Циркуляционный клапан обеспечивает временное сообщение

Обновлено: 04.07.2024

При эксплуатации скважин большое внимание должно уделяться надежности, долговечности и безопасности работы, предотвращению открытых газовых фонтанов, защите окружа­ющей среды. Условиям надежности, долговечности и безопас­ности работы должны удовлетворять как конструкция газовой скважины, так и оборудование ее ствола и забоя. Подземное оборудование ствола скважины позволяет осуществлять: 1) защиту скважины от открытого фонтанирования; 2) освоение, исследование и остановку скважины без задавки ее жидкостью; 3) воздействие на призабойную зону пласта с целью интенси­фикации притока газа к скважине; 4) эксплуатацию скважины на установленном технологическом режиме; 5) замену колонны насосно-компрессорных (фонтанных) труб без задавки скважи­ны жидкостью. Схема компоновки подземного оборудования скважины показана на рис. 7.2.

Для надежной эксплуатации газовых скважин используется следующее основное подземное оборудование: разобщитель (пакер); колонна насосно-компрессорных труб (НКТ); ниппель; циркуляционный клапан; ингибиторный клапан; устройство для автоматического закрытия центрального канала скважины, которое включает в себя забойный клапан-отсекатель, урав­нительный клапан, переходник и замок; аварийный, срезной клапан; разъединитель колонны НКТ; хвостовик.

Разобщитель (пакер) предназначен для постоянного разъединения пласта и трубного пространства скважины с целью защиты эксплуатационной колонны и НКТ от воздей­ствия высокого давления, высокой температуры и агрессивных компонентов (H2S, C02, кислот жирного ряда), входящих в состав пластового газа. Колонна НКТ спускается в скважину для предохранения обсадной колонны от абразивного износа и высокого давления, для создания определенных скоростей газо­жидкостного потока и выработки газонасыщенного пласта снизу вверх. Фонтанные трубы изготавливают из высококачественной стали, цельнотянутыми длиной 5-7м с внутренним диаметром 33, 60, 63, 89 и 102мм. Ниппель служит для установки, фикси­рования и герметизации в нем забойного клапана-отсекателя. Он спускается в скважину на колонне НКТ и устанавливается обычно выше пакера.


Рис.7.2. Схема подземного обо­рудования газовой скважины

1 - эксплуатационный пакер; 2 - цир­куляционный пакер; 3 - ниппель; 4 - забойный клапан-отсекатель с уравнительным клапаном; 5 -разобщитель колонны НКТ; 6 - ин­гибиторный клапан; 7 - аварийный срезной клапан; 8 - НКТ; 9 - жидкий ингибитор коррозии и гидратообразования; 10 – хвостовик

Циркуляционный клапан обеспечивает временное сообще­ние центрального канала с затрубным пространством с целью осуществления различных технологических операций: освоения и задавки скважины, промывки забоя, затрубного пространства и колонны НКТ, обработки скважины различными химически­ми агентами и т.д. Клапан устанавливается в колонне НКТ во время ее спуска в скважину и извлекается вместе с ней.

Ингибиторный клапан предназначен для временного со­общения затрубного пространства скважины с внутренним пространством колонны НКТ при подаче ингибитора коррозии или гидратообразования в колонну. Клапан устанавливается колонне НКТ во время ее спуска и извлекается вместе с ней.

Устройство для автоматического закрытия центрального канала скважины предназначено для временного перекрытия скважины у нижнего конца колонны фонтанных труб при ава­рийных ситуациях или ремонте оборудования устья. Оно может устанавливаться в различных местах в НКТ.

Аварийный срезной клапан предназначен для глушения (задавки) оборудованной пакером скважины в аварийной ситуации через затрубное пространство, когда нельзя открыть циркуля­ционный клапан. Устанавливается с колонной НКТ, входит в состав комплекта скважинного оборудования с диаметром эксплуатационной колонны 219 мм на давление 14 МПа.

Скважинное предохранительное оборудование газовых скважин состоит из двух отдельных узлов: 1) разобщителя (пакера); 2) собственно клапана-отсекателя. К пакерам, при­меняемым вместе с забойными клапанами-отсекателями, предъявляются высокие требования: 1) безотказность в работе; 2) надежность разобщения пласта от трубного пространства; 3) возможность установки на любой заданной глубине; 4) малое время для соединения с колонной НКТ; 5) простота конструк­ции, минимально возможные основные размеры и металло­емкость; 6) устойчивость к агрессивным средам при высоких давлениях и температурах.

Забойные клапаны-отсекатели предотвращают открытое фонтанирование при повреждении или разрушении устьевого оборудования и колонны НКТ выше места установки забойного клапана-отсекателя. Они служат автоматическим запорным устройством скважины при демонтаже устьевого оборудования, подъеме колонны НКТ из скважины без задавки жидкостью.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

При эксплуатации скважин большое внимание должно уделяться надежности, долговечности и безопасности работы, предотвращению открытых газовых фонтанов, защите среды обитания. Условиям надежности, долговечности и безопасности работы должны удовлетворять как конструкция газовой скважины, так и оборудование ее ствола и забоя. Подземное оборудование ствола скважины позволяет осуществлять: 1) защиту скважины от открытого фонтанирования; 2) освоение, исследование и остановку скважины без задавки ее жидкостью; 3) воздействие на призабойную зону


Рис. 16.5. Схема компоновки подземного оборудования газовой скважины:

1 - пакер эксплуатационный; 2 - циркуляционный клапан; 3 - ниппель; 4 - забойный клапан-отсекатель с уравнительным клапаном; 5 - разобщитель колонны НКТ; 6 - ингибиторный клапан; 7 - клапан аварийный, срезной; 8 - НКТ; 9 - жидкий ингибитор коррозии и гидратообразования; 10 - хвостовик

пласта с целью интенсификации притока газа к скважине; 4) эксплуатацию скважины на установленном технологическом режиме; 5) замену колонны насосно-компрессорных (фонтанных) труб без задавки скважины жидкостью. Схема компоновки подземного оборудования скважины показана на рис. 16.5.

Для надежной эксплуатации газовых скважин используется следующее основное подземное оборудование: разобщитедь (пакер); колонна насосно-компрессорных труб (НКТ); ниппель; циркуляционный клапан; ингибиторный клапан; устройство для автоматического закрытия центрального канала скважины, которое включает в себя забойный клапан-отсекатель, уравнительный клапан, переводник и замок; клапан аварийный, срезной; разъединитель колонны НКТ; хвостовик. Дополнительное рабочее оборудование для работы с клапанами-отсекателями включает в себя: посадочный инструмент; ловители; шар с седлом для посадки пакера; приемный клапан; головку к скважинным приборам; грузы; гидравлический ясс; механический ясс; шлипсовый замок; груз для обрыва скребковой проволоки; двурогий крюк; уравнительную штангу; инструмент для управления циркуляционным клапаном.

Разобщитель (пакер) предназначен для постоянного разъединения пласта и затрубного пространства скважины с целью защиты эксплуатационной колонны и НКТ от воздействия высокого давления, высокой температуры и агрессивных компонентов (Н2S, СО2, кислот жирного ряда), входящих в состав пластового газа.

Колонна НКТ спускается в скважину для предохранения обсадной колонны от абразивного износа и высокого давления, для создания определенных скоростей газожидкостного потока и выработки газонасыщенного пласта снизу вверх.

Ниппель служит для установки, фиксирования и герметизации в нем забойного клапана-отсекателя. Он спускается в скважину на колонне НКТ и устанавливается обычно выше пакера.

Устройство для автоматического закрытия центрального канала скважины, предназначено для временного перекрытия скважины у нижнего конца колонны фонтанных труб при аварийных ситуациях или ремонте оборудования устья. Оно может устанавливаться в различных местах в НКТ.

Скважинное предохранительное оборудование газовых скважин состоит из двух отдельных узлов: 1) разобщителя (пакера); 2) собственно клапана-отсекателя. К пакерам, применяемым вместе с забойными клапанами-отсекателями, предъявляются высокие требования: 1) безотказность в работе; 2) надежность разобщения пласта от затрубного пространства; 3) возможность установки на любой заданной глубине; 4) малое время для соединения с колонной НКТ; 5) простота конструкции, минимально возможные основные размеры и металлоемкость; 6) устойчивость к агрессивным средам при высоких давлениях и температурах.



Рис. 11.7. Пусковая пробка РЕ-500:

1 - корпус клапана; 2 - шар; 3 - седло; 4 - резиновое кольцо; 5 - срезные тарированные штифты


Рис. 11.8. Забойный прямоточный клапан-отсекатель ОЗП-73

Для освобождения пакера от обсадной колонны перед извлечением его из скважины предусмотрен механизм распакеровки, состоящий из разгрузочной муфты 7 с наружной и внутренней левыми резьбами. Внутренней резьбой разгрузочная муфта соединяется с верхним концом корпуса пакера, а наружной - через разгрузочный упор 9 и втулку 2 с колонной НКТ. Кроме того, разгрузочная муфта через корпус подшипника 12 соединена с упорным кольцом 33 уплотнительного элемента. Для облегчения вращения колонны НКТ при распакеровке служат подшипники 11, а для предотвращения проворачивания корпуса пакера при этом - пружины 40, прикрепленные к шлипсам винтами 41. В местах возможных утечек и перетоков жидкости в пакере установлены уплотнительные резиновые кольца 4, 10, 13, 15, 30, а резиновые соединения закреплены винтами 3, 25, 28, 36, 44. Для удержания подвижных деталей в статическом положении при спуске пакера в скважину, а также для предварительной опрессовки его (4 МПа) служат штифты 20 во втулке 24 и кольцо 35. После достижения пакером места посадки в скважине в колонну НКТ бросается шар 2 (рис. 16.7), который садится на седло 3 пусковой стационарной пробки РЕ-500, удерживаемое в корпусе клапана 1 (см. рис. 16.7) на срезных тарированных штифтах 5 на нижнем конце пакера. Седло уплотнено в корпусе резиновым кольцом 4.

В колонну НКТ под давлением нагнетают жидкость. Жидкость через отверстие в корпусе пакера поступает в камеру А (см. рис. 16.6). Под действием усилия, возникающего под давлением жидкости в камере, штифты 20 срезаются, поршень 27 и толкатель 37 перемещаются в противоположные стороны. При движении поршня 27 вверх усилие от него через втулку храпового механизма 26 передается на сдвигающееся кольцо 21. При этом резиновые манжеты 17, 18 деформируются и разобщают зоны затрубного пространства, расположенные выше и ниже пакера. При движении толкателя 37 вниз шлипсы 39 выдвигаются наружу, чем достигается заякоривание пакера в обсадной колонне. Когда давление в колонне НКТ достигает 23 - 27 МПа, срезные тарированные штифты а разрушаются и шар с седлом падают на забой, а храповые механизмы 23 и 32 фиксируют пакер в уплотненном и заякоренном состоянии в обсадной колонне.

Для освобождения пакера от обсадной колонны колонну НКТ вращают по часовой стрелке на 15 оборотов, одновременно поднимая ее. При этом прежде всего от приложенного момента вращения срезаются штифты 5, затем при первых четырех оборотах разгрузочный упор 9 сворачивается с разгрузочной муфты 7 до упора с вращающейся муфтой 6. При этом отверстие во втулке 2 оказывается выше конца верхней трубы 8, и центральный канал пакера сообщается с затрубным пространством. Через него закачкой жидкости в затрубное пространство промывается надпакерная зона затрубного пространства от возможных накоплений механических примесей перед срывом пакера с места установки. При дальнейшем повороте загрузочная муфта 7 сворачивается с верхней трубы 8, которая последовательно перемещает за собой вверх корпус подшипника 12, упор подшипника 14, гильзу 19, сдвигающееся кольцо 21, втулку храпового механизма 26, поршень 27.

Поршень увлекает за собой цилиндр 29 и толкатель 37, при этом как уплотнительные элементы 17 и 18, так и шлипсы 39 освобождаются от торцевых упоров и принимают первоначальные диаметральные размеры. В этом состоянии пакер можно извлечь из скважины.

Забойные клапаны-отсекатели предотвращают открытое фонтанирование при повреждении или разрушении устьевого оборудования и колонны НКТ выше места установки забойного клапана-отсекателя. Они служат автоматическим запорным устройством скважины при демонтаже устьевого оборудования, подъеме колонны НКТ из скважины без задавки жидкостью.

На рис. 16.8 изображен клапан-отсекатель типа ОЗП-73. Отсе-катель забойный прямоточный (ОЗП) состоит из корпуса 6, к нижнему концу которого присоединен клапанный узел, имеющий седло 10, заслонку 14, пружину 12, ось 13 и кожух 15. К верхнему концу кожуха присоединен переводник 1, имеющий упор а. В центральном канале устройства помещен подвижный патрубок 4 со сменным штуцером 11. Подвижный патрубок 4 имеет наружную проточку. Между подвижным патрубком 4 и корпусом 6 установлено фиксирующее устройство, состоящее из пружины 5, цанги 7 и регулировочной гайки 3. Лепестки в цанге взаимодействуют с проточкой подвижного патрубка 4 и кольцевым выступом в корпуса 6. Кольца 2, 8 и 9 уплотняют поверхности сопрягаемых деталей. Устройство работает следующим образом. Перед спуском отсека-теля в скважину, исходя из рассчитанного дебита, устанавливают сменный штуцер 11 и гайкой 3 регулируют пружину 5 на определенное усилие. К переводнику 1 присоединяют уравнительный клапан и замок; сборку спускают в скважину и устанавливают в ниппеле.

Во время нормальной работы скважины газ или жидкость из пласта, проходя через центральный клапан устройства, поднимается на поверхность по колонне НКТ. При прохождении газа через штуцер 11 создается перепад давления, усилие от которого перемещает штуцер 11 с подвижным патрубком 4 в крайнее верхнее положение, но усилие пружины 5 фиксируемого устройства препятствует этому, в результате заслонка 14 остается открытой. Увеличение расхода газа через штуцер приводит к возрастанию перепада давления на нем. Когда усилие, вызванное перепадом давления, превысит усилие пружины 5, подвижный патрубок 4, отжимая пружину, начинает перемещаться вверх. После перемещения подвижного патрубка на 3 - 5 мм цанга 7 отходит от выступа в корпуса 6 и, выходя из взаимодействия с проточкой, освобождает подвижный патрубок 4 от действия пружины 5. Подвижный патрубок мгновенно перемещается до упора а переводника /. В этот момент под действием пружины 12 заслонка 14 перекрывает центральный канал устройства.

Клапан-отсекатель ОЗП-73 имеет следующие преимущества: 1) седло и заслонка клапана находятся вне действия потока газа, не подвергаются абразивному износу; 2) отсутствует мертвая зона, влияющая на надежность работы отсекателя в скважинах, имеющих в потоке газа твердые взвеси; 3) небольшая длина отсекателя, благодаря тому что пружина фиксирующего устройства при наличии цанги имеет жесткую характеристику: 4) четкость срабатывания на закрытие, так как пружина сжимается только на 3 - 5 мм и перестает действовать на подвижную трубу, тогда как в других конструкциях усилие пружины постоянно воздействует на подвижный элемент устройства.

Пластовые газы многих газоконденсатных месторождений России имеют в своем составе коррозионные компоненты: сероводород, углекислый газ, кислоты жирного ряда (муравьиную, пропионовую, щавелевую, масляную). Так, например, пластовый газ Астраханского месторождения имеет следующий объемный состав, %: сероводород 26,5, углекислый газ 11; месторождения Урта-Булак - 5,35 и 3,15; Оренбургского - 1,3 - 5 и 0,5 - 1,75 соответственно.

Коррозионные компоненты при наличии пластовой минерализованной или конденсационной воды, высоких давлений и темпера тур вызывают интенсивную коррозию металлических обсадных колонн, НКТ, оборудования устья скважин, шлейфов, поверхностного оборудования промыслов.

При большом содержании сероводорода в газе невозможно использовать обычные скважинные приборы для измерения давлений и температур, проводить геофизические работы в скважинах. Наибольшей коррозии подвергаются тройники, крестовины, катушки, уплотнительные кольца фланцевых соединений, задвижки фонтанной арматуры. Интенсивность коррозии элементов оборудования устья скважин изменяется от 0,1 до 4 мм в год.


Рис. 16.9. Схема компоновки подземного оборудования скважин

на Оренбургском газоконденсатном месторождении:

1 - хвостовик диаметром 127 или 114 мм и длиной 100 - 380 м; 2 - пакерное устройство

с минимальным диаметром проходного сечения 57 мм; 3 - клапан-отсекатель с проходным

диаметром 73 мм; 5 - НКТ диаметром 127 или 114 мм

Срок службы колонн НКТ до обрыва в верхней части и падения на забой скважины на месторождениях Краснодарского края составляет 1 - 18 мес, нарушение герметичности задвижек фонтанной арматуры происходит в течение 1 - 2 мес, фланцевых соединений - в течение 4 - 6 мес.

Защита внутренней поверхности металлической обсадной колонны и внешней поверхности НКТ осуществляется разобщением пласта и затрубного пространства скважины при помощи разобщителя (пакера) и заполнением затрубного пространства ингибированной жидкостью. Защита другого металлического оборудования скважины от коррозии осуществляется при помощи периодической закачки ингибитора коррозии в призабойную зону пласта или непрерывной его закачки в затрубное пространство скважины с помощью насосов и подачи ингибитора в НКТ из затрубного пространства скважины через специальные ингибиторные клапаны в колонне НКТ.

Для защиты от коррозии внешней поверхности хвостовика, направленного воздействия соляной кислотой на карбонатные породы открытого забоя скважины, получения более точных данных по геофизическим исследованиям скважин на Оренбургском газоконденсатном месторождении усложнили конструкцию хвостовика, изменили узел разобщения призабойной зоны пласта от затрубного пространства.

Хвостовики скв. 196, 743, 775 оборудовали подпакерным циркуляционным клапаном, струйными клапанами, ниппелем для установки скважинкой пробки.

Для проведения дебитометрии, поинтервального замера пластовых давлений, отбора проб в колонне обсадных труб в призабойной зоне скважины в Тюменниигипрогазе разработали конструкцию подвижного хвостовика. В процессе эксплуатации скважины хвостовик находится в крайнем нижнем положении. Продукция скважины движется через хвостовик и НКТ на устье. При проведении исследований в процессе работы скважины в нее через лубрикатор на каротажном кабеле или канате спускается специальное подъемное устройство, которое зацепляет хвостовик в нижней его части. Хвостовик поднимается вверх, при этом на поверхности следят за нагрузкой по индикатору массы. Захватывающее устройство поднимается на поверхность. В освобожденной от хвостовика зоне перфорации проводят указанные исследования. После проведения необходимого комплекса исследований хвостовик с помощью специального устройства вновь опускается вниз в свое рабочее положение.

На некоторых месторождениях с высокими пластовыми давлениями и низкими температурами используются комплексные ингибиторы коррозии и гидратообразования типа КИГИК.

В последние годы стали изготовляться высокогерметичные коррозионностойкие насосно-компрессорные трубы НКТ-114 из сталей марок 18X1ГМФА, 18Х1Г1МФ группы прочности К, размером 114 х 7 мм для оборудования скважин на месторождениях, содержащих сероводород. Они выдерживают давление до 50 МПа. Впервые колонна НКТ из труб НКТ-114 была спущена в скв. 234 Оренбургского газоконденсатного месторождения. 76

Для предотвращения растепления многолетнемерзлых пород на месторождениях Севера используются двухстенные трубы с высокоэффективной теплоизоляцией между ними. ВНИИГаз разработал насосно-компрессорные теплоизолированные трубы модели ЛТТ-168 X 73, состоящей из внешней несущей трубы 168 X ПД и внутренней трубы 73 х 5,5Д. Между стенками труб диаметрами 168 и 73 мм может помещаться теплоизоляция любого типа с коэффициентами теплопроводности до 0,01163 Вт/(м-К). Трубы ЛТТ-168 X 73 использованы в конструкции скв. 110 Южно-Соленинского месторождения.

logo


Вы здесь: Разработка нефтяных и газовых месторождений Подземное оборудование ствола газовых скважин

Подземное оборудование ствола газовых скважин

Рейтинг: / 5

При эксплуатации скважин большое внимание должно уделяться надежности, долговечности и безопасности работы, предотвращению открытых газовых фонтанов, защите окружающей среды. Условиям надежности, долговечности и безопасности работы должны удовлетворять как конструкция газовой скважины, так и оборудование ее ствола и забоя.

Подземное оборудование ствола скважины позволяет осуществлять 1) защиту скважины от открытого фонтанирования; 2) освоение, исследование и остановку скважины без задавки ее жидкостью; 3) воздействие на призабойную зону пласта с целью интенсификации притока газа к скважине; 4) эксплуатацию скважины на установленном технологическом режиме; 5) замену колонны насосно-компрессорных (фонтанных) труб без задавки скважины жидкостью. Схема компоновки подземного оборудования скважины показана на рис. 7.1.

Для надежной эксплуатации газовых скважин используется следующее основное подземное оборудование: разобщитель (пакер); колонна насосно-компрессорных труб (НКТ); ниппель; циркуляционный клапан; ингибиторный клапан; устройство для автоматического закрытия центрального канала скважины, которое включает в себя забойный клапан-отсекатель, уравнительный клапан, переходник и замок; аварийный, срезной клапан; разъединитель колонны НКТ; хвостовик.

Подземное оборудование ствола газовых скважин

Разобщитель (пакер) предназначен для постоянного разъединения пласта и трубного пространства скважины с целью защиты эксплуатационной колонны и НКТ от воздействия высокого давления, высокой температуры и агрессивных компонентов (H2S, CO2, кислот жирного ряда), входящих в состав пластового газа. Колонна НКТ спускается в скважину для предохранения обсадной колонны от абразивного износа и высокого давления, для создания определенных скоростей газожидкостного потока и выработки газонасыщенного пласта снизу вверх. Фонтанные трубы изготовляют из высококачественной стали, цельнотянутыми длиной 5-7м с внутренним диаметром 33, 60, 63, 89 и 102мм. Ниппель служит для установки, фиксирования и герметизации в нем забойного клапана-отсекателя. Он спускается в скважину на колонне НКТ и устанавливается обычно выше пакера.

Устройство для автоматического закрытия центрального канала скважины предназначено для временного перекрытия скважины у нижнего конца колонны фонтанных труб при аварийных ситуациях или ремонте оборудования устья.

Оно может устанавливаться в различных местах в НКТ.

Аварийный срезной клапан предназначен для глушения (задавки) оборудованной пакером скважины в аварийной ситуации через затрубное пространство, когда нельзя открыть циркуляционный клапан типа при помощм проволочного приспособления. Устанавливается с колонной НКТ, входит в состав комплекта скважинного оборудования с диаметром эксплуатационной колонны 219 мм на давление 14 МПа.

Скважинное предохранительное оборудование газовых скважин состоит из двух отдельных узлов: 1) разобщителя (пакера); 2) собственно клапана-отсекателя. К пакерам, применяемым вместе с забойными клапанами-отсекателями, предъявляются высокие требования: 1) безотказность в работе; 2) надежность разобщения пласта от трубного пространства; 3) возможность установки на любой заданной глубине; 4) малое время для соединения с колонной НКТ; 5) простота конструкции, минимально возможные основные размеры и металлоемкость; 6) устойчивость к агрессивным фсдам при высоких давлениях и температурах.

Забойные клапаны-отсекатели предотвращают открытое фонтанированиепр повреждении или разрушении устьевого оборудования и колонны НКТ выше места установки забойного клапана-отсекателя. Они служат автоматическим запорным устройством скважины при демонтаже устьевого оборудования, подъеме колонны НКТ из скважины без задавки жидкостью.

Пластовые газы многих газоконденсатных месторождений содержат коррозионные компоненты: сероводород, углекислый газ, кислоты жирного ряда (муравьиную, пропионовую, щавелевую, масляную). Коррозионные компоненты при наличии пластовой минерализованной или конденсационной воды, высоких давлений и температур вызывают интенсивную коррозию металлических обсадных колонн, НКТ, оборудования устья скважин, шлейфов, поверхностного оборудования, промыслов.

При большом содержании сероводорода в газе невозможно использовать обычные скважинные приборы для измерения давлений и температур, проводить геофизические работы в скважинах. Наибольшей коррозии подвергаются тройники, крестовины, катушки, уплотнительные кольца фланцевых соединений, задвижки фонтанной арматуры. Интенсивность коррозии элементов оборудования устья скважин изменяется от 0,1 до 4 мм/год.

Например, срок службы колонн НКТ до обрыва в верхней части и падения на забой скважин на месторождениях Краснодарского края составляет 1-18 мес, нарушение герметичности задвижек фонтанной арматуры происходит в течение 1-2 мес, фланцевых соединений - в течение 46 мес.

Защита внутренней поверхности металлической обсадной колонны и внешней поверхности НКТ осуществляется разобщением пласта и затрубного пространства скважины при помощи разобщителя (пакера) и заполнением затрубного пространства ингибированной жидкостью. Защита другого металлического оборудования скважин от коррозии осуществляется при помощи периодической закачки ингибитора коррозии в призабойную зону пласта или непрерывной его закачки в затрубное пространство скважины с помощью насосов и подачи ингибитора в НКТ из затрубного пространства скважины через специальные ингибиторные клапаны в колонне НКТ.

Твердотопливные котлы в Украине котлы в Украине

Полное описание первых признаков и выраженных симптомов при гепатите В здесь

При эксплуатации скважин большое внимание должно уделяться надежности, долговечности и безопасности работы, предотвращению открытых газовых фонтанов, защите среды обитания. Условиям надежности, долговечности и безопасности работы должны удовлетворять как конструкция газовой скважины, так и оборудование ее ствола и забоя. Подземное оборудование ствола скважины позволяет осуществлять: 1) защиту скважины от открытого фонтанирования; 2) освоение, исследование и остановку скважины без задавки ее жидкостью; 3) воздействие на призабойную зону

Рис. 16.5. Схема компоновки подземного оборудования газовой скважины:

1 - пакер эксплуатационный; 2 - циркуляционный клапан; 3 - ниппель; 4 - забойный клапан-отсекатель с уравнительным клапаном; 5 - разобщитель колонны НКТ; 6 - ингибиторный клапан; 7 - клапан аварийный, срезной; 8 - НКТ; 9 - жидкий ингибитор коррозии и гидратообразования; 10 - хвостовик

пласта с целью интенсификации притока газа к скважине; 4) эксплуатацию скважины на установленном технологическом режиме; 5) замену колонны насосно-компрессорных (фонтанных) труб без задавки скважины жидкостью. Схема компоновки подземного оборудования скважины показана на рис. 16.5.

Для надежной эксплуатации газовых скважин используется следующее основное подземное оборудование: разобщитедь (пакер); колонна насосно-компрессорных труб (НКТ); ниппель; циркуляционный клапан; ингибиторный клапан; устройство для автоматического закрытия центрального канала скважины, которое включает в себя забойный клапан-отсекатель, уравнительный клапан, переводник и замок; клапан аварийный, срезной; разъединитель колонны НКТ; хвостовик. Дополнительное рабочее оборудование для работы с клапанами-отсекателями включает в себя: посадочный инструмент; ловители; шар с седлом для посадки пакера; приемный клапан; головку к скважинным приборам; грузы; гидравлический ясс; механический ясс; шлипсовый замок; груз для обрыва скребковой проволоки; двурогий крюк; уравнительную штангу; инструмент для управления циркуляционным клапаном.

Разобщитель (пакер) предназначен для постоянного разъединения пласта и затрубного пространства скважины с целью защиты эксплуатационной колонны и НКТ от воздействия высокого давления, высокой температуры и агрессивных компонентов (Н2S, СО2, кислот жирного ряда), входящих в состав пластового газа.

Колонна НКТ спускается в скважину для предохранения обсадной колонны от абразивного износа и высокого давления, для создания определенных скоростей газожидкостного потока и выработки газонасыщенного пласта снизу вверх.

Ниппель служит для установки, фиксирования и герметизации в нем забойного клапана-отсекателя. Он спускается в скважину на колонне НКТ и устанавливается обычно выше пакера.

Устройство для автоматического закрытия центрального канала скважины, предназначено для временного перекрытия скважины у нижнего конца колонны фонтанных труб при аварийных ситуациях или ремонте оборудования устья. Оно может устанавливаться в различных местах в НКТ.

Скважинное предохранительное оборудование газовых скважин состоит из двух отдельных узлов: 1) разобщителя (пакера); 2) собственно клапана-отсекателя. К пакерам, применяемым вместе с забойными клапанами-отсекателями, предъявляются высокие требования: 1) безотказность в работе; 2) надежность разобщения пласта от затрубного пространства; 3) возможность установки на любой заданной глубине; 4) малое время для соединения с колонной НКТ; 5) простота конструкции, минимально возможные основные размеры и металлоемкость; 6) устойчивость к агрессивным средам при высоких давлениях и температурах.

На наружной поверхности верхней трубы размещен уплотнительный элемент в сборе. Он состоит из резиновых манжет 17 и 18, фигурных колец 16, гильзы 19, упора 14 и сдвигающегося кольца 21.

На наружной поверхности нижней трубы корпуса смонтирован шлипсовый узел, состоящий из упора 42 с втулкой 43, шлипсов 39 и толкателя 37. Между уплотнительным элементом и шлипсовым узлом имеется камера А, которую образует цилиндр 29 и соединенный с ним толкатель 37, поршень 27 со стаканом 34, связанным через втулку храпового механизма 26 кольцом 21 с корпусом пакера.

В нее нагнетается жидкость при установке пакера в скважине. Для удержания пакера в рабочем (уплотненном и заякоренном) состоянии поршень 27 и цилиндр 29 снабжены храповыми механизмами 32 и 23, состоящими из четырех секторов и двух пружинных колец 22 и 31 каждый.

Рис. 11.7. Пусковая пробка РЕ-500:

1 - корпус клапана; 2 - шар; 3 - седло; 4 - резиновое кольцо; 5 - срезные тарированные штифты

Рис. 11.8. Забойный прямоточный клапан-отсекатель ОЗП-73

Для освобождения пакера от обсадной колонны перед извлечением его из скважины предусмотрен механизм распакеровки, состоящий из разгрузочной муфты 7 с наружной и внутренней левыми резьбами. Внутренней резьбой разгрузочная муфта соединяется с верхним концом корпуса пакера, а наружной - через разгрузочный упор 9 и втулку 2 с колонной НКТ.

Кроме того, разгрузочная муфта через корпус подшипника 12 соединена с упорным кольцом 33 уплотнительного элемента. Для облегчения вращения колонны НКТ при распакеровке служат подшипники 11, а для предотвращения проворачивания корпуса пакера при этом - пружины 40, прикрепленные к шлипсам винтами 41.

В местах возможных утечек и перетоков жидкости в пакере установлены уплотнительные резиновые кольца 4, 10, 13, 15, 30, а резиновые соединения закреплены винтами 3, 25, 28, 36, 44. Для удержания подвижных деталей в статическом положении при спуске пакера в скважину, а также для предварительной опрессовки его (4 МПа) служат штифты 20 во втулке 24 и кольцо 35.

После достижения пакером места посадки в скважине в колонну НКТ бросается шар 2 (рис. 16.7), который садится на седло 3 пусковой стационарной пробки РЕ-500, удерживаемое в корпусе клапана 1 (см. рис. 16.7) на срезных тарированных штифтах 5 на нижнем конце пакера. Седло уплотнено в корпусе резиновым кольцом 4.

В колонну НКТ под давлением нагнетают жидкость. Жидкость через отверстие в корпусе пакера поступает в камеру А (см. рис. 16.6).

Под действием усилия, возникающего под давлением жидкости в камере, штифты 20 срезаются, поршень 27 и толкатель 37 перемещаются в противоположные стороны. При движении поршня 27 вверх усилие от него через втулку храпового механизма 26 передается на сдвигающееся кольцо 21.

При этом резиновые манжеты 17, 18 деформируются и разобщают зоны затрубного пространства, расположенные выше и ниже пакера. При движении толкателя 37 вниз шлипсы 39 выдвигаются наружу, чем достигается заякоривание пакера в обсадной колонне. Когда давление в колонне НКТ достигает 23 - 27 МПа, срезные тарированные штифты а разрушаются и шар с седлом падают на забой, а храповые механизмы 23 и 32 фиксируют пакер в уплотненном и заякоренном состоянии в обсадной колонне.

Для освобождения пакера от обсадной колонны колонну НКТ вращают по часовой стрелке на 15 оборотов, одновременно поднимая ее. При этом прежде всего от приложенного момента вращения срезаются штифты 5, затем при первых четырех оборотах разгрузочный упор 9 сворачивается с разгрузочной муфты 7 до упора с вращающейся муфтой 6. При этом отверстие во втулке 2 оказывается выше конца верхней трубы 8, и центральный канал пакера сообщается с затрубным пространством.

Через него закачкой жидкости в затрубное пространство промывается надпакерная зона затрубного пространства от возможных накоплений механических примесей перед срывом пакера с места установки. При дальнейшем повороте загрузочная муфта 7 сворачивается с верхней трубы 8, которая последовательно перемещает за собой вверх корпус подшипника 12, упор подшипника 14, гильзу 19, сдвигающееся кольцо 21, втулку храпового механизма 26, поршень 27.

Поршень увлекает за собой цилиндр 29 и толкатель 37, при этом как уплотнительные элементы 17 и 18, так и шлипсы 39 освобождаются от торцевых упоров и принимают первоначальные диаметральные размеры. В этом состоянии пакер можно извлечь из скважины.

Забойные клапаны-отсекатели предотвращают открытое фонтанирование при повреждении или разрушении устьевого оборудования и колонны НКТ выше места установки забойного клапана-отсекателя. Они служат автоматическим запорным устройством скважины при демонтаже устьевого оборудования, подъеме колонны НКТ из скважины без задавки жидкостью.

На рис. 16.8 изображен клапан-отсекатель типа ОЗП-73. Отсе-катель забойный прямоточный (ОЗП) состоит из корпуса 6, к нижнему концу которого присоединен клапанный узел, имеющий седло 10, заслонку 14, пружину 12, ось 13 и кожух 15.

К верхнему концу кожуха присоединен переводник 1, имеющий упор а. В центральном канале устройства помещен подвижный патрубок 4 со сменным штуцером 11. Подвижный патрубок 4 имеет наружную проточку.

Между подвижным патрубком 4 и корпусом 6 установлено фиксирующее устройство, состоящее из пружины 5, цанги 7 и регулировочной гайки 3. Лепестки в цанге взаимодействуют с проточкой подвижного патрубка 4 и кольцевым выступом в корпуса 6. Кольца 2, 8 и 9 уплотняют поверхности сопрягаемых деталей. Устройство работает следующим образом.

Перед спуском отсека-теля в скважину, исходя из рассчитанного дебита, устанавливают сменный штуцер 11 и гайкой 3 регулируют пружину 5 на определенное усилие. К переводнику 1 присоединяют уравнительный клапан и замок; сборку спускают в скважину и устанавливают в ниппеле.

Во время нормальной работы скважины газ или жидкость из пласта, проходя через центральный клапан устройства, поднимается на поверхность по колонне НКТ. При прохождении газа через штуцер 11 создается перепад давления, усилие от которого перемещает штуцер 11 с подвижным патрубком 4 в крайнее верхнее положение, но усилие пружины 5 фиксируемого устройства препятствует этому, в результате заслонка 14 остается открытой.

Увеличение расхода газа через штуцер приводит к возрастанию перепада давления на нем. Когда усилие, вызванное перепадом давления, превысит усилие пружины 5, подвижный патрубок 4, отжимая пружину, начинает перемещаться вверх. После перемещения подвижного патрубка на 3 - 5 мм цанга 7 отходит от выступа в корпуса 6 и, выходя из взаимодействия с проточкой, освобождает подвижный патрубок 4 от действия пружины 5. Подвижный патрубок мгновенно перемещается до упора а переводника /. В этот момент под действием пружины 12 заслонка 14 перекрывает центральный канал устройства.

Клапан-отсекатель открывается следующим образом. В колонну НКТ на скребковой проволоке спускают уравнительную штангу, которая открывает уравнительный клапан.

Клапан-отсекатель ОЗП-73 имеет следующие преимущества: 1) седло и заслонка клапана находятся вне действия потока газа, не подвергаются абразивному износу; 2) отсутствует мертвая зона, влияющая на надежность работы отсекателя в скважинах, имеющих в потоке газа твердые взвеси; 3) небольшая длина отсекателя, благодаря тому что пружина фиксирующего устройства при наличии цанги имеет жесткую характеристику: 4) четкость срабатывания на закрытие, так как пружина сжимается только на 3 - 5 мм и перестает действовать на подвижную трубу, тогда как в других конструкциях усилие пружины постоянно воздействует на подвижный элемент устройства.

Пластовые газы многих газоконденсатных месторождений России имеют в своем составе коррозионные компоненты: сероводород, углекислый газ, кислоты жирного ряда (муравьиную, пропионовую, щавелевую, масляную). Так, например, пластовый газ Астраханского месторождения имеет следующий объемный состав, %: сероводород 26,5, углекислый газ 11; месторождения Урта-Булак - 5,35 и 3,15; Оренбургского - 1,3 - 5 и 0,5 - 1,75 соответственно.

Коррозионные компоненты при наличии пластовой минерализованной или конденсационной воды, высоких давлений и темпера тур вызывают интенсивную коррозию металлических обсадных колонн, НКТ, оборудования устья скважин, шлейфов, поверхностного оборудования промыслов.

При большом содержании сероводорода в газе невозможно использовать обычные скважинные приборы для измерения давлений и температур, проводить геофизические работы в скважинах. Наибольшей коррозии подвергаются тройники, крестовины, катушки, уплотнительные кольца фланцевых соединений, задвижки фонтанной арматуры. Интенсивность коррозии элементов оборудования устья скважин изменяется от 0,1 до 4 мм в год.

Рис. 16.9. Схема компоновки подземного оборудования скважин

на Оренбургском газоконденсатном месторождении:

1 - хвостовик диаметром 127 или 114 мм и длиной 100 - 380 м; 2 - пакерное устройство

с минимальным диаметром проходного сечения 57 мм; 3 - клапан-отсекатель с проходным

диаметром 73 мм; 5 - НКТ диаметром 127 или 114 мм

Срок службы колонн НКТ до обрыва в верхней части и падения на забой скважины на месторождениях Краснодарского края составляет 1 - 18 мес, нарушение герметичности задвижек фонтанной арматуры происходит в течение 1 - 2 мес, фланцевых соединений - в течение 4 - 6 мес.

Защита внутренней поверхности металлической обсадной колонны и внешней поверхности НКТ осуществляется разобщением пласта и затрубного пространства скважины при помощи разобщителя (пакера) и заполнением затрубного пространства ингибированной жидкостью. Защита другого металлического оборудования скважины от коррозии осуществляется при помощи периодической закачки ингибитора коррозии в призабойную зону пласта или непрерывной его закачки в затрубное пространство скважины с помощью насосов и подачи ингибитора в НКТ из затрубного пространства скважины через специальные ингибиторные клапаны в колонне НКТ.

Для защиты от коррозии внешней поверхности хвостовика, направленного воздействия соляной кислотой на карбонатные породы открытого забоя скважины, получения более точных данных по геофизическим исследованиям скважин на Оренбургском газоконденсатном месторождении усложнили конструкцию хвостовика, изменили узел разобщения призабойной зоны пласта от затрубного пространства.

Хвостовики скв. 196, 743, 775 оборудовали подпакерным циркуляционным клапаном, струйными клапанами, ниппелем для установки скважинкой пробки.

Для проведения дебитометрии, поинтервального замера пластовых давлений, отбора проб в колонне обсадных труб в призабойной зоне скважины в Тюменниигипрогазе разработали конструкцию подвижного хвостовика. В процессе эксплуатации скважины хвостовик находится в крайнем нижнем положении.

Продукция скважины движется через хвостовик и НКТ на устье. При проведении исследований в процессе работы скважины в нее через лубрикатор на каротажном кабеле или канате спускается специальное подъемное устройство, которое зацепляет хвостовик в нижней его части.

Хвостовик поднимается вверх, при этом на поверхности следят за нагрузкой по индикатору массы. Захватывающее устройство поднимается на поверхность. В освобожденной от хвостовика зоне перфорации проводят указанные исследования.

После проведения необходимого комплекса исследований хвостовик с помощью специального устройства вновь опускается вниз в свое рабочее положение.

На некоторых месторождениях с высокими пластовыми давлениями и низкими температурами используются комплексные ингибиторы коррозии и гидратообразования типа КИГИК.

В последние годы стали изготовляться высокогерметичные коррозионностойкие насосно-компрессорные трубы НКТ-114 из сталей марок 18X1ГМФА, 18Х1Г1МФ группы прочности К, размером 114 х 7 мм для оборудования скважин на месторождениях, содержащих сероводород. Они выдерживают давление до 50 МПа.

Впервые колонна НКТ из труб НКТ-114 была спущена в скв. 234 Оренбургского газоконденсатного месторождения. 76

Для предотвращения растепления многолетнемерзлых пород на месторождениях Севера используются двухстенные трубы с высокоэффективной теплоизоляцией между ними. ВНИИГаз разработал насосно-компрессорные теплоизолированные трубы модели ЛТТ-168 X 73, состоящей из внешней несущей трубы 168 X ПД и внутренней трубы 73 х 5,5Д.

Между стенками труб диаметрами 168 и 73 мм может помещаться теплоизоляция любого типа с коэффициентами теплопроводности до 0,01163 Вт/(м-К). Трубы ЛТТ-168 X 73 использованы в конструкции скв. 110 Южно-Соленинского месторождения.

Известен циркуляционный клапан, используемый для обеспечения гидравлической связи межтрубного пространства с внутритрубным при проведении технологических операций и состоящий из корпуса со сквозным осевым каналом, верхним патрубком и нижней присоединительной резьбой, RU 2506411 C1, E21B 34/10, 10.02.2014; RU 2483196 C1, E21B 34/06, F16K 17/04, 27.05.2013; RU 2483195 C1, E21B 34/06, 27.05.2013; RU 2211915 C2, E21B 34/06, 10.09.2003.

Известен циркуляционный клапан для испытания пластов, предназначенный для создания циркуляции скважина - труба при подъеме колонны и содержащий корпус с радиальными циркуляционными отверстиями, с установленным подвижно в корпусе дифференциальным полым штоком с уплотнениями, цангу с выступами, связанную с дифференциальным полым штоком, RU 2200837 C1, E21B 34/06, E21B 49/00, 20.03.2003.

Известен циркуляционный клапан, относящийся к внутрискважинному эксплуатационному оборудованию, используемый при добыче нефти и газа, при глушении, промывке и освоении скважин, содержащий полый ствол с окнами и присоединительными резьбами, уплотнительные кольца, подпружиненный золотник, уплотнительные элементы, расположенные между золотником и стволом и выполненные в виде деформируемых самоуплотняющихся манжет из эластомера, RU 2206714 C2, E21B 34/06, 20.06.2003.

Известен циркуляционный клапан для колонны насосно-компрессорных труб, содержащий корпус с проходным отверстием и боковым приливом, полость которого сообщается с полостью корпуса и затрубным пространством, и размещенную в полости бокового прилива пару седло-шар, RU 48576 U1, E21B 34/06, 27.10.2005.

Известен циркуляционный клапан, относящийся к внутрискважинному оборудованию и используемый при добыче нефти, промывке и освоении скважин, ликвидации гидратопарафиновых образований, RU 2325508 C2, E21B 34/06, 27.05.2008; RU 46039 U1, E21B 34/06, 10.06.2005.

Известен циркуляционный клапан, используемый в нефтяных скважинах, оборудованных глубинными насосами для их промывки или обработки в ходе работ по увеличению нефтедобычи, и содержащий, установленные в цилиндрическом корпусе, неподвижное кольцевое седло и затвор, выполненный в виде подвижной втулки, RU 56463 U1, E21B 34/06, 10.09.2006; RU 46807 U1, E21B 34/06, 27.07.2005.

Известен циркуляционный клапан, относящийся к области эксплуатации нефтегазовых скважин и устанавливаемый в пакерных компоновках подземного оборудования при проведении скважинных работ, связанных с циркуляцией жидкости между затрубным и внутритрубным пространствами, RU 2439290 C1, E21B 34/06, 10.01.2012; RU 103378 U1, E21B 34/06, E21B 34/08, E21B 34/10, 10.04.2011.

Известные циркуляционные клапаныимеют индивидуальное конструктивное выполнение.

Известен циркуляционный клапан, содержащий составной корпус, включающий нижний корпус, верхний корпус и центральный корпус, установленный между нижним и верхним корпусами и выполненный с радиальными окнами, гильзу с радиальными окнами, выполненную с возможностью перемещения вдоль оси, и два пакета уплотнений, состоящие каждый их манжет и опорного кольца, RU 111884 U1, E21B 34/06, 27.12.2011.

Данное техническое решение принято в качестве ближайшего аналога настоящей полезной модели.

В циркуляционном клапане ближайшего аналога перемещение гильзы в составном корпусе, включающем нижний корпус (корпус), центральный корпус (кожух) и верхний корпус (голова), производится посредством шарика бросаемого в седло гильзы с последующей подачей жидкости по трубному пространству под давлением и выбрасыванием шарика на устье добываемым флюидом, а также возврат гильзы в закрытое положение клапана пружиной, установленной в полости между гильзой и корпусом.

Конструкция циркуляционного клапана ближайшего аналога не позволяет осуществлять циркуляцию жидкости из затрубного пространства в трубную полость, т.к. клапан пружиной будет автоматически закрываться, а при работе по замещению жидкостей в скважине такой вариант встречается часто. Кроме этого, вымывание шарика добываемым флюидом может быть проблематичным из-за диаметра шарика, который меньше чем внутренний диаметр насосно-компрессорных труб, поэтому при низком дебите пласта и большой обводненности есть вероятность неудачной операции. Это является первым недостатком циркуляционного клапана ближайшего аналога.

Второй недостаток циркуляционного клапана ближайшего аналога заключается в установке в полость пружины, поскольку в процессе добычи газа вместе с ним из пласта выносятся механические примеси, которые в процессе перемещения к устью забивают полость или зазор между гильзой и корпусом. В этом случае трудно предположить - будет ли пружина перемещать гильзу или не будет.

Согласно полезной модели эта задача решается за счет того, что циркуляционный клапан содержит составной корпус, включающий нижний и верхний корпуса и центральный корпус.

Центральный корпус установлен между нижним и верхним корпусами и выполнен с радиальными окнами.

Циркуляционный клапан содержит гильзу с радиальными окнами.

Гильза выполнена с возможностью перемещения вдоль оси.

Циркуляционный клапан содержит два пакета уплотнений, состоящие каждый из манжет и опорного кольца.

В нижнем корпусе выполнены кольцевой уступ и три паза в его верхней, средней и нижней частях с внутренней стороны.

В верхнем корпусе установлено кольцо, на которое опирается гильза.

Гильза выполнена с дроссельными отверстиями, имеет возможность перемещения между кольцом и кольцевым уступом.

Гильза выполнена с нижним и верхним внутренними уступами.

Гильза снабжена скребковой втулкой, сопряженной с верхним корпусом.

Гильза снабжена пружинными фиксаторами, расположенными в ее нижней части и имеющими возможность взаимодействия с тремя пазами нижнего корпуса.

Дополнительно установлен третий пакет уплотнений, имеющий возможность взаимодействия с верхним и центральным корпусами и расположенный между первым и вторым пакетами уплотнений.

Второй пакет уплотнений размещен между гильзой и нижним корпусом.

Дополнительно установлены упругие уплотнители: в нижнем корпусе с возможностью взаимодействия с гильзой, в скребковой втулке с возможностью взаимодействия с верхним корпусом и между гильзой и верхним корпусом, соответственно.

При этом третий пакет уплотнений содержит предохранительные кольца и упругое уплотнение, которые снимают нагрузку от гидроудара в процессе переключения клапана.

При этом манжеты, как в первом, так и во втором пакетах уплотнений выполнены из упругого материала, каждая из которых может иметь различную твердость, а опорное кольцо выполнено из неупругого материала.

Сущность полезной модели поясняется чертежами, где изображены:

на фиг. 1 - Циркуляционный клапан в открытом положении, разрез;

на фиг. 2 - Узел А на фиг. 1, разрез;

на фиг. 3 - Узел Б на фиг. 1, разрез;

на фиг. 4 - Узел В на фиг. 1, разрез;

на фиг. 5 - Узел Г на фиг. 1, разрез;

на фиг. 6 - Узел Д на фиг. 1, разрез;

на фиг. 7 - Циркуляционный клапан в положении уравнивания давления, разрез;

на фиг. 8 - Циркуляционный клапан в закрытом положении, разрез.

Циркуляционный клапан содержит:

Составной корпус - 1.

Нижний корпус (корпуса 1) - 2,

кольцевой уступ (на корпусе 2) - 3,

пазы (внутри корпуса 2 в его верхней, средней и нижней частях) - 4.

Центральный корпус (корпуса 1) - 5,

радиальные окна (в корпусе 5) - 6.

Верхний корпус (корпуса 1) - 7,

кольцо (в корпусе 7) - 8.

Гильзу (между уступом 3 и кольцом 8) - 9,

радиальные окна (гильзы 9) - 10,

дроссельные отверстия (гильзы 9) - 11,

пружинные фиксаторы (гильзы 9 взаимодействуют с канавками 4) - 12.

Нижний внутренний уступ (гильзы 9) - 13,

верхний внутренний уступ (гильзы 9) - 14.

Скребковую втулку (гильзы 9) - 15.

Первый пакет уплотнений (между гильзой 9 и корпусом 7) - 16.

Второй пакет уплотнений (между гильзой 9 и корпусом 2) - 17.

Манжеты из твердого упругого материала (в пакетах 16 и 17) - 18,

манжеты из мягкого упругого материала (в пакетах 16 и 17) - 19,

опорное кольцо (в пакетах 16 и 17) - 20.

Третий пакет уплотнений (между пакетами 16 и 17 взаимодействует корпусом 7 и корпусом 5) - 21,

предохранительные кольца (пакета 21) - 22,

упругое уплотнение (колец 22) - 23.

Упругий уплотнитель (в корпусе 2 взаимодействует с гильзой 9) - 24.

Упругий уплотнитель (втулки 15 взаимодействует с корпусом 7) - 25.

Упругий уплотнитель (между гильзой 9 и корпусом 7) - 26.

Циркуляционный клапан содержит составной корпус 1, включающий нижний 2, верхний 7 и центральный 5 корпуса, гильзу 9, первый 16 и второй пакеты уплотнений и дополнительный третий пакет уплотнений 21, упругие уплотнители 24, 25, 26.

Центральный корпус 5 установлен между нижним 2 и верхним 7 корпусами и выполнен с радиальными окнами 6.

В нижнем корпусе 2 выполнены кольцевой уступ 3 и три паза 4 в его верхней, средней и нижней частях с внутренней стороны.

В верхнем корпусе 7 установлено кольцо 8.

Гильза 9 опирается на кольцо 8, имеет радиальные окна 10 и дроссельные отверстия 11, выполнена с возможностью перемещения вдоль оси между кольцом 8 и кольцевым уступом 3.

Гильза 9 выполнена с нижним 13 и верхним 14 внутренними уступами.

Гильза 9 снабжена скребковой втулкой 15, сопряженной с верхним корпусом 7

Гильза 9 снабжена пружинными фиксаторами 12, расположенными в ее нижней части и имеющими возможность взаимодействия с тремя пазами 4 нижнего корпуса 2.

Первый 16 и второй 17 пакеты уплотнений состоят каждый из манжет 18 и 19 и опорного кольца 20. Манжеты 18 и 19, как в первом 16, так и во втором 17 пакетах уплотнений выполнены из упругого материала, каждая из которых может иметь различную твердость. Опорное кольцо 20 выполнено из неупругого материала.

Второй пакет 17 уплотнений размещен между гильзой 9 и нижним корпусом 2.

Дополнительный третий пакет уплотнений 21 имеет возможность взаимодействия с верхним 7 и центральным 5 корпусами и расположен между первым 16 и вторым 17 пакетами уплотнений, размещенным между гильзой 9 и нижним корпусом 2.

Третий пакет уплотнений 21 содержит предохранительные кольца 22 и упругое уплотнение 23, которые снимают нагрузку от гидроудара в процессе переключения клапана.

Упругие уплотнители 24 установлены в нижнем корпусе 2 с возможностью взаимодействия с гильзой 9.

Упругие уплотнители 25 установлены в скребковой втулке 15 с возможностью взаимодействия с верхним корпусом 7.

Упругие уплотнители 26 установлены между гильзой 9 и верхним корпусом 7.

Эксплуатацию циркуляционного клапана осуществляют следующим образом.

В процессе эксплуатации скважины радиальные окна 6 в корпусе 5, радиальные окна 10 и дроссельные отверстия 11 гильзы 9 не сообщаются между собой, так как гильза 9 при наличии пружинных фиксаторов 12 удерживается в пазу 4 верхней части нижнего корпуса 2. При этом поток добываемого флюида будет всегда удерживать гильзу 9 в закрытом положении за счет сил трения, а механические примеси, выносимые газом из пласта, не будут снизу попадать в зазор между гильзой 9 и нижним корпусом 2 за счет уплотнителя 24. Клапан закрыт.

Ударами ясса перемещают гильзу 9 до фиксации ее пружинным фиксатором 12 в пазу 4 средней части нижнего корпуса 2 (фиг. 7). Тогда дроссельные отверстия 11 разместятся напротив радиальных окон 6 центрального корпуса 3. В этот момент начнется медленное уравнивание давлений трубной и затрубной полостей эксплуатационной колонны и при этом гидроудар исключается. Клапан в промежуточном положении.

В процессе этого переключения, при прохождении дроссельных отверстий 11 вниз через первый пакет уплотнений 16, установленных на верхнем корпусе 7, они окажутся между первым пакетом уплотнений 16 и третьим пакетом уплотнений 21. Вследствие этого произойдет сброс давления из полости между пакетами 16 и 21, что при последующем переключении клапана в открытое положение предохранит первый пакет уплотнений 16 от возможных срезаний кромками радиальных окон 10 из-за остаточного давления, которое может оказаться в трубе или в затрубном пространстве.

Дальнейшими ударами ясса гильза 9 перемещается до упора в нижнее положение, где пружинный фиксатор 12 гильзы 9 зафиксируется в пазу 4 нижней части нижнего корпуса 2. При этом радиальные окна 10 гильзы 9 будут находиться напротив радиальных окон 6 центрального корпуса 5. Инструмент переключения при дальнейших ударах по нему автоматически расцепится с гильзой 9, после чего его необходимо поднять на устье. Клапан открыт и готов к прокачке жидкости как в одну, так и в другую сторону.

Для закрытия клапана спускают тот же инструмент на яссе, но перевернутый на 180 градусов. К забою он проходит без задержки, а при подъеме цепляется за верхний внутренний уступ 14 гильзы 9. Ударами ясса гильзу 9 перемещают в исходное верхнее положение. При упоре гильзы 9 в верхний корпус 7 инструмент автоматически отцепляется. Клапан закрыт.

Выполнение составного корпуса 1 из нижнего 2, верхнего 7 и центрального 5 корпусов и конструктивное выполнение гильзы 9 обеспечивают возможность циркуляции жидкости в обоих направлениях, как из трубного в затрубное пространство, так и обратно.

Выполнение гильзы с радиальными окнами 10, дроссельными отверстиями 11, с возможностью перемещения вдоль оси между кольцом 8 и кольцевым уступом 3, нижним 13 и верхним 14 внутренними уступами и снабжение ее скребковой втулкой 15 и пружинными фиксаторами 12, расположенными в ее нижней части и имеющими возможность взаимодействия с тремя пазами 4 нижнего корпуса 2 способствует циркуляции жидкости в обоих направлениях.

Циркуляционный клапан, содержащий составной корпус, включающий нижний и верхний корпуса и центральный корпус, установленный между нижним и верхним корпусами и выполненный с радиальными окнами, гильзу с радиальными окнами, выполненную с возможностью перемещения вдоль оси, и два пакета уплотнений, состоящие каждый из манжет и опорного кольца, отличающийся тем, что в нижнем корпусе выполнены кольцевой уступ и три паза в его верхней, средней и нижней частях с внутренней стороны, в верхнем корпусе установлено кольцо, на которое опирается гильза, выполненная с дроссельными отверстиями, имеющая возможность перемещения между кольцом и кольцевым уступом, выполненная с нижним и верхним внутренними уступами, снабженная скребковой втулкой, сопряженной с верхним корпусом, и пружинными фиксаторами, расположенными в её нижней части и имеющими возможность взаимодействия с тремя пазами нижнего корпуса, дополнительно установлен третий пакет уплотнений, имеющий возможность взаимодействия с верхним и центральным корпусами и расположенный между первым пакетом уплотнений и вторым пакетом уплотнений, размещенным между гильзой и нижним корпусом, и установлены упругие уплотнители: в нижнем корпусе с возможностью взаимодействия с гильзой, в скребковой втулке с возможностью взаимодействия с верхним корпусом и между гильзой и верхним корпусом, соответственно, при этом третий пакет уплотнений содержит предохранительные кольца и упругое уплотнение, которые снимают нагрузку от гидроудара в процессе переключения клапана, а манжеты как в первом, так и во втором пакетах уплотнений выполнены из упругого материала, каждая из которых может иметь различную твердость, а опорное кольцо выполнено из неупругого материала.

Читайте также: