физике разделяют работу на полную и полезную, вводят понятие коэффициента полезного действия (КПД) механизма. В данном уроке мы познакомимся с этими величинами и рассмотрим решение задач с использованием КПД.

Затраченная и полезная работы

Введем новые определения.

Полная (затраченная) работа ($A_з$) — это работа, совершенная приложенной силой.

Полезная работа ($A_п$) — это работа по поднятию груза или преодолению какого-либо сопротивления.

В идеальных условиях (какие мы рассматривали в прошлых уроках) полная работа будет равна полезной. Но на практике между этими величинами есть разница.

На практике совершенная с помощью механизма полная работа всегда несколько больше полезной работы:

$A_п Рисунок 1. Использование подвижного блока в реальных условиях ($m_g$ — масса креплений веревки).

КПД механизма

Коэффициент полезного действия механизма (КПД) — это отношение полезной работы к полной работе.

$КПД = \frac$.

КПД выражают в процентах и обозначают греческой буквой $\eta$ (“эта”):

Из этого определения следует, что КПД механизма всегда будет меньше $100\%$.

Ученые и инженеры при конструировании механизмов всегда стремятся увеличить их КПД. Первое, что для этого делают — стремятся уменьшить вес механизмов и трение в их осях.

В ходе истории и научно-технического прогресса коэффициент полезного действия механизмов постепенно возрастал:

  • КПД парового двигателя — $1-8\%$
  • КПД бензинового двигателя — $20-25\%$
  • КПД электрического двигателя — $90-95\%$

Как вы видите, на данный момент современные технологии обеспечивают достаточно высокий уровень КПД.

Примеры задач

  1. Для поднятия груза массой $150 \space кг$ используют рычаг. Груз подняли на высоту $h_1 = 0.15 \space м$, приложив к длинному плечу рычага силу в $320 \space Н$. При этом точка приложения этой силы опустилась на $h_2 =0.8 \space м$. Рассчитайте коэффициент полезного действия рычага.

$m = 150 \space кг$
$h_1 = 0.15 \space м$
$h_2 = 0.8 \space м$
$F = 320 \space Н$
$g = 9.8 \frac$

Показать решение и ответ

Запишем формулу для нахождения КПД:
$\eta = \frac \cdot 100\%$.

Полная (затраченная) работа будет определяться приложенной силой:
$A_з = Fh_2 = 320 \space Н \cdot 0.8 \space м = 256 \space Дж$.

Полезная работа будет определяться работой по подъему груза весом $P = gm$ на высоту $h_1$:
$A_п = Ph_1 = gmh_1 = 9.8 \frac \cdot 150 \space кг \cdot 0.15 \space м = 220.5 \space Дж$.

  1. Используя неподвижный блок рабочий поднял груз массой $80 \space кг$ на высоту $7 \space м$ (рисунок 2). Найдите полную работу, совершенную рабочим, если КПД этого механизма $75\%$.

$m = 80 \space кг$
$h = 7 \space м$
$\eta = 75\%$
$g = 9.8 \frac$

Показать решение ответ

Запишем формулу для нахождения КПД:
$\eta = \frac \cdot 100\%$.

Выразим из нее полную (затраченную) работу:
$A_з = \frac$.

Полезная работа — это работа по подъему груза:
$A_п = Ph = gmh = 9.8 \frac \cdot 80 \space кг \cdot 7 \space м = 5488 \space Дж$.

Найдем полную работу:
$A_з = \frac \cdot 100\%= \frac \cdot 100\%= \frac \approx 7300 \space Дж = 7.3 \space кДж$.


1. Простые механизмы — приспособления, которые сконструировал и использовал человек, чтобы облегчить работу по перемещению тяжёлых предметов. К ним относят: рычаг, блок, наклонную плоскость. Разновидностями этих механизмов являются: клин, ворот и винт.

Все простые механизмы позволяют преобразовать силу, действующую на тело: либо уменьшить её, либо изменить её направление.

2. Рычаг — это стержень, вращающийся вокруг неподвижной опоры или оси (рис. 51). На рисунке показан рычаг, который может вращаться вокруг точки О, расположенный между концами рычага. К одному концу рычага подвешен груз, действующий на рычаг с силой ​ \( F_1 \) ​, равной весу груза. Действуя на длинный конец рычага с силой ​ \( F_2 \) ​, человек поднимает груз. При этом сила \( F_1 \) ​ стремится повернуть рычаг по часовой стрелке, а груз \( F_2 \) — против часовой стрелки.


Плечом силы называют кратчайшее расстояние (перпендикуляр) от точки опоры до линии действия силы. Так, плечом силы ​ \( F_1 \) ​ является расстояние ОА ​ \( (l_1) \) ​, плечом силы \( F_2 \) — расстояние ОВ \( (l_2) \) .

Из эксперимента следует, что рычаг находится в равновесии, если произведение силы, вращающей рычаг по часовой стрелке, и её плеча равно произведению силы, вращающей рычаг против часовой стрелки, и её плеча, т.е. ​ \( F_1l_1=F_2l_2 \) ​. Произведение силы, действующей на рычаг, и её плеча называют моментом силы: ​ \( Fl=M \) ​. Соответственно, если рычаг находится в равновесии, то ​ \( M_1=M_2 \) ​.

Условие равновесия рычага можно записать по-другому:​ \( \frac=\frac \) ​. Это равенство означает, что рычаг находится в равновесии, если силы, действующие на него, обратно пропорциональны их плечам. Оно называется условием равновесия рычага.

Рычаг другого типа вращается вокруг точки, находящейся на конце рычага. Примером такого рычага может служить тачка. Когда используется такой рычаг, то вес груза направлен вниз, а человек действует на свободный конец рычага с силой, направленной вверх. Для такого рычага также справедливо условие равновесия, приведенное выше.

3. При подъеме груза работа силы, действующей на груз, равна ​ \( A_1=F_1h_1 \) ​, работа силы, приложенной к другому концу рычага, равна \( A_2=F_2h_2 \) . Рассмотрение треугольников AOC и BOD позволяет сделать вывод о том, что они подобны и ​ \( \frac=\frac \) ​ или ​ \( \frac=\frac \) .​ Поскольку ​ \( F_1l_1=F_2l_2 \) ​, то ​ \( F_1h_1=F_2h_2 \) ​, т.е. ​ \( A_1=2 \) ​. Таким образом, рычаг, позволяя выиграть в силе, не даёт выигрыша в работе.

4. Ещё одним простым механизмом является блок. Блок — это колесо с желобом, по которому пропускается трос и которое может вращаться относительно оси О (см. рис. ниже).


Если ось блока закреплена, то блок не перемещается, и он называется неподвижным.

Неподвижный блок можно рассматривать как рычаг, вращающийся вокруг точки, лежащей посередине рычага. Плечи такого рычага равны друг другу: OA = OB. В соответствии с условием равновесия рычага приложенные к блоку силы тоже равны: ​ \( P=F \) ​. Следовательно, неподвижный блок не даёт выигрыша в силе, но он позволяет поднимать груз, прикладывая силу, направленную не вверх, а вниз, что облегчает перемещение груза.

Чтобы получить выигрыш в силе используют подвижный блок (рис. 53). К нему непосредственно прикрепляется груз, один конец троса закрепляется, а к другому прикладывают силу и, таким образом, перебирая трос, поднимают блок с грузом.


В этом случае точкой вращения блока является точка А (см. рис. 52).


Плечи действующих сил равны соответственно: AO и AB, при этом AB = 2AO. В соответствии с условием равновесия рычага: ​ \( P=2F \) ​. Таким образом, подвижный блок даёт выигрыш в силе в 2 раза: ​ \( F=P/2 \) ​.

Измерив расстояние ​ \( h_1 \) ​, которое проходит груз, и расстояние ​ \( h_2 \) ​, на которое перемещается конец троса, можно обнаружить, что расстояние ​ \( h_2=2h_1 \) ​. Таким образом, подвижный блок даёт выигрыш в силе в 2 раза и в 2 раза проигрыш в пути. Соответственно, работа ​ \( Ph_1=Fh_2 \) ​, т.е. ​ \( A_1=2 \) ​. Подвижный блок, так же как и рычаг, не даёт выигрыша в работе.

5. Наклонная плоскость используется в том случае, если нужно поднять объемный тяжёлый груз на какую-либо высоту (рис. 54).


Например, нужно погрузить ящик с металлическими деталями в кузов грузовика. В этом случае кладут массивную доску так, что она образует наклонную плоскость, один конец которой находится на земле, а другой на грузовике, и по этой плоскости втаскивают ящик. Чтобы поднять ящик вертикально вверх нужно приложить к нему силу, равную его весу ​ \( P \) ​. Перемещая равномерно ящик по наклонной плоскости, в отсутствие трения прикладывают силу, равную ​ \( F=P\sin\alpha \) ​, т.е. меньшую веса ящика, но при этом, выигрывая в силе, проигрывают в расстоянии. Работа по подъёму ящика по вертикали равна работе, совершаемой при его перемещении вдоль наклонной плоскости. Это справедливо, если сила сопротивления движению пренебрежимо мала. При наличии трения перемещение ящика вдоль наклонной плоскости требует совершения большей работы, чем при его движении вертикально вверх. В этом случае говорят о коэффициенте полезного действия (КПД) наклонной плоскости. Он равен отношению полезной работы ко всей совершённой работе: ​ \( \mathbf=A_п/A_с\cdot 100 \% \) ​, где ​ \( A_п \) ​ — полезная работа, ​ \( A_п=mgh \) ​; ​ \( A_с \) ​ — совершённая работа при перемещении ящика вдоль наклонной плоскости, ​ \( A_c=Fl \) ​, где ​ \( F \) ​ — приложенная сила, ​ \( l \) ​ — длина наклонной плоскости.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Исследуя условия равновесия рычага, ученик выполнил соответствующую лабораторную работу. В таблице представлены значения сил и их плеч для рычага, находящегося в равновесии. Определите, чему равно плечо ​ \( l_1 \) ​?


1) 12,8 м
2) 2,5 м
3) 0,8 м
4) 0,25 м

2. Ученик выполнял лабораторную работу по исследованию условий равновесия рычага. Результаты для сил и их плеч, которые он получил, представлены в таблице.


Чему равна сила ​ \( F_1 \) ​, если рычаг находится в равновесии?

1) 100 Н
2) 50 Н
3) 25 Н
4) 9 Н

3. Рычаг находится в равновесии под действием двух сил. Сила ​ \( F_1 \) ​ = 6 Н. Чему равна сила \( F_2 \) , если длина рычага 50 см, а плечо силы \( F_1 \) равно 30 см?


1) 0,1 Н
2) 3,6 Н
3) 9 Н
4) 12 Н

4. Выигрыш в силе, приложенной к грузу, нельзя получить с помощью

1) подвижного блока
2) неподвижного блока
3) рычага
4) наклонной плоскости

5. С помощью неподвижного блока в отсутствие трения силе

1) выигрывают в 2 раза
2) не выигрывают, но и не проигрывают
3) проигрывают в 2 раза
4) возможен и выигрыш, и проигрыш

6. С помощью подвижного блока в отсутствие трения

1) выигрывают в работе в 2 раза
2) проигрывают в силе в 2 раза
3) не выигрывают в силе
4) выигрывают в силе в 2 раза

7. На рисунке изображён неподвижный блок, с помощью которого, прикладывая к свободному концу нити силу 20 Н, равномерно поднимают груз. Если трением пренебречь, то масса поднимаемого груза равна


1) 4 кг
2) 2 кг
3) 0,5 кг
4) 1 кг

8. Наклонная плоскость даёт выигрыш в силе в 2 раза. В работе при отсутствии силы трения эта плоскость

1) даёт выигрыш в 2 раза
2) даёт выигрыш в 4 раза
3) не даёт ни выигрыша, ни проигрыша
4) даёт проигрыш в 2 раза

9. Вдоль наклонной плоскости длиной 5 м поднимают груз массой 40 кг, прикладывая силу 160 Н. Чему равна высота наклонной плоскости, если трение при движении груза пренебрежимо мало?

1) 1,25 м
2) 2 м
3) 12,5 м
4) 20 м

10. Груз массой 10 кг поднимают по наклонной плоскости длиной 2 м и высотой 0,5 м, прикладывая силу 40 Н. Чему равен КПД наклонной плоскости?

11. Груз поднимают с помощью подвижного блока радиусом ​ \( R \) ​ (см. рисунок). Установите соответствие между физическими величинами (левый столбец) и формулами, по которым они определяются (правый столбец).


Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) плечо силы ​ \( \vec_1 \) ​ относительно точки A
Б) плечо силы \( \vec_2 \) относительно точки A
B) момент силы \( \vec_1 \) относительно точки A

ФОРМУЛЫ
1) ​ \( F_1R \) ​
2) \( 2F_1R \)
3) \( \frac \)
4) ​ \( R \) ​
5) ​ \( 2R \) ​

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Любой простой механизм даёт выигрыш в силе.
2) Ни один простой механизм не даёт выигрыша в работе.
3) Наклонная плоскость выигрыша в силе не даёт.
4) Коэффициент полезного действия показывает, какая часть совершенной работы является полезной.
5) Неподвижный блок даёт выигрыш в силе в 2 раза.

Часть 2

13. Чему равна сила, с которой действуют на брусок массой 0,2 кг, перемещая его по наклонной плоскости длиной 1,6 м и высотой 0,4 м, если КПД наклонной плоскости 80%.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Простые механизмы и их КПД .

С незапамятных времен человек использует для совершения механической работы различные приспособления.

Простые механизмы – приспособления, служащие для преобразования силы.

Любой простой механизм создан для облегчения деятельности человека. В большинстве случаев простые механизмы применяют для того, чтобы получить выигрыш в силе, то есть увеличить силу, действующую на тело в несколько раз.


К простым механизмам относятся:

1) Рычаг – твердое тело, которое может вращаться вокруг неподвижной опоры.

Примерами рычага являются ножницы, весы, краны.

О – точка опоры (ось вращения); А – точка приложения силы F 1 ; B – точка приложения силы F 2 .

Плечо силы – длина перпендикуляра, опущенного из точки опоры на линию действия силы.

ОА = – плечо силы F 1 ; О B = - плечо силы F 2 .

Силы, действующие на рычаг, могут повернуть его вокруг оси в двух направлениях. Сила F 1 поворачивает рычаг по часовой стрелке; сила F 2 поворачивает рычаг против часовой стрелки.

Экспериментально установлено условие равновесия рычага:


Рычаг находится в равновесии тогда, когда силы, действующие на него обратно пропорциональны плечам этих сил.


выигрыш в силе.


Если привести рычаг в движение, то точка приложения силы F 1 пройдет путь S 1 , точка приложения силы F 2 пройдет путь S 2 . Из подобия равносторонних треугольников
проигрываем в расстоянии.

Действуя на длинное плечо рычага, мы выигрываем в силе, но во столько же раз проигрываем в длине пути. Выигрыша в работе рычаг не дает.

2) Блок – колесо с желобом, укрепленное в обойме. По желобу блока пропускают трос.

- блок, ось которого поднимается и опускается вместе с грузом.

- блок, ось которого закреплена и при подъеме грузов не поднимается.



Представим блок в качестве рычага. Тогда О – точка опоры; ОА – плечо силы P ; ОВ – плечо силы F . ОВ = 2АО. Условие равновесия рычага:


Представим блок в качестве рычага. Тогда О – точка опоры; ОА – плечо силы P ; ОВ – плечо силы F . AO = OB = r → неподвижный блок – равноплечий рычаг. Условие равновесия рычага:


Подвижный блок дает выигрыш в силе в 2 раза. Однако, чтобы поднять груз на высоту h , необходимо конец веревки переместить на 2 h . При применении подвижного блока мы проигрываем в расстоянии также в 2 раза.

Неподвижный блок выигрыша в силе не дает, но позволяет менять направление действия силы. Пути, проходимые точками приложения сил также одинаковы.

Следовательно, применение блока не дает выигрыша в работе.

3) Ворот – простой механизм, состоящий из двух блоков разного радиуса, жестко скрепленных между собой и насаженных на общую ось. Через каждый блок перекинута веревка так, что она не может скользить по блоку.


4) Наклонная плоскость – плоскость, наклоненная под некоторым углом к горизонту.

При поднятии груза вверх на высоту h необходимо приложить силу , которая, согласно II закону Ньютона в проекции на ОY' равна: .

При поднятии груза вверх на ту же высоту, необходимо приложить силу , равную, согласно проекции II закона Ньютона на ось ОХ: в раз.

При равномерном движении груза по наклонной плоскости сила, которая должна быть приложена к грузу в направлении перемещения, меньше силы тяжести. Правда груз при этом проходит больший путь: в раз.

При этом работа силы тяжести в первом случае: и во втором случае: одинаковы. Следовательно, выигрыша в работе нет.

5) Клин – комбинация двух наклонных плоскостей.

Сила , действующая на клин при ударе кувалдой по его тыльной стороне, оказывается значительно меньше по модулю сил реакции и , со стороны раскалываемого дерева. При малом угле заточки клина ( ) выигрыш в силе получается примерно в 5 раз.

Разновидностями клина являются нож и другие режущие инструменты.


6) Винт – наклонная плоскость, навитая на стержень.

Выигрыша в работе ни один из простых механизмов не дает.

Когда в какой-нибудь машине совершается работа за счет затрачиваемой энергии, то нужно отличать:

Полезная работа – та работа, для выполнения которой используется простой механизм (поднятие груза, преодоление сопротивления).

Затраченная (полная) работа – работа, совершенная приложенной силой.

На практике совершенная с помощью механизма полная работа всегда несколько больше полезной работы. Часть работы совершается против силы трения в механизме и по перемещению его отдельных частей.

Каждый простой механизм характеризуется особой величиной, показывающей, насколько эффективно используется подводимая к ней энергия. Эта величина называется:

Коэффициент полезного действия (КПД) – отношение полезной работы к затраченной.


КПД никогда не может быть больше единицы. В реальных простых механизмах он всегда меньше единицы из-за неизбежных потерь энергии, вызванных, прежде всего отрицательной работой сил трения. Однако есть еще и немеханические причины потерь энергии.


Рассчитаем КПД некоторых простых механизмов .

Рассчитаем КПД рычага .

При поднятии груза массой m на высоту S 1 к длинному концу рычага прикладывают силу F 2 . При этом точка приложения этой силы проходит расстояние S 2 .



Рассматривая действие рычага необходимо учитывать трение и вес рычага, поэтому на практике .

Рассчитаем КПД подвижного блока .

При поднятии груза массой m на высоту h с помощью подвижного блока, к веревке прикладывают силу F . При этом точка приложения силы проходит расстояние 2 h .



Так как, поднимая подвижный блок, приходится дополнительно совершать работу по подъему самого блока, веревки и по преодолению силы трения в оси блока, то .

Рассчитаем КПД наклонной плоскости .




1)


( II закон Ньютона:


OY’: )


2)


( II закон Ньютона:


OX’:


OY’:



OX’:



КПД наклонной плоскости зависит от:

1) Коэффициента трения (чем больше коэффициент трения, тем меньше КПД);

Если α = 0, то ctg α = ∞, η →0


Если α = 45 0 , то ctg α = 1, (имеет значение)

Если α = 90 0 , то ctg α = ∞, η → 1 (выигрыша в силе нет → движение вертикально вверх)

Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.

Механизм - это приспособление для преобразования силы (её увеличения или уменьшения).
Простые механизмы - это рычаг и наклонная плоскость.

Рычаг.

Рычаг - это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1 ) изображён рычаг с осью вращения . К концам рычага (точкам и ) приложены силы и . Плечи этих сил равны соответственно и .

Условие равновесия рычага даётся правилом моментов: , откуда


Рис. 1. Рычаг

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7 : 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца - это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок.

Важной разновидностью рычага является блок - укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).


На правом конце нити в точке закреплён груз весом . Напомним, что вес тела - это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес прило жен к точке , в которой груз крепится к нити.

К левому концу нити в точке приложена сила .

Плечо силы равно , где - радиус блока. Плечо веса равно . Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство , а во-вторых, в процессе движении груза и нити перемещение точки равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок.

На рис. 3 изображён подвижный блок, ось которого перемещается вместе с грузом. Мы тянем за нить с силой , которая приложена в точке и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити .


В данный момент времени неподвижной точкой является точка , и именно вокруг неё поворачивается блок (он бы "перекатывается" через точку ). Говорят ещё, что через точку проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза приложен в точке крепления груза к нити. Плечо силы равно .

А вот плечо силы , с которой мы тянем за нить, оказывается в два раза больше: оно равно . Соответственно, условием равновесия груза является равенство (что мы и видим на рис. 3 : вектор в два раза короче вектора ).

Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку ) - не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.


На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором .

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость - это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: "наклонная плоскость с углом ".

Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5 ).


Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

Проектируем на ось :

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики.

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2 : 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом , нужно к большему плечу приложить силу . Но для поднятия груза на высоту большее плечо придётся опустить на , и совершённая работа будет равна:

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу , меньшую силы тяжести. Однако, чтобы поднять груз на высоту над начальным положением, нам нужно пройти путь вдоль наклонной плоскости. При этом мы совершаем работу

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма.

На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу Aполн,
которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен .

Пусть груз массы равномерно поднимается вдоль наклонной плоскости под действием силы из точки в точку на высоту (рис. 6 ). В направлении, противоположном перемещению, на груз действует сила трения скольжения .


Ускорения нет, поэтому силы, действующие на груз, уравновешены:

Проектируем на ось X:

Проектируем на ось Y:

Подставляя это в (1) , получаем:

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:


Любой механизм хочется оценить с точки зрения его пользы. Важно же понять, хорошо он выполняет свою функцию или нет. Для этого нужно такое понятие, как КПД.

О чем эта статья:

КПД: понятие коэффициента полезного действия

Представьте, что вы пришли на работу в офис, выпили кофе, поболтали с коллегами, посмотрели в окно, пообедали, еще посмотрели в окно — вот и день прошел. Если вы не сделали ни одного дела по работе, то можно считать, что ваш коэффициент полезного действия равен нулю.

В обратной ситуации, когда вы сделали все запланированное — КПД равен 100%.

По сути, КПД — это процент полезной работы от работы затраченной.

Вычисляется по формуле:

Формула КПД

η = (Aполезная/Aзатраченная) · 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Давайте пофантазируем и представим, что Сизифа помиловали и камень с горы не скатился. Тогда, во-первых, Камю бы не написал об этом эссе, потому что никакого бесполезного труда не было. А во-вторых, КПД в таком случае был бы не нулевым.

Полезная работа в этом случае равна приобретенной булыжником потенциальной энергии. Потенциальная энергия прямо пропорционально зависит от высоты: чем выше расположено тело, тем больше его потенциальная энергия. То есть, чем выше Сизиф прикатил камень, тем больше потенциальная энергия, а значит и полезная работа.

Потенциальная энергия

Еп = mg

Еп — потенциальная энергия [Дж]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g ≃ 9,8 м/с 2

Затраченная работа здесь — это механическая работа Сизифа. Механическая работа зависит от приложенной силы и пути, на протяжении которого эта сила была приложена.

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

И как же достоверно определить, какая работа полезная, а какая затраченная?

Все очень просто! Задаем два вопроса:

За счет чего происходит процесс?

Ради какого результата?

В примере выше процесс происходит ради того, чтобы тело поднялось на какую-то высоту, а значит — приобрело потенциальную энергию (для физики это синонимы). Происходит процесс за счет энергии, затраченной Сизифом — вот и затраченная работа.

КПД в механике

Главный секрет заключается в том, что эта формула подойдет для всех видов КПД.

Если КПД получился больше 100 — идем проверять на ошибки. Такое может получиться, если неправильно подставили в формулу или перепутали затраченную и полезную работу.

η = (Aполезная/Aзатраченная) · 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Дальше мы просто заменяем полезную и затраченную работы на те величины, которые ими являются.

Давайте разберемся на примере задачи.

Задача

Чтобы вкатить санки массой 4 кг в горку длиной 12 метров, мальчик приложил силу в 15 Н. Высота горки равна 2 м. Найти КПД этого процесса. Ускорение свободного падения принять равным g ≃9,8 м/с 2

Запишем формулу КПД.

Теперь задаем два главных вопроса:

Ради чего все это затеяли?

Чтобы санки в горку поднять — то есть ради приобретения телом потенциальной энергии. Значит в данном процессе полезная работа равна потенциальной энергии санок.

Потенциальная энергия

Еп = mg

Еп — потенциальная энергия [Дж]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g ≃ 9,8 м/с 2

За счет чего процесс происходит?

За счет мальчика, он же тянет санки. Значит затраченная работа равна механической работе

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

Заменим формуле КПД полезную работу на потенциальную энергию, а затраченную — на механическую работу:

η = Eп/A · 100% = mgh/FS · 100%

η = 4 · 9,8 · 2/15 · 12 · 100% = 78,4/180 · 100% ≃ 43,6 %

Ответ: КПД процесса приблизительно равен 43,6%

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

КПД в термодинамике

В термодинамике КПД — очень важная величина. Она полностью определяет эффективность такой штуки, как тепловая машина.

  • Тепловой двигатель (машина) — это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Схема теплового двигателя выглядит так:


Схема теплового двигателя

У теплового двигателя обязательно есть нагреватель, который (не может быть!) нагревает рабочее тело, передавая ему количество теплоты Q1 или Qнагревателя (оба варианта верны, это зависит лишь от учебника, в котором вы нашли формулу).

  • Рабочее тело — это тело, на котором завязан процесс (чаще всего это газ или топливо). Оно расширяется при подводе к нему теплоты и сжимается при охлаждении. Часть переданного Q1 уходит на механическую работу A. Из-за этого производится движение.

Оставшееся количество теплоты Q2 или Qхолодильника отводится к холодильнику, после чего возвращается к нагревателю и процесс повторяется.

КПД такой тепловой машины будет равен:

КПД тепловой машины

η = (Aполезная/Qнагревателя) · 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа (механическая) [Дж]

Qнагревателя — количество теплоты, полученное от нагревателя[Дж]

Если мы выразим полезную (механическую) работу через Qнагревателя и Qхолодильника, мы получим:

A = Qнагревателя — Qхолодильника.

Подставим в числитель и получим такой вариант формулы.

КПД тепловой машины

η = Qнагревателя − Qхолодильника/Qнагревателя · 100%

η — коэффициент полезного действия [%]

Qнагревателя — количество теплоты, полученное от нагревателя [Дж]

Qхолодильника — количество теплоты, отданное холодильнику [Дж]

А возможно ли создать тепловую машину, которая будет работать только за счет охлаждения одного тела?

Точно нет! Если у нас не будет нагревателя, то просто нечего будет передавать на механическую работу. Любой такой процесс — когда энергия не приходит из ниоткуда — означал бы возможность существования вечного двигателя.

Поскольку свидетельств такого процесса в мире не существует, то мы можем сделать вывод: вечный двигатель невозможен. Это второе начало термодинамики.

Запишем его, чтобы не забыть:

Невозможно создать периодическую тепловую машину за счет охлаждения одного тела без изменений в других телах.

Задача

Найти КПД тепловой машины, если рабочее тело получило от нагревателя 20кДж, а отдало холодильнику 10 кДж.

Решение:

Возьмем формулу для расчета КПД:

η = Qнагревателя − Qхолодильника/Qнагревателя · 100%

Решать будем в системе СИ, поэтому переведем значения из килоджоулей в джоули и затем подставим в формулу:

η = 20 000 − 10 000/20 000 · 100% = 50%

Ответ: КПД тепловой машины равен 50%.

Идеальная тепловая машина: цикл Карно

Давайте еще чуть-чуть пофантазируем: какая она — идеальная тепловая машина. Кажется, что это та, у которой КПД равен 100%.


тепловая машина по циклу Карно

А КПД для цикла Карно можно найти через температуры нагревателя и холодильника.

КПД цикла Карно

η = Tнагревателя − Tхолодильника / Tнагревателя · 100%

η — коэффициент полезного действия [%]

Tнагревателя — температура нагревателя [Дж]

Tхолодильника — температура холодильника [Дж]

КПД в электродинамике

Мы каждый день пользуемся различными электронными устройствами: от чайника до смартфона, от компьютера до робота-пылесоса — и у каждого устройства можно определить, насколько оно эффективно выполняет задачу, для которой оно предназначено, просто посчитав КПД.

КПД

η = (Aполезная/Aзатраченная) · 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Для электрических цепей тоже есть нюансы. Давайте разбираться на примере задачи.

Задачка, чтобы разобраться

Найти КПД электрического чайника, если вода в нем приобрела 22176 Дж тепла за 2 минуты, напряжение в сети — 220 В, а сила тока в чайнике 1,4 А.

Решение:

Цель электрического чайника — вскипятить воду. То есть его полезная работа — это количество теплоты, которое пошло на нагревание воды. Оно нам известно, но формулу вспомнить все равно полезно 😉

Количество теплоты, затраченное на нагревание

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг · ˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Работает чайник, потому что в розетку подключен. Затраченная работа в данном случае — это работа электрического тока.

Работа электрического тока

A = (I 2 ) · Rt = (U 2 )/R · t = UIt

A — работа электрического тока [Дж]

U — напряжение [В]

R — сопротивление [Ом]

То есть в данном случае формула КПД будет иметь вид:

η = Q/A · 100% = Q/UIt · 100%

Переводим минуты в секунды — 2 минуты = 120 секунд. Теперь нам известны все значения, поэтому подставим их:

η = 22176/220 · 1,4 · 120 · 100% = 60%

Ответ: КПД чайника равен 60%.

Давайте выведем еще одну формулу для КПД, которая часто пригождается для электрических цепей, но применима ко всему. Для этого нужна формула работы через мощность:

Работа электрического тока

A — работа электрического тока [Дж]

Подставим эту формулу в числитель и в знаменатель, учитывая, что мощность разная — полезная и затраченная. Поскольку мы всегда говорим об одном процессе, то есть полезная и затраченная работа ограничены одним и тем же промежутком времени, можно сократить время и получить формулу КПД через мощность.

Читайте также: