Реферат на тему преобразователи

Обновлено: 02.07.2024

В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Однако, для определенности, в дальнейшем под АЦП мы будем понимать исключительно преобразователи напряжение-код.

Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.

Основные характеристики АЦП

АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность – в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.

Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:


  • АЦП параллельного преобразования (прямого преобразования, flash ADC)

  • АЦП последовательного приближения (SAR ADC)

  • дельта-сигма АЦП (АЦП с балансировкой заряда)

Существуют также и другие типы АЦП, в том числе конвейерные и комбинированные типы, состоящие из нескольких АЦП с (в общем случае) различной архитектурой. Однако приведенные выше архитектуры АЦП являются наиболее показательными в силу того, что каждая архитектура занимает определенную нишу в общем диапазоне скорость-разрядность.

Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП с меньшим быстродействием и их рассмотрение выходит за рамки данной статьи.

Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.

Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.

Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.

АЦП прямого преобразования

Архитектура АЦП прямого преобразования изображена на рис. 1

Рис. 1. Структурная схема АЦП прямого преобразования

Теперь становятся понятны достоинства и недостатки такого преобразователя. Все компараторы работают параллельно, время задержки схемы равно времени задержки в одном компараторе плюс время задержки в шифраторе. Компаратор и шифратор можно сделать очень быстрыми, в итоге вся схема имеет очень высокое быстродействие.

Но для получения N разрядов нужно 2^N компараторов (и сложность шифратора тоже растет как 2^N). Схема на рис. 1. содержит 8 компараторов и имеет 3 разряда, для получения 8 разрядов нужно уже 256 компараторов, для 10 разрядов – 1024 компаратора, для 24-битного АЦП их понадобилось бы свыше 16 млн. Однако таких высот техника еще не достигла.

АЦП последовательного приближения

1. на первом шаге на выходе встроенного цифро-аналогового преобразователя устанавливается величина, равная 1/2Uref (здесь и далее мы предполагаем, что сигнал находится в интервале (0 – Uref).

2. если сигнал больше этой величины, то он сравнивается с напряжением, лежащим посередине оставшегося интервала, т.е., в данном случае, 3/4Uref. Если сигнал меньше установленного уровня, то следующее сравнение будет производиться с меньшей половиной оставшегося интервала (т.е. с уровнем 1/4Uref).

Рис. 2. Структурная схема АЦП последовательного приближения.

Таким образом, АЦП последовательного приближения состоит из следующих узлов:

3. Регистр последовательного приближения (Successive Approximation Register, SAR). Он осуществляет алгоритм последовательного приближения, генерируя текущее значение кода, подающегося на вход ЦАП. По его названию названа вся данная архитектура АЦП.

Достоинством устройства является относительно высокая скорость преобразования: время преобразования N-битного АЦП составляет N тактов. Точность преобразования ограничена точностью внутреннего ЦАП и может составлять 16-18 бит (сейчас стали появляться и 24-битные SAR ADC, например, AD7766 и AD7767).

Дельта-сигма АЦП

И, наконец, самый интересный тип АЦП – сигма-дельта АЦП, иногда называемый в литературе АЦП с балансировкой заряда. Структурная схема сигма-дельта АЦП приведена на рис. 3.

Рис.3. Структурная схема сигма-дельта АЦП.

Рис. 4. Сигма-дельта АЦП как следящая система

Ради строгости изложения, нужно сказать, что на рис. 3 изображена структурная схема сигма-дельта АЦП первого порядка. Сигма-дельта АЦП второго порядка имеет два интегратора и две петли обратной связи, но здесь рассматриваться не будет. Интересующиеся данной темой могут обратиться к [3].

На рис. 5 показаны сигналы в АЦП при нулевом уровне на входе (сверху) и при уровне Vref/2 (снизу).

Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе.

Теперь, не углубляясь в сложный математический анализ, попробуем понять, почему сигма-дельта АЦП обладают очень низким уровнем собственных шумов.

Рассмотрим структурную схему сигма-дельта модулятора, изображенную на рис. 3, и представим ее в таком виде (рис. 6):

Рис. 6. Структурная схема сигма-дельта модулятора

Здесь компаратор представлен как сумматор, который суммирует непрерывный полезный сигнал и шум квантования.

Пусть интегратор имеет передаточную функцию 1/s. Тогда, представив полезный сигнал как X(s), выход сигма-дельта модулятора как Y(s), а шум квантования как E(s), получаем передаточную функцию АЦП:

То есть, фактически сигма-дельта модулятор является фильтром низких частот (1/(s+1)) для полезного сигнала, и фильтром высоких частот (s/(s+1)) для шума, причем оба фильтра имеют одинаковую частоту среза. Шум, сосредоточенный в высокочастотной области спектра, легко удаляется цифровым ФНЧ, который стоит после модулятора.

Однако следует понимать, что это чрезвычайно упрощенное объяснение явления вытеснения шума (noise shaping) в сигма-дельта АЦП.

Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.

Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.

Рис. 8. Первый патент на АЦП

Рис. 9. АЦП прямого преобразования (1975 г.)

Устройство, изображенное на рисунке, представляет собой АЦП прямого преобразования MOD-4100 производства Computer Labs, 1975 года выпуска, собранный на основе дискретных компараторов. Компараторов 16 штук (они расположены полукругом, для того, чтобы уравнять задержку распространения сигнала до каждого компаратора), следовательно, АЦП имеет разрядность всего 4 бита. Скорость преобразования 100 MSPS, потребляемая мощность 14 ватт.

На следующем рисунке изображена продвинутая версия АЦП прямого преобразования.

Рис. 10. АЦП прямого преобразования (1970 г.)

Устройство VHS-630 1970 года выпуска, произведенное фирмой Computer Labs, содержало 64 компаратора, имело разрядность 6 бит, скорость 30MSPS и потребляло 100 ватт (версия 1975 года VHS-675 имела скорость 75 MSPS и потребление 130 ватт).

Характеристики измерительных преобразователей. Надежность средств измерений. Выходное напряжение тахогенераторов. Основные характеристики, определяющие качество преобразователей. Алгоритмические методы повышения качества измерительных преобразователей.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 09.09.2016
Размер файла 266,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Измерения очень сильно влияют на решение научно-технических задач. Для каждого человека очень важную роль играет качество продукции. Именно поэтому вопрос о качестве занимает основное место.

Что такое качество? Качество - это совокупность признаков, характеристик и свойств, которые должны удовлетворять потребности потребителя.

А с помощью измерений человек изучает окружающий мир. Измерения занимают важное место в нашем мире. Они важны в разных отраслях, и в промышленности, и в науке, и в технике. В жизни каждую минуту происходят разные измерительные операции, по их результатам происходит обеспечение качества, которое необходимо для множества разных целей, в медицине, в экологии, в транспорте. Абсолютно в любой отрасли деятельности человека включается использование результатов измерений, контроля, испытаний.

Требования к повышению качества и надежности технических устройств непрерывно растут, в связи с этим появляется потребность к улучшению количества и качества измерений. В улучшении точности и скорости измерительных процессов, обязательно должны участвовать новые техники и развивающаяся наука.

Для развития измерительной техники используются мощные персональные электронно-вычислительные машины и разработки математического и программного обеспечения.

Актуальность заключается в том, чтобы повысить качество продукции, точности и быстродействия процессов, применив нынешние методы улучшения метрологических характеристик.

Один из способов улучшения качества измерительных преобразователей -- это использование специальных методов для улучшения их метрологических характеристик, так же для корректировки погрешностей ИП.

В последние время, учитывая то, что вычислительная техника развивается все больше начинают использоваться алгоритмические методы корректировки погрешности, которые выполняются при обработке сигнала измерительной информации.

Измерительные преобразователи - это средство, преобразующие физическую величину в измерительный сигнал или другую величину, это очень помогает в последующий преобразованиях, в хранение, передаче и обработке. Классификация измерительных преобразователей происходит по характеру входных и выходных величин, месту измерительной цепи и многими другими свойствами. Учитывая все это преобразования происходят с точностью и создают зависимость между входной и выходной величинами. Есть только один способ что бы построить измерительные устройства-это измерительное преобразование.

Виды измерительных преобразователей в измерительной цепи:

Первичный преобразователь (датчик) - это прибор который предназначен для преобразования измеряемых величин из одной в другую для того что бы в дальнейшем было удобно измерять или использовать их. Преобразованная величина может быть использована для любых целей.

Передающий преобразователь - нужен для того чтобы передавать измерительную информацию. Величина образуется на его выходе. Данный преобразователь может сразу выполнять роль первичного и передающего.

Промежуточный преобразователь -- в измерительной цепи стоит сразу после первичного, занимает последующее место после первичного в измерительной цепи. Осуществляет разные операции преобразования измерительного сигнала: изменение физического рода величины и масштабные (линейные или нелинейные), масштабно-временные, аналого-цифровые, цифро-аналоговые, функциональные преобразования.

Выходной преобразователь - в измерительной цепи стоит после всех остальных преобразователей. Отвечает за регистрирующие устройства, которые занимаются значениями измеряемых величин.

Характеристики измерительных преобразователей

1) По видам входа и выхода сигналов (аналоговый или дискретный);

2) Физическая природа входа и выхода сигналов:

Электрический вход--электрический выход;

Неэлектрический вход--электрический вход;

Электрический вход--неэлектрический выход;

Неэлектрический вход--неэлектрический выход.

3) Принцип действия: механические, тепловые, акустические, электрические, магнитные, электромагнитные и др.

4) Облик преобразования энергии: генераторные, параметрические, радиационные.

Эти характеристики определяют качество и эффект в совместном использовании измерительных преобразователей.

Диапазон измерения - это измеряемое значение величины, измерительным прибором, обозначаются как нижние и верхние измерения, максимальной и минимальной величинами параметров.

Чувствительность - это отношение между измеряемыми величинами на выходе и на входе. Отличается абсолютная S и относительная Sо чувствительности, которая описывается формулами:

Dу-- изменение выходной величины;

х -- измеряемая (входная) величина;

Dх -- изменение входной величины.

Порог чувствительности - действие происходящее на входе измерительного преобразователя, вызывающее наименьший эффект на выходе. По-другому говоря измерение величины, вызывающее минимальное изменение выходных величин. Порог чувствительности и чувствительность это разные понятия.

Точность - это самые близкие результаты измерений, к истинному результату измеряемой величины полученные в системе измерений. Общего способа определить точность пока нет. Но существуют погрешности для измерения точности. А пока что есть суждение погрешности для оценки точности в количестве. Тут имеется в виду несоответствие показаний приборов (номинальные значения мер) от истинных значений измеряемой величины (истинных значений). Это является важнейшей характеристикой СИ.

Динамические характеристики - это характеристика инерционности средства измерений, бывают полные и частные:

Полные - это величины, достаточно сложные и не являются наглядными, позволяющие оценить погрешности, вызванные иррациональностью средств измерений. Это дифференциальное уравнение связывающее выходную и выходную величины.

Частные - это параметры полной динамической характеристики тут используются разные факторы:

- полоса частот измеряемой величины (в пределах которой динамическая погрешность не превышается;

- время установления выходной величины.

Надежность средств измерений - это важная характеристика средств измерений. Известно, из-за влияния скрытых дефектов в качестве измерительной техники, и определяется как вероятность возникновения ошибки в пределах допустимого диапазона. В зависимости от условий эксплуатации приборов и их применения для измерения, устанавливается допустимый уровень метрологического защиты. Оценка надежности происходит различных количественных характеристиках, среди которых можно выделить вероятность безотказной работы, частоту отказов, время безотказной работы, время между отказами и др. При всем при этом отказ это событие, после которого характеристики СИ выходят за пределы, которые вообще могут быть допустимы.

Номинальная статическая характеристика преобразования. - это зависимость между значениями величин на выходе и входе. Проедставляется в виде: таблицы, графика или формулы. Называние - градуировочная характеристика средств измерений. Использование номинальной характеристики сопровождается погрешностями, появившимися из-за разницы номинальной характеристикики от индивидуально-градуировочной характеристикики.

Индивидуальная градуировочная характеристика она описывает свойства конкретного экземпляра ИП. Когда происходит серийный выпуск зависимость между величинами описывается номинальной функцией или номинальной статистической характеристикойкой преобразования.

Градуировочная характеристика ИП это зависимость между входной (Dх) и выходной (Dу) величинами (рис. 1)

Коэффициент преобразования - это отношение изменения сигнала на выходе ИП к его изменению на входе

Диапазон преобразования - это область где измеряется величина допускаемой погрешности преобразователя (т.е. абсолютная и относительная).

Преобразователи разделяются по направлению: механических, тепловых, химических, магнитных, биологических и др. физических величин.

Принцип действия делится на: генераторные, параметрические.

Классификация с принципом действия:

- Тахогенереторы (магнитоупргие, индуктивные)

- Фотоэлемент (фотодиод, фоторезистор и т.п.)

Рассмотрим тахогенераторы, они используются для того чтобы измерить скорость вращения объектов

Используют их в: устройствах электроприводов, транспортных средствах, станкостроениe и др.

У тахогенераторов бывают подвижные и неподвижные катушки.

Всеобщее устройство на рис. 2.

Выходное напряжение тахогенераторов устанавливается как

К- статический коэффициент тахогенератора.

Напряжение на выходе подлежит корректировке, учитывая снижение напряжения.

Uщ- напряжение падения,

Rя- сопротивление цепи,

Rц- сопротивление ИЦ.

График реальной и идеальной функции (рис.3)

На тахогенераторах анализируя переменный ток, выходная ЭДC будет такой:

p- число полюсов (пар),

n- частота (вращения машины).

Погрешность получается 0.2….0.5%

Рассмотрим оптические преобразователи

Они построены на использовании фотоэффекта.

Фотоэффекты делятся на 2 типа: внутренний и внешний.

Внутренний фотоэффект - это процесс, происходящий внутри кристаллической решётки твердого тела при воздействии светового потока. Там меняется энергетическое состояние носителей зарядов, оно ведет к их концентрации и происходит перераспределение внутри кристалла.

Этот тип свойствен для полупроводников и диэлектриков.

Внешний фотоэффект - это где электроны находятся в эмиссии под влиянием светового потока.

Погрешность - это отклонение между измеряемым значением величины от истинного значения. Мера точности измерения.

· Метод Корнфельда, это выбор доверительного интервала в границах от меньшего до большего результата измерения, и погрешности - половина разности между наибольшем и наименьшем результатом измерений:

· Средняя квадратическая погрешность определяется по формуле:

· Средняя квадратическая погрешность для среднего арифметического:

Что бы определить погрешность измерительного преобразователя нужно знать функцию преобразования или градуировочную характеристику.

Все измерения обозначаются в ед. величины на выходе. И тут у погрешности присутствует различие на входе и выходе.

Номинальная функция - приписана измерительному устройству и прописана в паспорте, применяют при выполнении измерений.

Реальная функция - обладает конкретным экземпляром измерительного устройства.

Абсолютная погрешность по выходу (Dу) - это разность величин, входной (Yп) и выходной (Yп) которая определяется при помощи градуировочной характеристики, приписанной данному ИП.

Абсолютная погрешность по входу (Dх) - разность между значением величины на входе (Xп), которое устанавливается по действительному знач. на входе (Yп) с помощью градуировочной характеристики.

j - обратное преобразование

Yп - фактическое значение сигнала на выходе;

Xп устанавливается по значению Yп сигнала на выходе с помощью функции преобразования

Еще Yп - значение выходного сигнала, которое вырабатывается преобразователем, лишенным погрешности.

Относительная погрешность входа (dх) - это отношение между абсолютной погрешностью входа к истинному значению величины входа.

Относительная погрешность выхода (dу) - это отношение между абсолютной погрешностью выхода к значению величины выхода, которое определяется значением величины входа градуировочной характеристикой.

Приведенная погрешность по входу (выходу) - это отношение между абсолютной погрешностью к нормирующему значению входа XN (выходного YN) сигнала.

Основные характеристики, определяющие качество измерительных преобразователей

В первую очередь самые важные аспекты для выбора измерительных преобразователей:

Погрешность - это мера точности измерения. Разница между измеряемым значением и истинным значением.

Результат измерений у измерительного преобразователя представляется в единицах выходной величины.

Диапазон измерения - это диапазон значений измеряемой величины, измеряемый данным прибором; он описывается верхним и нижним пределами измерений, самой маленькой и большой величиной, которая соответствует измерению имеющимся измерительным преобразователем.

Стоимость - это значимый аспект, который учитывается для выбора измерительного преобразователя. От стоимости зависит какая будет погрешность.

Срок службы - не менее значимый фактор, чтобы знать на сколько долго будет служить датчик.

Стоимость обслуживания - так же значимый аспект из важных характеристик при выборе измерительного преобразователя.

Все эти важные факторы будут очень важны покупателю при выборе и покупке датчика.

Разработка критериев качества

Центральной составляющей является метрологическое обеспечение систем качества.

Схема изображена на рис. 4.

Рис. 4. Метрологическое обеспечение систем качества

На (рис. 1) представлены основные составляющие метрологическое обеспечения систем менеджмента качества. В ходе контроля на каждой позиции измерения, осуществляется измерение одного или нескольких параметров, которые могут совершаться не одним типом ИП, а рядом альтернативных. Одно из важных характеристик метрологического обеспечения - это выбор ИП, которое гарантирует максимум точности измерений при минимуме затрат в процессе производства.

Рабочие ИП являются основным объектом исследований, поскольку использование конкретных измерительных позициях на производственном участке применяется выбор их типов. Для измерений можно выбрать разные ИП, на любой из измерительных позиций, которые потом будут обладать такими различными параметрами (метрологические, технические и эксплуатационные) и должны удовлетворять требования заказчика.

Этап первый. Исследования - это составление шкалы приоритетов параметров ИП. С помощью использования статистических методов можно провести исследование. Существует очень много баз данных по ИП, но все же порядок и форма и методы предоставления параметров в разных базах данных различаются.

Для решения задач надо трансформировать последовательность представления параметром ИП в определенную форму, в порядке убывания их значимости. Этот порядок называется шкалой приоритетов параметров ИП. Исследование, которое проведено заключается в статистическом анализе ряда паспортов ИП одинаковой физической величины (давление), которые берутся с сайтов изготовителей, их каталогов и других справочных источников, для построения шкалы приоритетов параметров ИП. Полученные из источников данные записаны в таблицу (табл. 1).

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Линейные аналоговые и цифровые преобразователи.

Последние десятилетия обусловлены широким внедрением в отрасли народного хозяйства средств микроэлектроники и вычислительной техники, обмен информацией с которыми обеспечивается линейными аналоговыми и цифровыми преобразователями (АЦП и ЦАП).

Современный этап характеризуется больших и сверхбольших интегральных схем ЦАП и АЦП обладающими высокими эксплуатационными параметрами: быстродействием, малыми погрешностями, многоразрядностью. Включение БИС ЦАП и АЦП единым, функционально законченным блоком сильно упростило внедрение их в приборы и установки, используемые как в научных исследованиях, так и в промышленности и дало возможность быстрого обмена информацией между аналоговыми и цифровыми устройствами.

СТРУКТУРНАЯ СХЕМА АЦП

Она содержит буферный усилитель (БУ), посредством которого осуществляется развязка высокой входной ёмкости АЦП микросхемы КР1107ПВ2 от источника сигнала. Источник опорного напряжения (ИОН) служит для питания делителя напряжения в АЦП, для подачи опорных квантованных напряжений на компараторы. Оцифровка входного аналогового сигнала осуществляется в АЦП (микросхема КР1107ПВ2), которая преобразует аналоговый сигнал амплитудой 02 В с частотой преобразования не более 20 МГц в восьмибитный выходной код, вид которого определяется программно, подачей двухбитного кода на входы 36, 41 микросхемы. Выходной код, через магистральный усилители (МУ1, МУ2) поступает на порт РВ контроллера ввода-вывода КР580ВВ55 запрограммированного на ввод, а затем в зависимости от программы либо в ОЗУ используемого в данной схеме программируемого универсального контроллера (КПУ) "Электроника МС2702", либо через порт РА, запрограммированного на выход, выводится на сопрягаемый контроллер для обработки данных.

Седьмой бит порта РС используется как стробирующий АЦП канал. В этот бит выставляется логическая еденица с частотой, определяемой программой контроллера.

Запуск АЦП на преобразование реализован программно. При помощи схемы запуска, содержащей компараторы, срабатывающей от отрицательного сигнала амплитудой –1мВ до –4В и RS-триггера, выходным сигналом которого поданным на бит С7 порта РС , запускается программа преобразования АЦП. Бит С5 порта РС используется как канал сигнала готовности к началу преобразования.

2. БУФЕРНЫЙ УСИЛИТЕЛЬ

Характерной особенностью микросхемы КР1107ПВ2 является большая входная ёмкость (более 100 пф). В связи с этим, при использовании этих микросхем в измерительных устройсвах возникает необходимость в буферном каскаде для развязки источника сигнала от емкостной нагрузки. При чем на этот каскад накладываются весьма жесткие требования по стабильности коэффициента усиления, термостабильности, полосе пропускания, так же требуется высокое входное сопротивление, чтобы не вносить погрешности в измеряемый сигнал или входное сопротивление, равное волновому сопротивлению кабеля, соединяющего источник сигнала и АЦП.

Схема может работать с ёмкостью нагрузки до 300 пФ с полосой пропускания до 20 МГц, нелинейность АЧХ - 0,2  и коэффициент передачи равный 1.

Основа буферного неинвертирующего усилителя - дифференциальный каскад, собранный на транзисторах VT1 и VT2. Нагрузкой его является схема – "токовое зеркало" на микросборке из двух подобранных по характеристикам транзисторах (DA1).

На выходе собран эмиттерный повторитель на транзисторе VT6, согласованный с дифференциальным каскадом и с токовым повторителем VT4. Резисторы R1-R3 образуют делитель напряжения для подстройки "0" на выходе усилителя без сигнала на входе. На транзисторах VT3-VT4 и диодах VD1-VD3 собраны два источника тока для питания дифференциального каскада и токового повторителя./2/

3. ИСТОЧНИК ОПОРНОГО НАПРЯЖЕНИЯ

Параллельные АЦП, такие как используемая микросхема КР1107ПВ2 построены на принципе одновременного сравнивания (преобразования) сигнала путём квантования с помощью набора компараторов, на один вход которых подаётся исследуемый сигнал, а на другой квантованные по уровню опорного напряжения. Они создаются прецизионным делителем напряжения , который питается от внешнего источника опорного напряжения, к нему предъявляются высокие требования по стабильности выходного напряжения, так как оно в большей степени определяет погрешность АЦП.

Он выдаёт стабилизированное напряжение равное 2В, с точностью 0,01  в диапазоне теиператур от –20 до +40  С.

Выходное напряжениеформируется как разница между падением напряжения на светодиоде VD1 и эмиттерном переходе транзистора VT2. Оба эти напряжения имеют отрицательный температурный коэффициент 2мВ/град. , в следствии чего напряжение на резисторах R2 и R3 термостабильно. Транзисторы сборки VT1, резистор R1 и диод VD2 образуют стабилизатор тока светодиода VD1. В связи с тем, что температурный коэффициент напряжения светодиода несколько меньше такого же коэффициента эмиттерного перехода транзистора VT2, для компенсации разницы стабилизатор выполнен с отрицательным коэффициентом (за сче диода VD2). Для обеспечения равенства температур светодиод и транзистор VT2 должны иметь тепловой контакт.

4. СХЕМА ЗАПУСКА

Для согласования времени прихода сигнала на вход установки и началом цикла преобразования АЦП служит схема запуска.

Схема запуска содержит в себе компаратор, срабатывающий от отрицательного импульса, амплитудой от –1мВ до –4В и выдающий на выходе логический сигнал, либо логическую еденицу, амплитудой от 3 до 5В, либо логический ноль, амплитудой до 0.5В

Для регулировки уровня срабатывания компаратора – исключения срабатывания от шумов и наводок, служит делитель напряжения на резисторах R1 и R2, регулировка возможна в пределах от 0 до 4 В.

Сигнал с выхода компаратора подаётся на R-вход RS-триггера устанавливая уровень логической еденицы на выходе триггера и бите C7 порта РС. Этот бит опрашивается программой контроллера и при обнаружении на нём логической еденицы начинаетсятактирование АЦП и запись результата в память контроллера.

При установке в бите С5 порта РС логической еденицы сбрасывается запускающий сигнал с выхода триггера, схема запуска приводиться в готовность к новому циклу преобразования.

5. АЦП КР1107ПВ2

Интегральная полупроводниковая микросхема КР1107ПВ2 представляет собой быстродействующий восьмиразрядный аналогоцифровой преобразователь с частотой преобразования до 20 МГц. Микросхема предназначена для преобразования входных аналоговых сигналов в диапазоне отрицательных напряжений от –2В до 0В в один из кодов параллельного считывания: прямой двоичный, обратный двоичный, прямой дополнительный, обратный дополнительный.

Построение АЦП по полностью параллельной схеме позволяет получить максимальное быстродействие при минимальной динамической погрешности без использования внешней схемы выборки хранения во всем диапазоне частоты преобразования.

Выходные уровни и уровни управляющих сигналов АЦП соответствуют уровням ТТЛ.

Микросхема состоит из резистивного делителя опорных напряжений, 256 стробируемых компараторов, дешифратора кодов компараторов, логических схем управления выходным кодом и выходного регистра хранения.

6. КПУ "ЭЛЕКТРОНИКА 2702"

Универсальный программируемый контроллер "ЭЛЕКТРОНИКА 2702" построен на основе микропроцессора К580ВМ80, содержит в своем составе два контроллера ввода-вывода, два программируемых таймера, контроллер прямого доступа к памяти, контроллер прерываний, микросхемы постоянной и оперативной памяти, схемы логики управления. Управление контроллера осуществляется с клавиатуры, результаты отображаются на дисплее.

Контроллер оперирует восьмибитным параллельным кодом, имеет сорок восемь двунаправленных программируемых канало ввода-вывода. Контроллер может осуществлять следующие операции:

1. Опрос портов ввода-вывода и запись информации из них в ОЗУ.

2. Запись в порты ввода-вывода информации из ОЗУ.

3. Все операции с памятью характерные для процессора К580ВМ80 и определяемые набором его команд.

7. ПРОГРАММ РАБОТЫ КОНТРОЛЛЕРА

Программа, обеспечивающая работу контроллера и АЦП должна:

1. Предусматривать программное изменение выходного кода АЦП.

2. Стробировать АЦП и записывать результаты в ОЗУ с заданной программно частотой.

3. Предусматривать программное изменение памяти, отводимой для записи сигнала.

4. Опрашивать один из портов в ожидании сигнала начала преобразования.

5. Сбрасывать схему запуска в исходное состояние выставлением в одном из каналов порта сигнала готовности.

Техника конструирования и применения датчиков, или, как ее можно кратко назвать, сенсорика, за по­следние годы развилась в самостоятельную ветвь из­мерительной техники. С ростом автоматизации к дат­чикам физических параметров стали предъявляться все более высокие требования.

Техника конструирования и применения датчиков, или, как ее можно кратко назвать, сенсорика, за по­следние годы развилась в самостоятельную ветвь из­мерительной техники. С ростом автоматизации к дат­чикам физических параметров стали предъявляться все более высокие требования. При этом особое значение придается следующим показателям:

* миниатюрность (возможность встраивания)

* дешевизна (серийное производство)

По структурному построению автоматизированные устройства напоминают такие биологические системы, как, например, человек. Органам чувств че­ловека соответствуют в автоматах (или роботах) датчики, а функции активных органов выполняются исполнительными устройствами. Анало­гом мозга как центрального устройства для обра­ботки сигналов служит ЭВМ с ее системой памяти.

Датчик… Что это такое?

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Измерительный прибор осуществляет преобразование входного сигнала x(t) в выходной сигнал y(t):

где x(t) и y(t) — векторные величины; F(x) — требуемая функция преобразования. На выражение (1) можно смотреть на информационную модель прибора, в которой осуществляется преобразование входной информации в выходную.

В более общей формулировке прибор осуществляет операцию отображения множества сигналов на входе xÎX в множество сигналов на выходе yÎY, при этом указанное отображение должно быть однозначным.

В реальных приборах функция преобразования зависит не только от сигнала x(t), но также от возмущения x(t) на сигнал x(t), от помехи J(t), действующей на параметры прибора q(t), от несовершенства технологий изготовления прибора h(t) и от помехи n(t), возникающих в самом приборе (трения, паразитных ЭДС и др.), т. е.

где x,q,h,J,n — векторы.

На рис 1 приведена функциональная схема, отображающая зависимость (2).

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Измеряемыми величинами, на основе которых формирует полезный сигнал х(t), являются параметры первичной информации, такие, как давление, температура, количество и расход жидкостей, линейные н угловые размеры, расстояния, скорости, ускорения, деформации, напряжения, вибрации, внутренние трещины, несплошности в материалах и др. К числу вредных возмущений от- носятся перегрузки, вибрации, электрические и магнитные поля, не- контролируемые вариации температуры, давления, влажности окружающей среды и т. д. Все эти возмущения вносят погрешности в показания приборов.

Рис 1. Функциональная схема прибора.

Измерительный сигнал, получаемый от контролируемого объекта, передается в измерительный прибор в виде импульса какого- либо вида энергии. Можно говорить о сигналах: первичных — непосредственно характеризующих контролируемый процесс; воспринимаемых чувствительным элементом прибора; подаваемых в мерительную схему, и т.д. При передаче информации от контролируемого объекта к указателю прибора сигналы претерпевают ряд изменений по уровню и спектру и преобразуются из одного вида энергии в другой.

Необходимость такого преобразования вызывается тем, что первичные сигналы не всегда удобны для передачи, переработки, дальнейшего преобразования и воспроизведения. Например, при измерении температуры прибором, чувствительный элемент которого помещается в контролируемую среду, воспринимаемый поток тепла трудно передать, а тем более воспроизвести на указателе прибора. Этой особенностью обладают почти все сигналы первич­ной информации. Поэтому воспринимаемые чувствительными эле­ментами сигналы почти всегда преобразуются в электрические сигналы, являющиеся универсальными.

Та часть прибора, в которой первичный сигнал преобразуется, например, в электрический, называется первичным преобразователем. Часто этот преобразователь совмещается с чувствитель­ным элементом. Сигналы с выхода первичного преобразователя поступают на следующие преобразователи измерительного при­бора.

Рис. 2 Функциональная схема прибора

На рис. 2 дана функциональная схема прибора, на которой указаны: исследуемый объект ИО; первичный преобразователь П1; устройство сравнения УС; устройство обработки сигналов Об. 1, в котором производится селекция, усиление, коррекция погрешностей, фильтрация и др.; кодирующее устройство Код; модулятор М; канал передачи КП; устройство детектирования Д; устройство декодирования ДК; устройство обработки информации Oбр. 2, обеспечивающее функциональное преобразование, коррекции погрешностей, формирование функции преобразования (1) и др.; преобразователь Пр, выдающий информацию на систему отображения СОИ и на обратный преобразователь 0П, с которого поступают сигналы на устройство сравнения. Эта схема является обобщенной и включает ряд элементов, которые в более простых приборах могут отсутствовать.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

ЁМКОСТНЫЕ ПРЕОБРАЗОВАТЕЛИ

Устройства, содержащие не менее двух поверхностей, между которыми действует электрическое поле, называются электростатическими (ЭС) преобразователями. Электрическое поле создается извне приложенным напряжением или возникает при действии на вход преобразователя измерительного сигнала.

Преобразователи, в которых электрическое поле создается приложенным напряжением, составляют группу емкостных преобразователей. Основным элементом в этих преобразователях является конденсатор переменной емкости, изменяемой входным измерительным сигналом.

Рис. 3 Электростатический преобразователь

В дальнейшем под емкостным будем понимать преобразователь, в котором используется конденсатор с двумя или несколькими электродами (рис. 3). Для случая конденсатора с плоскими электродами площадью s, размещенными друг от друга на расстоянии d в среде с диэлектрической проницаемостью e, ёмкость будет

Рассматриваемый преобразователь на электрической стороне характеризуется приложенным напряжением и, зарядом q=CU, током I=dq/dt и энергией W=CU/2. На неэлектрической стороне преобразователь характеризуется изменением параметров, входящих в выражение для емкости, т. е.Dd, Ds, De, и силой f=dW/dx, где под х следует понимать любую из величинDd, Ds, De.

Емкостный преобразователь обратим: при приложении на электрической стороне напряжения U, на неэлектрической сторо­не возникает сила f, которая используется в приборах уравно­вешивающего преобразования как результат действия обратного преобразования, в ЭС вольтметрах и в приборах с бесконтакт­ным подвесом. В этом последнем случае элемент массы m может быть подвешен в электростатическом поле, если удовлетворяется условие f³ gm, где g — ускорение силы тяжести.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

К емкостным преобразователям близки по своим характеристикам полупроводниковые диоды, в которых используется зависимость так называемой барьерной емкости от обратного напряжения. Такие преобразователи применяются в качестве элементов с электрически управляемой емкостью и называются варикапами.

Другая группа ЭС преобразователей основана на использовании сегнетоэлектриков, т. е. кристаллических диэлектриков, которые при определенных температурных условиях (при температуре ниже точки Кюри) обладают самопроизвольной поляризацией при отсутствии внешних электрических полей.

Состояние кристаллических диэлектриков характеризуется электрической индукцией D (или зарядом q), деформацией c и энтропией Э. Эти величины зависят от напряженности электрического поля Е (или напряжения U), механического напряжения s (или силы F) и температуры Т. На рис. 4 схематически показаны связи между указанными величинами.

Рис. 4 Схема связей между параметрами диэлектрика

Жирными стрелками показаны связи Е®D, s®c, T®Э, а тонкими стрелками изображены физические эффекты, свойственные сегнетоэлектрикам:

1 — прямой пьезоэлектрический эффект s®D (или q), проявляющийся в изменении поляризации кристалла действием механических напряжений;

2 — обратный пьезоэлектрический эффект Е (или U)®c, характеризующийся деформацией кристалла под днем электрического поля;

3 — пироэлектрический эффект T®D (или q), сводящийся к изменению заряда на поверхности кристалла при изменении температуры;

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

4 — пьезокалорический эффект s®Э, проявляющийся в изменении энтропии при изменении механических напряжений.

Помимо указанных эффектов при изменении Е, s, Т в кристаллах возникают побочные явления, например, изменяются диэлектрическая проницаемость, проводимость, оптические свойства и т.д.

Из указанных эффектов рассмотрим прямой и обратный пьезоэффекты, а также эффект изменения емкостной проводимости при изменении напряжения U. Преобразователи, в которых используются прямой или обратный пьезоэффекты, называются пьезоэлектрическими преобразователями.

Использование эффекта изменения емкостной проводимости в кристаллических полупроводниках обусловлено нелинейной зависимостью заряда q от приложенного напряжения U. Если зависимость q(U) линейна, то в выражении Dq=(¶q/¶U) величина C=¶q/¶U постоянна и представляет собой емкость. В случае нелинейной зависимости q(U) величина C=¶q/¶U также является емкостью, но не постоянной, а зависящей от напряжения U, т. е. C(U). Преобразователи, основанные на использовании нелинейной зависимости емкости от напряжения в сегнетоэлектриках, на­зываются варикондами.

Емкостные датчики можно разделить на две основные группы — датчики параметрические (недифференциальные) и датчики дифференциальные.

В схемах с параметрическими датчиками происходит преобразование входной неэлектрической величины (угла поворота оси ротора датчика) в электрическую выходную величину (частоту, ток, напряжение), функционально за­висящую от входной величины.

В схемах с дифференциальными датчиками, включенными в следящие системы, с датчика снимается лишь сигнал рассогласования, который становится равным нулю в установившемся состоянии следящей системы.

Примером параметрического емкостного датчика может служить переменная емкость, включенная в контур лампового генератора (рис. 5) . Здесь при измене­нии угла поворота оси ротора изменяется емкость датчика и меняется частота генератора, являющаяся выходной величиной.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Рис. 5 Емкостной датчик, включенный в контур с генератором

Рис 6. Емкостной датчик, включенный в цепь переменного тока

На рис. 6 приведен другой пример использования параметрического датчика. В этом случае с изменением значения емкости С меняется ток через нее, а следовательно, и напряжение на выходе системы, падающее на сопротивле­нии нагрузки R, которое и является выходной величиной.

Подобные системы являются разомкнутыми системами регулирования. Основным недостатком этих схем являет­ся зависимость значения выходной величины от параме­тров источника питания датчика, усилителя и других эле­ментов схемы, а также от внешних условий. В самом Деле, стоит измениться напряжению или частоте генератора, пи­тающего датчик (рис. 6), как напряжение, частота и фаза, являющиеся выходными величинами и снимаемые с сопро­тивления R, также изменятся.

От этих недостатков свободны схемы с дифференциаль­ными емкостными датчиками, включенными в замкнутую систему автоматического регулирования. В этих схемах выходной величиной является угол поворота оси отраба­тывающего двигателя или другой оси, связанной с нею че­рез редуктор. Одной из основных характеристик такой системы является чувствительность, показывающая, при каком минимальном отклонении чувствительного элемента система отработки приходит в действие. Внешние факторы — напряжение питания, температура окружающей сре­ды и т. п. — влияют лишь на чувствительность системы; на точность системы они могут влиять лишь в той мерь, в какой она связана с чувствительностью.

Это значит, что схемы с емкостными дифференциальными датчиками, так же как и любые мостовые нулевые схе­мы с линейными относительно частоты и напряжения сопротивлениями в плечах, предъявляют значительно меньшие требования к стабильности источника питания.

Рис. 7 Мостовая схема с емкостным дифференциальным датчиком

В простейшем случае дифференциальный емкостный датчик представляет собой две последовательно включенные емкости, построенные конструктивно таким образом, что при увеличении одной из них другая уменьшается. Эти две емкости могут быть включены в мостовую схему (рис. 7), где два других плеча — реостатные. Если при этом напряжение, снимаемое с диагонали моста, использовать в качестве сигнала для следящей системы, перемещаю­щей щетку потенциометра R в сторону уменьшения рассогласования, то всегда в установившемся состоянии следящей системы это напряжение u=0 в этом случае справедливо соотношение

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Отсюда следует, что в схемах с дифференциальными емкостными датчиками с воздушным диэлектриком пока­зания отрабатывающего органа (например, положение стрелки Указателя) не зависят ни от состава газа, ни от наличия в нем влаги (не выпадающей в виде капель), так как для обеих емкостей, составляющих дифференциальный датчик, меняется одинаково. Для недифференциальных же схем такое влияние может наблюдаться, хотя и в не­больших пределах, так как для воздуха с влажностью 0% =l.0006, а для воздуха с влажностью 100% при t=+20°С =l.0008. В этих схемах эта величина составит соот­ветственно погрешность примерно 0,02%, в то время как от некоторых систем с емкостными дифференциальными датчиками удалось добиться более высокой точности.

В емкостных преобразователях емкость С может меняться или за счет изменения параметров конденсатора Dd, Ds, De. При этом выполняются функции преобразования неэлектрических величин в изменение емкости или производится модуляция емкости, что имеет место в емкостных модуляторах, ЭС генераторах и др.

При работе преобразователя последовательно с его емкостью С включается сопротивление R (см. рис. 3), специально предусмотренное или представляющее собой сопротивление подводящих проводов. В зависимости от соотношения сопротивлений R и 1/jWC преобразователь будет работать в разных режимах. Если R >> 1/WC или RWC >> 1, то UUr и заряд конденсатора qCU = const, т. е. преобразователь работает в режиме заданного заряда. В этом случае U=q/C=CU/(C+Csint)U[l-(C/C)sint] и выходным параметром преобразователя является переменная составляющая напряжения U. Этот режим реализуется, в частности, на высоких частотах. Если R

Читайте также: