Реферат на тему электроразведка

Обновлено: 05.07.2024

Электрическая разведка, или электроразведка, является одним из основных разделов разведочной геофизики — науки, относящейся к циклу наук о Земле и занимающейся изучением геологического строения земной коры и глубинных зон нашей планеты. Методы электроразведки широко применяются как при геологоструктурных исследованиях и геологическом картировании, так и при поисках и разведке месторождений полезных ископаемых.

Содержание

История

В 1910 г. французский учёный К. Шлюмберже разработал метод сопротивлений, нашедший впоследствии широкое применение при геологоструктурных исследованиях. В 1919—1922 гг. шведские учёные Н. Лундберг и К. Зундберг своими работами положили начало электроразведке переменными полями и, в частности, методам, основанным на наблюдении эквипотенциальных линий электрического поля и напряжённости магнитного поля. Несколько позже в Америке был предложен метод индукции (радиор).

Большую роль в развитии теории электроразведки постоянным током сыграли исследования немецкого учёного И. Гуммеля и в особенности румынского учёного С. Стефанеску, разработавших методы расчёта электрических полей точечных источников при плоскопараллельных поверхностях раздела.

В 1924 г. основоположник отечественной электроразведки А.А Петровский провел впервые в Советском Союзе электроразведочные работы методами естественного поля (Риддерское полиметаллическое месторождение на Алтае). В 1925 г. метод эквипотенциальных линий был поставлен на переменном токе и в этой модификации в последующие годы широко опробован на сульфидных месторождениях СССР. К 1925 г. относятся также первые опытные работы по применению метода интенсивности, проведенные на Урале (Богомоловский рудник). С 1926 г. в практику электроразведочных работ входит метод индукции. С 1928 г. А. А. Петровский проводит систематические исследования в области радиоволновых методов разведки.

Таким образом, в двадцатые годы XX века электроразведку использовали в основном при поисках и разведке рудных месторождений. Однако проводившиеся работы носили в значительной мере опытный характер, объём производственных работ был невелик. В 1928—1929 гг. электроразведку начинают применять для поисков и разведки нефтеносных и газоносных структур. В последующие годы объём этих работ существенно возрастает в соответствии с общим увеличением объёма геофизических работ при поисках нефти и газа и организацией геофизической службы в нефтяной промышленности.

В 1930 г. А. С. Семенов проводит первые электроразведочные работы для решения гидрогеологических и инженерно-геологических задач.

В 1932 г. были проведены первые электроразведочные работы с целью поисков и разведки месторождений ископаемых углей. В этой области геологических исследований электроразведка получила применение как метод изучения геологической структуры угольных бассейнов и поисков угольных пластов, а также угленосных свит.

В 1960—1970х гг. большой вклад в развитие электроразведки постоянным током внесли А. И. Заборовский [1] , Л. М. Альпина, В. Н. Дахнова, А. Н. Тихонова, А. П. Краева, Е. Н. Каленова, А. М. Пылаева и др. Другие же методы электроразведки развивали Е. А. Сергеев (метод естественного тока), А.С Семенов (метод заряда), А. Г. Тархова, И. Г. Михайлова (метод индукции) и др.

Методы электроразведки

В электроразведке сейчас насчитывается свыше пятидесяти различных методов и модификаций, предназначенных как для глубинных исследований, так и для изучения верхней части разреза. В зависимости от принципа исследования их можно разделить на следующие группы: методы сопротивлений (методы постоянного тока) и электромагнитные методы. Рассмотрим сущность методов.

Методы сопротивлений

Методы сопротивлений основаны на пропускании в земле с помощью пары электродов известного постоянного тока и измерении напряжения, вызванного этим током, с помощью другой пары электродов. Зная ток и напряжение, можно вычислить сопротивление, а с учетом конфигурации электродов можно установить, к какой части подповерхностного пространства это сопротивление относится. Увеличение разноса токовых электродов влечет увеличение глубинности исследования и является зондирующим фактором для вертикального электрического зондирования (ВЭЗ). Кроме ВЭЗ к группе относятся его модификации, основанные на измерении амплитуд (ВЭЗ-ВП) и фаз (ВЭЗ-ВПФ) поля вызванной поляризации, однополюсное комбинирование (ОКЭЗ) и дипольное (ДЭЗ) электрическое зондирование, а также электропрофилирование (ЭП), при котором разносы не меняются, а вся установка перемещается по профилю или площадке. В последние десятилетия метод сопротивлений применяется в модификации двух- и трехмерной томографии на постоянном токе (Electric Resistivity Tomography).

Методы сопротивлений не относятся к электромагнитным методам, т.к. хотя в реальности применяется не постоянный, а низкочастотный ток, но магнитное поле в данной группе методов не фигурирует. По данным методов сопротивлений можно узнать распределение в среде удельного сопротивления и вектора вызванной поляризации.

Электромагнитные зондирования применяют главным образом при региональных, структурно-картировочных и разведочных исследованиях, когда ставятся задачи расчленения геологического разреза на слои и блоки, определения последовательности залегания пластов и картирования тектонических структур, в частности при поисках месторождений нефти и газа. Электротомография применяется для задач рудной разведки, экологических и инженерно-геологических задач.

Индукционные методы

К группе методов относится огромное количество различных модификаций, суть которых можно описать следующим образом. Под влиянием переменного электрического или магнитного поля в земле за счет феномена магнитной индукции возникает электромагнитное поле. Зная точно параметры источника поля, можно измерять различные электрические и магнитные компоненты индуцированного поля, восстанавливая по ним параметры среды. В отличие от методов сопротивлений, где зондирующим параметром является разнос, в индукционных методах кроме размеров установки глубинность зависит также от частоты тока в генераторе (подгруппа частотных зондирований — ЧЗ) или от времени регистрации после выключения тока в генераторе (подгруппа зондирований становлением поля — ЗС). При переносе по профилю или площади установки с постоянными размерами, частотой или временем, получают электромагнитные профилирования.

Математический аппарат обработки данных индукционной электроразведки гораздо сложнее методов сопротивлений. При работе в области высоких частот на сигнал влияет не только электропроводность среды, но также ее диэлектрическая и магнитная проницаемость.

Ввиду особенных условий выделяют в отдельную группу методы скважинной электроразведки, хотя методы геофизического исследования скважин (ГИС) не ограничиваются электроразведочными методами.

Скважинная электроразведка

Скважинной электроразведкой называют способ объёмного изучения межскважинного пространства, основанный на возбуждении и изучении поля как внутри скважин, так и на поверхности земли, а также на электромагнитном просвечивании окружающей среды между скважинами, сюда относят все варианты электрического профилирования в скважинах (ЭПС), методы вызванной поляризации (ВПС, ВПФС), естественного электрического поля (ЕЭПС, ПЕЭМПС), электрической корреляции (МЭК), погруженных электродов (МПЭ), в том числе методы электрического (МЗ) и магнитного (МЗМ) заряда, контактный и бесконтактный способы поляризационных кривых (КСПК, БСПК), а также все виды скважинного электромагнитного профилирования, основанные на изучении поля дипольного источники (ДЭМПС), незаземлённой петли (НПС), переходных процессов (МППС), радиоволновое просвечивание (РВП) и др. Скважинные модификации применяют для поисков залежей полезных ископаемых в околоскважинном и межскважинном пространствах, изучения формы, размеров и компонентного состава залежи, а также для увязки результатов наземных и скважинных наблюдений.

Электрическая разведка, или электроразведка, является одним из основных разделов разведочной геофизики — науки, относящейся к циклу наук о Земле и занимающейся изучением геологического строения земной коры и глубинных зон нашей планеты. Методы электроразведки широко применяются как при геологоструктурных исследованиях и геологическом картировании, так и при поисках и разведке месторождений полезных ископаемых.

Содержание
Работа содержит 1 файл

Реферат по моделированию.docx

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФИЛИАЛ УФИМСКОГО ГОСУДАРСТВЕННОГО НЕФТЯНОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА В Г. ОКТЯБРЬСКОМ

Реферат по дисциплине: Математическое и физическое моделирование процессов добычи природных углеводородов

Выполнил: ст. гр. ГР-07-12 Сибгатуллин Р. Ф.

Проверил: преподаватель Шакурова А. Ф.

История развития электроразведки……………………………………. ……4

Электромагнитные свойства горных пород…………………………..…7

Электрическая разведка, или электроразведка, является одним из основных разделов разведочной геофизики — науки, относящейся к циклу наук о Земле и занимающейся изучением геологического строения земной коры и глубинных зон нашей планеты. Методы электроразведки широко применяются как при геологоструктурных исследованиях и геологическом картировании, так и при поисках и разведке месторождений полезных ископаемых.

В электроразведке сейчас насчитывается свыше пятидесяти различных методов и модификаций, предназначенных как для глубинных исследований, так и для изучения верхней части разреза. В зависимости от принципа исследования их можно разделить на следующие группы: методы сопротивлений (методы постоянного тока) и электромагнитные методы. Рассмотрим сущность методов.

История развития электроразведки

Электроразведка, как и вся разведочная геофизика, является наукой сравнительно молодой. Первые работы по применению электричества при поисках полезных ископаемых относятся к 1829 г., когда А. Фокс наблюдал на медноколчеданными месторождениями Корнуэльса (Англия) естественные электрические поля, связанные с окислительно- восстановительными процессами. Общий прогресс геофизики в конце ХIХ и начале ХХ столетия коснулся также и методов изучения геологического строения Земли; он дал толчок развитию прикладной геофизики в целом и электрических методов разведки в частности. В 1903 г. Русским инженером Е.И Рагозиным была опубликована монография "О применении электричества для разведки рудных залежей". В 1910 г. французский учёный К. Шлюмберже разработал метод сопротивлений, нашедший впоследствии широкое применение при геологоструктурных исследованиях. В 1919 – 1922 гг. шведские учёные Н. Лундберг и К. Зундберг своими работами положили начало электроразведке переменными полями и, в частности, методам, основанным на наблюдении эквипотенциальных линий электрического поля и напряжённости магнитного поля. Несколько позже в Америке был предложен метод индукции (радиор). Большую роль в развитии теории электроразведки постоянным током сыграли исследования немецкого учёного И. Гуммеля и в особенности румынского учёного С. Стефанеску, разработавших методы расчёта электрических полей точечных источников при плоскопараллельных поверхностях раздела. В 1924 г. Основоположник отечественной электроразведки А.А Петровский провел впервые в Советском Союзе электроразведочные работы методами естественного поля (Риддерское полиметаллическое месторождение на Алтае). В 1925 г. Метод эквипотенциальных линий был поставлен на переменном токе и в этой модификации в последующие годы широко опробован на сульфидных месторождениях СССР. К 1925 г. Относятся также первые опытные работы по применению метода интенсивности, проведенные на Урале (Богомоловский рудник). С 1926 г. в практику электроразведочных работ входит метод индукции. С 1928 г. А. А. Петровский проводит систематические исследования в области радиоволновых методов разведки. Таким образом, в двадцатые годы ХХ века электроразведку использовали в основном при поисках и разведке рудных месторождений. Однако проводившиеся работы носили в значительной мере опытный характер, объём производственных работ был невелик. В 1928 – 1929 гг. электроразведку начинают применять для поисков и разведки нефтеносных и газоносных структур. В последующие годы объём этих работ существенно возрастает в соответствии с общим увеличением объёма геофизических работ при поисках нефти и газа и организацией геофизической службы в нефтяной промышленности. В 1930 г. А.С. Семенов проводит первые электроразведочные работы для решения гидрогеологических и инженерно-геологических задач. В 1932 г. были проведены первые электроразведочные работы с целью поисков и разведки месторождений ископаемых углей. В этой области геологических исследований электроразведка получила применение как метод изучения геологической структуры угольных бассейнов и поисков угольных пластов, а также угленосных свит. В 1960 – 1970х гг. большой вклад в развитие электроразведки постоянным током внесли А. И. Заборовский, Л.М. Альпина, В.Н. Дахнова, А.Н. Тихонова, А.П. Краева, Е.Н. Каленова, А.М. Пылаева и др. Другие же методы электроразведки развивали Е.А. Сергеев (метод естественного тока), А.С Семенов (метод заряда), А.Г. Тархова, И.Г. Михайлова (метод индукции) и др.

Сущность электроразведки

Электроразведка (точнее электромагнитная разведка) объединяет физические методы исследования геосфер Земли, поисков и разведки полезных ископаемых, основанные на изучении электрических и электромагнитных полей, существующих в Земле либо в силу естественных космических, атмосферных, физико-химических процессов, либо созданных искусственно. Используемые поля могут быть: установившимися, т.е. существующими свыше секунды (постоянными и переменными, гармоническими или квазигармоническими с частотой от миллигерц (1 мГц = Гц) до петагерц (1 ПГц = Гц)) и неустановившимися, импульсными с длительностью импульсов от микросекунд до секунд. С помощью разнообразной аппаратуры измеряют амплитудные и фазовые составляющие напряженности электрических ( Е) и магнитных (Н) полей. Если напряженность и структура естественных полей определяется их природой, интенсивностью, а также электромагнитными свойствами горных пород, то для искусственных полей она зависит и от мощности источника, частоты или длительности, а также способов возбуждения поля.

Основными электромагнитными свойствами горных пород являются удельное электрическое сопротивление (УЭС, или ), электрохимическая активность ( ), поляризуемость ( ), диэлектрическая ( ) и магнитная ( ) проницаемости. Электромагнитные свойства геологических сред, вмещающей среды, пластов, объектов, а также геометрические параметры последних служат основой для построения геоэлектрических разрезов. Геоэлектрический разрез над однородным по тому или иному электромагнитному свойству полупространством принято называть нормальным, а над неоднородным - аномальным. На выделении аномалий и основана электроразведка.

Изменение глубинности электроразведки достигается изменением мощности источников, частоты и длительности возбуждения, а также зависит от способов создания поля. Последние могут быть гальваническими (ток вводится в Землю с помощью заземлений) или индукционными (ток пропускается в незаземленную петлю, рамку). Глубинностью можно управлять также геометрическим (дистан-ционным) и частотным приемами. Сущность дистанционного (геометрического) приема сводится к увеличению расстояния между источником поля и точками, где оно измеряется, что ведет к росту объема среды, вовлекаемого в исследование. Частотный принцип увеличения глубинности основан на скин-эффекте, т.е. прижимании поля к поверхности Земли, тем большем, чем выше частота гармонического поля(f) или меньше время (t) после создания импульсного поля. Наоборот, чем меньше частота, больше (период колебаний) или t (его называют временем диффузии, становления поля, или переходного процесса), тем больше глубинность разведки. В целом она может меняться от сотен и десятков километров на постоянном токе и инфранизких частотах до сантиметров и миллиметров на частотах свыше гигагерц (Ггц = Гц).

Вследствие многообразия используемых полей, их частотно-временных спектров, электромагнитных свойств горных пород электроразведка отличается от других геофизических методов большим количеством методов (свыше 50). По физической природе их можно сгруппировать в методы естественного переменного электромагнитного поля, поляризационные (геоэлектрохимические), сопротивлений, индукционные низкочастотные, высокочастотные, сверхвысокочастотные, биогеофизические.

По геометрии и строению изучаемых геологических разрезов методы электроразведки условно делятся на: 1) зондирования, которые служат для расчленения горизонтально (или полого) слоистых разрезов в вертикальном направлении; 2) профилирования, предназначенные для изучения крутослоистых разрезов или выявления объектов в горизонтальном направлении; 3) подземно-скважинные (объемные), объединяющие методы выявления неоднородностей между скважинами, горными выработками и земной поверхностью.

Электроразведка с той или иной эффективностью применяется для решения практически всех задач, при которых используются геофизические методы. В частности, с помощью естественных переменных полей солнечно-космического происхождения разведываются земные недра на глубинах до 500 км и ведется изучение таких геосфер, как осадочная толща, кристаллические породы, земная кора, верхняя мантия. Электромагнитные зондирования используются при глубинных и структурных исследованиях, поисках нефти и газа. Электромагнитные профилирования применяются при картировочно- поисковых съемках, поисках рудных и нерудных полезных ископаемых. Объемные методы применяются при разведке месторождений. Малоглубинные электромагнитные зондирования и профилирования используются при инженерных и экологических исследованиях.

По технологии и месту проведения работ различают аэрокосмические, полевые (наземные), акваториальные (или аквальные, водные, морские, речные), подземные (шахтно-рудничные) и скважинные (межскважинные) методы электроразведки.

Электромагнитные свойства горных пород

Как отмечалось выше, к основным электромагнитным свойствам горных пород относятся: удельное электрическое сопротивление (ρ), электрохимическая активность (α), поляризуемость (η), диэлектрическая (θ) и магнитная (μ) проницаемости. Параметрами, а также частотой поля определяется коэффициент поглощения поля средой горных пород.

Удельное электрическое сопротивление (УЭС), измеряемое в омметрах (Омм), характеризует способность пород оказывать электрическое сопротивление прохождению тока и является наиболее универсальным электромагнитным свойством. Оно меняется в горных породах и рудах в очень широких пределах: от до Омм. Величина обратная называется электропроводностью и измеряется в сименсах на метр (См / м). Для наиболее распространенных осадочных, изверженных и метаморфических горных пород УЭС зависит от минерального состава, физико-механических и водных свойств горных пород, концентрации солей в подземных водах и в меньшей мере от их химического состава, а также от некоторых других факторов (температуры, глубины залегания, степени метаморфизма и др.).

1. Удельное электрическое сопротивление минералов зависит от их внутрикристаллических связей. Для минералов-диэлектриков (кварц, слюды, полевые шпаты и др.) с преимущественно ковалентными связями характерны очень высокие сопротивления ( - Омм). Минералы-полупроводники (карбонаты, сульфаты, галоиды и др.) имеют ионные связи и отличаются высокими сопротивлениями (- Омм). Глинистые минералы (гидрослюды, монтморилломонит, каолинит и др.) обладают ионно-ковалентными связями и выделяются достаточно низкими сопротивлениями ( Омм). Рудные минералы (самородные, некоторые окислы) отличаются электронной проводимостью и очень хорошо проводят ток ( Омм). Первые две группы минералов составляют "жесткий" скелет большинства горных пород. Глинистые минералы создают "пластичный" скелет, способный адсорбировать связанную воду, а породы с "жесткими" минералами могут насыщаться лишь растворами и свободной водой, т.е. той, которая может быть выкачана из породы.

2. Удельное электрическое сопротивление свободных подземных вод ( грави-тационных и капиллярных) меняется от долей Омм при высокой общей минерализации ( г / л) до 1000 Омм при низкой минерализации ( г / л) и может быть оценено по формуле . Химический состав растворенных в воде солей не играет существенной роли, поэтому по данным электроразведки можно судить лишь об общей минерализации подземных вод. Удельное электрическое сопротивление связанных вод, адсорбированных твердыми частицами породы, низкое и мало меняется (от 1 до 100 Омм). Это объясняется достаточно постоянной их минерализацией (3-1 г / л). Средняя минерализация вод мирового океана равна 36 г / л.

Вы можете изучить и скачать доклад-презентацию на тему Электроразведка. Презентация на заданную тему содержит 46 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Электроразведка - физические методы исследования геосфер Земли, поисков и разведки полезных ископаемых, основанные на изучении электрических и электромагнитных полей, существующих в Земле либо в силу естественных причин, либо созданных искусственно. Электроразведка - физические методы исследования геосфер Земли, поисков и разведки полезных ископаемых, основанные на изучении электрических и электромагнитных полей, существующих в Земле либо в силу естественных причин, либо созданных искусственно.

Электромагнитные свойства пород служат основой для построения геоэлектрических разрезов. Электромагнитные свойства пород служат основой для построения геоэлектрических разрезов. Геоэлектрический разрез: над однородным пространством - нормальный, над неоднородным - аномальный. На выделении аномалий и основана электроразведка.

По технологии и месту проведения работ различают методы электроразведки: По технологии и месту проведения работ различают методы электроразведки: аэрокосмические; полевые (наземные); акваториальные (или аквальные, водные, морские, речные); подземные (шахтно-рудничные); скважинные (межскважинные).

Поля космической природы Происхождение магнитотеллурических полей объясняется воздействием на ионосферу Земли потока заряженных частиц, посылаемых космосом (в основном, корпускулярным излучением Солнца). Магнитотеллурические поля проникают в Землю до глубин в десятки и первые сотни километров.

Электрохимические постоянные естественные поля обусловлены: Электрохимические постоянные естественные поля обусловлены: окислительно-восстановительными реакциями, протекающими на границах проводников: электронного (рудные минералы - например, сульфиды, окислы) и ионного (окружающие породы подземные воды), разностью окислительно-восстановительного потенциала подземных вод вдоль проводящего слоя (например, графита, антрацита).

Электрокинетические постоянные естественные поля обусловлены Электрокинетические постоянные естественные поля обусловлены диффузионно-адсорбционными и фильтрационными процессами в горных породах, насыщенных подземными водами. Естественные потенциалы наблюдаются также при движении (фильтрации) подземных вод через пористые породы.

Искусственные постоянные электрические поля Искусственные постоянные электрические поля создаются с помощью батарей, аккумуляторов или генераторов постоянного тока, подключаемых с помощью изолированных проводов к стержневым электродам – заземлителям. Простейшая система состоит из двух заземлителей – электродов А и В, подключенных с помощью проводов к плюсу и минусу источника Через электрод А ток поступает в землю, а через электрод В уходит из нее.

Простейшей прямой задачей электроразведки методами сопротивлений является расчет разности потенциалов (ΔU) в двух точках (М и N) над однородным изотропным полупространством с постоянным УЭС (), в которое через точечный источник (А) вводится ток силой J. Простейшей прямой задачей электроразведки методами сопротивлений является расчет разности потенциалов (ΔU) в двух точках (М и N) над однородным изотропным полупространством с постоянным УЭС (), в которое через точечный источник (А) вводится ток силой J.

Вследствие шаровой симметрии решаемой задачи токовые линии радиально направлены от точечного источника (А), а эквипотенциальные поверхности имеют вид полусфер. Используя закон Ома Вследствие шаровой симметрии решаемой задачи токовые линии радиально направлены от точечного источника (А), а эквипотенциальные поверхности имеют вид полусфер. Используя закон Ома ΔU = RJ, где R =  l / s – сопротивление проводника между двумя полусферами со средним радиусом r и площадью s = 2r2, удаленными на расстояниe l = MN, можно записать ΔU ≈ J MN/2r2 Для градиент-установок, когда MN r, в последней формуле можно заменить r2 ≈ AM∙AN, поэтому выражениe для расчета УЭС однородного полупространства с помощью трехэлектродной установки АМN получит вид:

Под установкой в электроразведке понимают комбинацию питающих и приемных электродов. Коэффициент K, зависящий от расстояний между ними, называется коэффициентом установки. Над неоднородной средой рассчитанное по этой формуле удельное электрическое сопротивление называется кажущимся сопротивлением (КС): Под установкой в электроразведке понимают комбинацию питающих и приемных электродов. Коэффициент K, зависящий от расстояний между ними, называется коэффициентом установки. Над неоднородной средой рассчитанное по этой формуле удельное электрическое сопротивление называется кажущимся сопротивлением (КС):

Каков же физический смысл ρК? Каков же физический смысл ρК? Известно, что напряженность электрического поля равна где jМN – плотность тока, ρMN – удельное сопротивление вблизи приемных электродов. Обозначив j0 = J/2r2 и учитывая, что на постоянных разносах и при однородном верхнем слое ρMN /j0 = const, получим:

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Высокочастотные методы электроразведки

Под высокочастотными (ВЧ) методами электроразведки обычно понимают исследования с помощью электрических и магнитных диполей на частотах выше звуковых (от 15 кГц до десятков МГц). Электромагнитные волны этих частот относятся к разряду радиоволн, и подчиняются их законам распространения, поглощения и отражения. Возбуждающие и приемные диполи здесь часто называют антеннами, т.к. они мало чем отличаются от подобных радиотехнических устройств. Радиоволны сильно затухают в земле, поэтому ВЧ методы - малоглубинные: от первых метров до 100-120 м. Из наземных методов разведки наибольшее распространение получили: метод РадиоКИП (радиокомпарации и пеленгации), дипольные электромагнитные методы профилирования (ДЭМП) и зондирования (ДИЗ - дистанционные, ЧЗ - частотные). Ниже рассматриваются некоторые практические аспекты применения этих методов.

В качестве генератора сигнала используют широковещательные станции ДВ (150-450 кГц) – СВ (525-1200 кГц) диапазона и специальные (навигационные) СДВ (15-30 кГц) станции. Приемник может быть специальным (ПИНП-2, СДВР-3(4), много зарубежных образцов метода СДВ - VLF), либо доработанным бытовым радиоприемником с миливольтметром. Основной способ – определение импеданса (волнового сопротивления среды), путем измерения напряженности электрического и магнитного поля радиостанции. Расчетная формула для эффективного кажущегося сопротивления:

r эфф = (1/2p fm ) × |Z|2

f – частота радиостанции, [Гц]

Z = Er/ Hj - импеданс, [Ом]

Er – радиальная электрическая составляющая поля

Hj - горизонтальная магнитная составляющая поля

Для амплитудных отчетов, формула вычисления импеданса выглядит так:

Z = [U(Er)/ U(Hj )] × (g/hl)

U(Er) и U(Hj ) – отчеты по измерителю (микровольтметру) [мкВ],

g – коэффициент преобразования (чувствительность) магнитной рамки [Ом × м],

hl - действующая длина электрической приемной линии [м]:

для заземленной линии hl = l (длина линии),

для стелющейся изолированной линии hl = 0,5 × l

В качестве магнитной рамки обычно используют ферритовую антенну, расчет чувствительности для нее, при известных параметрах, можно найти в радиотехническом справочнике. Если характеристики антенны неизвестны, то можно строить графики и карты в величинах: |Z|2 или |Z|2/f (если используете несколько частот радиостанций) , которые будут пропорциональны r эфф. Для удобства предоставления результатов, можно ввести свой масштабный коэффициент, или путем сопоставления графиков полученных другими методами, рассчитать согласующий коэффициент.

На рисунке 1 показан пример такого сопоставления. Установленный коэффициент согласования: k = 100, для расчета по ф-ле:

r эфф = k × [U(Er)/ U(Hj )]2

(рабочие измерения проводились по одной радиостанции).

Предоставляемые материалы (графики и карты) в РадиоКИП носят качественный характер, поэтому точного расчета параметров установки не требуется. Ошибки метода обусловлены изменчивостью поля, нестабильностью аппаратуры, влиянием рельефа и методическими просчетами (ориентация антенн, не идентичность наблюдений и т.п.). Для уменьшения погрешностей необходимо проводить учет вариации поля станции и контрольные измерения. Относительная ошибка измерений по Z не должна превышать 10 %.

Глубинность исследований методом РадиоКИП зависит от частоты радиосигнала: чем она больше, тем меньше проникающая глубина электромагнитного поля. Ориентировочную глубину определяют по величине скин-слоя, в котором амплитуда волн данной частоты ослабляется в 2,7 раза:

Проводя съемку на двух и более частотах можно судить об изменении электросопротивления с глубиной, вплоть до построения качественных геоэлектрических разрезов.

Методика работ определяется используемой аппаратурой. Кроме амплитудных измерений, возможны определения компонент наклона магнитного эллипса поляризации, вещественных и мнимых составляющих электромагнитного поля, амплитудно-фазовые измерения. При амплитудных измерениях желательно исследовать все три компоненты магнитного поля: Hj , Hr, Hz , электрическую составляющую Er , и по возможности Ez (вертикальная телескопическая антенна). Тогда по Hj , Er можно судить об эффективном сопротивлении; по Hr (минимальный сигнал магнитной антенны в горизонтальной плоскости) -контролировать помехи; Hz служит показателем неоднородности разреза, т.к. над горизонтально-слоистой средой эта составляющая отсутствует; по Ez - следить за мощностью и дрейфом сигнала станции. Профиля работ необходимо намечать в направлении на радиостанцию, это необходимо для удобства ориентации электрической антенны (Er), в виде незаземленного провода. При отклонении от пеленга не более 30 градусов, провод (антенна) просто тянется вдоль профиля, не требуя дополнительной ориентации. Длина изолированной линии обычно равняется шагу съемки (от 5 до 20м); точка наблюдения относится к концу стелющейся линии, противоположной (!) , подключаемой к измерителю.

РадиоКИП является самым экспрессным методом электроразведки, аппаратура легко носимая, работа ведется одним оператором; при этом метод решает практически все задачи профилирования. Им прекрасно выделяются обводненные зоны, выходы коренных пород к поверхности, вечная мерзлота и валунистость. Методу не требуется хорошее заземление, поэтому он может использоваться в любой сезон и на любой местности. К недостаткам относятся: нестабильность приема радиостанций (особенно в удаленных местностях), зависимость разбивки профилей от направления на станцию, влияние рельефа профиля и окружающей местности (в горных районах).

Дипольное электромагнитное профилирование (ДЭМП)

Метод ДЭМП основан на принципе возбуждения переменного электромагнитного поля высокой частоты, с помощью электрического или магнитного диполя, и регистрации компонент вторичного вихревого поля на некотором расстоянии. Если в методе РадиоКИП первичное поле дальней станции представляется в виде плоской волны, то в ДЭМП - она сферическая, что делает теоретическую модель более сложной и приближенной. Видимо это сказалось и на практической реализации метода, вследствие малого количества и номенклатуры выпущенного оборудования. ДЭМП скорее считали и считают одним из видов индукционных методов разведки, и соответствующая серийная аппаратура выпускалась только для регистрации магнитных компонент поля. Приборы для импедансных измерений делали только в некоторых научных организациях, в опытных экземплярах. За рубежом этот метод вообще не развивался. Итак, из аппаратуры ДЭМП, к настоящему времени, доступны приборы, основанные на возбуждении и регистрации поля магнитными диполями в виде рамок (АЭММ-3) и ферритовых антенн (ДЭМП-2(3), ДЭМП-СЧ). При этом, возбуждение проводят вертикальным магнитным диполем, а измеряют все три компоненты магнитного поля: Hz, Hr, Hj . Затем по приближенной формуле, либо исходя из теоретической зависимости Hz/Hr от волнового параметра p = r эфф/(r2f) для однородной среды, находят r эфф. Формула для приближенного расчета имеет вид:

r эфф = 2r2f × (Hz/Hr)

r – расстояние между генератором и приемником, [км]

f – частота генератора, [кГц]

Hz/Hr – отношение вертикальной и горизонтальной составляющей магнитного поля.

Более точная формула, аппроксимирующая зависимость для волнового параметра p , записывается так:

r эф = kэф r2f × (Hz/Hr) _____ где: _____ kэф = 2 × (1 - exp[- 0,34 × (Hz/Hr)])

Дистанционные индукционные зондирования (ДИЗ)

Аппаратурой ДЭМП можно проводить дистанционные (геометрические) зондирования. По сложившейся терминологии их называют индукционными. При работе вдвоем способ таков: Приемник неподвижен, генератор переносится на расстояние r1, r2 …и т.д. С увеличением r глубинность увеличивается. Типичные разносы: r = 5, 10, 15, 20, 25, 30, 40, 50, 70, 100 м. Точка зондирования относится к приемнику. Для проведения встречных наблюдений, приемник остается на точке зондирования, а генератор передвигают на расстояния r1, r2 … и т.д. в противоположном направлении и проводят повторные замеры. При работе в одиночку, для быстроты работы: генератор закрепляется, а оператор с приемником перемещается по профилю на расстояния r1, r2 …и снимает показания. Точку наблюдения также относят к приемнику. Тут надо немного пояснить: дело в том, что сравнивая профилирование на постоянном токе (точка наблюдений - середина установки) и ДЭМП, выявлены характерные экстремумы графиков, при отнесении точки записи ДЭМП к приемнику (см.рис.1).

При построении качественных геоэлектрических разрезов встречных систем наблюдений, выявлена хорошая детализация известных элементов разреза, при отнесении наблюдений также к приемнику. Вообще, для уменьшения влияния анизотропии пород разреза, желательно проводить наблюдения дважды: прямым и обратным ходом.

На рисунке 2 представлен пример сопоставления разрезов, пройденных ходом на юг (верхний), ходом на север (средний) и просуммированная трасса (нижняя) над проложенной в земле металлической трубой (диаметром 0,5 м на глубине около 4 м). Как видно из рисунка, труба хорошо выделяется при одиночном проходе только в одном направлении, возможно за счет “экранного” эффекта стенок канавы и таяния снега в северном углу. Однако при суммировании трасс, получаем очень контрастное выделение трубы в разрезе и меньший эхо-сигнал.

Расчет r эф производится по формулам профилирования для данного разноса (приближенным, либо теоретическим). Следует отметить, что построение кривых зондирования и количественная интерпретация затруднительна. Реальные кривые обычно отличаются от теоретических (более дифференцированы), даже во встречных системах наблюдений. Возможно, сказывается влияние токов смещения, на высокой частоте. Отбраковка и сглаживание сильно искажают результат и получаемый разрез, бывает, не стыкуется с геологическими данными. Количественная интерпретация возможна при благоприятных условиях: однородный слоистый разрез, без резких изменений по физическим свойствам. Для корректной отбраковки необходимы измерения на двух-трех частотах, что увеличивает объемы работ, но не всегда приводит к положительным результатам. Поэтому рекомендую результаты зондирований представлять в виде геоэлектрических псевдоразрезов. В качестве оси глубин использовать (в первом приближении) значение r/4, т.к. в отличии от электрического диполя, у которого в однородном поле эффективная мощность проводящего слоя heэф = r/2 , у магнитного диполя он в 2 раза меньше, т.е. hmэф = r/4 [В.С. Титлинов, Р.Б. Журавлева]. Для уточнение глубины, использовать измерения по известным буровым линиям, характерных для данной местности, и привлекать данные других методов, в частности сейсморазведки МПВ.

Выполняются рекогносцировочные магнитотеллурические измерения в точках, равномерно распределенных по площади. Строится кривая рекогносцировочного магнитотеллурического зондирования (рис. 2.29).


S I – расширенный диапазон S

Далее работы МТП проводятся или в диапазоне h или в диапазоне S. Время измерений – 1 – 2 часа на каждой точке. Диапазон S используют для вычисления суммарной продольной проводимости S толщи пород до опорного электрического горизонта, например фундамента, а диапазон h для определения глубины горизонта с . Затем строят карты этого горизонта и карты равных значений S.

Модификация ЭЗ носит название магнитотеллурического зондирования (МТЗ). Его сущность заключается в одновременной регистрации компонентов магнитотеллурического поля Ex, Ey, Hx, Hy, Hz на поверхности земли и последующем спектральном анализе результатов измерений. В общем случае МТЗ – это индуктивное зондирование, основанное на использовании скин-эффекта. Глубина проникновения тока зависит от периода вариаций Т.

Измерительная установка состоит из 2-х взаимно перпендикулярных приемных линий M1N1 и M2N2 (датчики электрического поля) и трех магнитометров - вариометров HX, HY, HZ (датчики магнитного поля). Датчики электрического и магнитных полей располагают строго в соответствии с элементами залегания пород и тектоникой района. Наблюдения производят в отдельных пунктах по системе профилей. Возможны одновременные наблюдения в нескольких пунктах.

Обработка данных МТЗ производится с помощью специального программного обеспечения, включающего:

1. Узкополосную фильтрацию;

2. Выделение гармонических составляющих Ex, Ey, Hx, Hy, Hz для заданной последовательности периодов Т;

3. Вычисление импедансов , ,

4. Определение сдвига фаз между взаимно перпендикулярными составляющими Ex, Hy, Ey, Hx.

5. Вычисление кажущихся сопротивлений

6. Построение графиков зондирования.

Интерпретация данных ЭП преимущественно качественная. Результаты оформляют в виде графиков характерных эффективных параметров (рис. 2.30).


1 - тектонически нарушенная зона,

2 - песчаник, 3 - покровные отложения,

5 - аргиллито-алевролитовая толща,

Наряду с графиками строят план-графики (сопоставление графиков и их корреляция по профилям) и карты этих параметров для фиксированного действующего расстояния. Это позволяет составить представление о местоположении искомых объектов и их геометрических особенностях (простирание, падение, примерные размеры). В отдельных случаях возможна количественная интерпретация на основе функционально-аналитической зависимости между характерными точками на графиках аномалий и параметрами создающих их геологических объектов. Необходимое условие достоверности интерпретации данных ЭП - использование дополнительной геолого-геофизической информации.

Интерпретация данных ЭЗ включает анализ кривых зондирования, построение геоэлектрической модели (разреза) на основе решения прямой и обратной задач и геологическое истолкование результатов (трансформацию геоэлектрического разреза в геологический).

Первоначально по результатам полевых измерений строятся в билогарифмическом масштабе (по осям абцисс и ординат логарифмический масштаб с заданным модулем) кривые ЭЗ с последующей качественной и количественной интерпретацией. Последняя представляет собой достаточно сложный процесс. Основной рабочей моделью служит трехслойный геоэлектрический разрез, согласно которому все кривые зондирования разделяются на четыре типа:


Для этих типов составлены семейства кривых, которые называются палетками. Интерпретация выполняется в ручном варианте и в компьютерном режиме по программам 1D, 2D, 3D. В последнем случае обязателен диалоговый (интерактивный) подход. Процесс основан на методе подбора, т.е. сравнении теоретических (палеточных) кривых с наблюденными. Далее строится геоэлектрический разрез, трансформируемый в геологический (рис. 70).


Рис. 2.32. Пример построения геоэлектрического разреза:

1 — пески, 2 — песчано-глинистые отложения,

3 - глинистый конгломерат, 4 - гранит, 5 - бокситы, 6 - точки ВЭЗ

Электроразведка широко применяется при геологоразведочных работах на все полезные ископаемые. При этом различают:

1) Малоглубинную электроразведку, используемую в инженерной геологии, гидрогеологии, геоэкологии и др.

2) Глубинную электроразведку, которая, прежде всего, решает задачи структурной и нефтегазовой геологии, а также задачи рудных и угольных месторождений.

К наиболее глубинным методам электроразведки относятся ЧЗ, ЗСД, ЗСБ, МТЗ. Эти методы применяются, как правило, в комплексе с сейсморазведкой и глубоким бурением, при том, что сейсморазведка более точно отбивает геологические структуры, а электроразведка позволяет отличать нефтегазоносные толщи от водоносных пластов (в одном случае ρ высокое, а в другом ρ низкое).

· Проектное задание раздела 1, модуля 2

1) Составить схему основных модификаций электроразведки и их разновидностей.

2) Раскрыть сущность электрических свойств природных сред и показать роль анизотропии удельного электрического сопротивлении и диэлектрической проницаемости. Описать модели электромагнитного поля (волновую, квазистационарнуюя и стационарную).

3) Дать толкование формирования в земной коре разных типов электромагнитных полей и составить представление о токах проводимости и смещения. Объяснить какой физический смысл имеют уравнения Максвелла и какие типы полей используются в электроразведке.

4) Показать способы возбуждения и приема сигналов электромагнитного поля. Объяснить, как зависит распределение плотности тока с глубиной от расстояния между источником и точкой измерения и от частоты электромагнитного поля. Дать понятие эффективной глубины проникновения этого поля.

5) Составить реферат об особенностях электромагнитных зондирований с толкованием понятий прямой и обратной задачи электроразведки.

6) Начертить схемы и определить задачи, решаемые методами и способами электромагнитного профилирования.

7) Представить формы основных типов кривых электрических зондирований. Объяснить сущность палеточных и компьютерных способов обработки электроразведочной информации.

8) Дать определение ближней и дальней зон распространения электромагнитного поля при различных способах их возбуждения и приема.

9) Составить типовые блок-схемы генераторных и измерительных установок, используемых в электроразведке.

10) Объяснить сущность качественной интерпретации кривых электромагнитных зондирований.

11) Объяснить особенности переменного, гармонически изменяющегося поля, раскрыть его преимущества и недостатки.

12) Объяснить принципы создания неустановившегося электромагнитного поля в электроразведке.

13) Раскрыть сущность метода магнитотеллурического поля (МТП). Как определяется суммарная продольная проводимость в этом методе?

14) Объяснить при решении каких геологических задач применяются электроразведочные методы.

15) Составить реферат о нормативных требованиях техники безопасности при производстве электроразведочных работ.

· Тесты рубежного контроля раздела 1, модуля 2

Вопрос: Какие типы полей изучают в электроразведке?

Ответ: Нормальное и аномальное. Естественные и искусственные постоянные и переменные электромагнитные поля. Гармоническое, неустановившееся и магнитотеллурическое.

Вопрос: На какие группы разделяются горные породы по электрическим свойствам?

Ответ: На электропроводящие и не проводящие электрический ток. На кристаллические (магматические и метаморфические) и осадочные (терригенные и хемогенные). На проводники, полупроводники и диэлектрики. На содержащие и несодержащие поровую влагу.

Вопрос: Что понимается под количественной интерпретацией результатов электромагнитного зондирования?

Ответ: Определение местоположения слоев в геологическом разрезе. Определение толщин (мощностей) и удельных электрических сопротивлений пластов в точке зондирования. Построение геоэлектрического разреза. Изучение геологического разреза на глубину.

Вопрос: Какие вы знаете модификации в электроразведке?

Ответ: Электромагнитное профилирование и электромагнитное зондирование. Методы на постоянном и на переменном токе. С гальваническим, индуктивным и смешанным возбуждением и приемом составляющих электромагнитного поля.

Вопрос: Какие задачи можно решать магнитотеллурическими методами?

Ответ: Прямые и обратные. Изучение археологических объектов. Геоструктурные при поисках и разведке нефтяных и газовых месторождений, изучения рельефа кристаллического фундамента, границ раздела в земной коре. Выявление и картирование приповерхностных неоднородностей.

Вопросы для самлподготовки:

Уравнения Максвелла. Физический смысл уравнений Максвелла
Поле точечного источника постоянного тока
Потенциал точечного источника над однородной землей
Естественные переменные электромагнитные поля
Естественные постоянные электрические поля
Искусственные постоянные электрические поля
Искусственные переменные гармонические электромагнитные поля
Искусственные импульсные (неустановившиеся) электромагнитные поля
Сверхвысокочастотные поля
Общая характеристика электромагнитных профилирований
Метод естественного электрического поля
Электропрофилирование методом сопротивлений
Электропрофилирование методом вызванной поляризации
Метод переменного естественного электромагнитного поля
Низкочастотное гармоническое профилирование
Методы переходных процессов
Радиоволновое профилирование
Сверхвысокочастотные методы профилирования
Общая характеристика электромагнитных зондирований
Электрическое зондирование
Зондирование методом вызванной поляризации
Магнитотеллурические методы
Зондирование методом становления поля
Частотное электромагнитное зондирование
Высокочастотные зондирования
Электромагнитные свойства горных пород

· Критерии оценки раздела 2-Электроразведка

· Литература к разделу 2-Электроразведка

1. Геофизика: учебник /Под ред. В.К. Хмелевского. - М.: КДУ, 2007. – С. 63-108.

2. Знаменский В.В. Общий курс полевой геофизики. Учебник. – М.: Недра, 1989. - С. 167-174, 202-207, 221-223.

3. Геофизические методы исследования. (Под редакцией В.К.Хмелевского). Учебное пособие. – М.: Недра, 1988. – С. 76-93, 122-133.

1. Электроразведка: пособие по электроразведочной практике для студентов геофизических специальностей. /Под редакцией проф. В.К.Хмелевского, доц. И.Н.Модина, доц. А.Г.Яковлева – М.: 2005. – С. 14-92, 114-266.

3. Бондаренко В.М., Лумпов Е.Е., Лыхин А.А. Интерпретация геофизических данных. Учебное пособие. – М.: Из-во МГГА, 1993. С. 11-44.

4. Федынский В.В. Разведочная геофизика. Учебное пособие. – М.: Недра, 1967. – С. 401-403.

5. Якубовский Ю.В., Ренард И.В. Электроразведка: Учебник для вузов. М.: Недра, 1991. - 418 с.

Раздел 2 модуля 2:. Сейсморазведка.

Лекция 10. Тема: Физические и геологические основы сейсморазведки. Сейсмоволновые характеристики горных пород.

Сейсморазведка – представляет собой раздел разведочной геофизики, в котором изучаются поля упругих деформаций происходящих в геологических средах вследствие механических воздействий. Это взрывы, удары, техногенные вибрации, тектонические процессы, в частности землетрясения. Как и в других разделах геофизики поля разделяются на искусственные, используемые преимущественно в сейсморазведке, и естественные, которые изучают в основном в сейсмологии.

Упругость - это свойство природных объектов сопротивляться изменению их объема и формы вследствие механических напряжений. Параметрами упругости являются Модуль Юнга Е и Коэффициент Пуассона ν. Модуль Е измеряется в Паскалях (Па) и выражается формулой:

Рх - приложенное напряжение по заданному направлению, например х,

ех - деформация от приложенного напряжения.

Объемная деформация для каждой точки среды характеризуется суммой деформаций по направлениям координатных осей прямоугольной системы:

Коэффициент ν выражается отношением меры растяжения-сжатия геологических объектов к их удлинению при приложении растягивающей нагрузки:

В результате упругих деформаций в природных объектах возникают упругие волны, основными из которых являются продольные υр и поперечные υs. Эти волны называются объемными. Продольныеволны возникают вследствие процессов расширения-сжатия поперечные -процессов сдвига.

Помимо объемных волн на границе с дневной поверхностью возникают поверхностные волны:

1) Волны Релея (частицы колеблются в вертикальных направлениях);

2) Волны Лява (частицы колеблются в горизонтальных направлениях).

Продольные и поперечные волны связаны с показателями упругости следующими соотношениями:

δ – плотность пород.

Поля упругих деформаций, как и другие геофизические поля, характеризуются параметрами напряженности и потенциала. Кроме того, в сейсморазведке изучают колебательные процессы и их распределением во времени. Пользуются показателями А - амплитуды сигнала и t - времени распространения упругих волн.

Наиболее эффективными источниками сейсмических колебаний являются взрывы, которые производятся при сейсморазведочных работах в специально пробуренных шпурах или скважинах. Взрывы выполняют под покровными отложениями, то есть ниже зоны малых скоростей (ЗМС), где сейсмические волны интенсивно затухают. К другим источниками сейсмического поля относятся удары. Разработаны специальные невзрывные источники которые позволяют выполнять многократные возбуждения, необходимые для накапливания сигналов.

Процесс возникновения сейсмоволнового поля от взрыва условно подразделяется на три зоны. В точке взрыва происходит разрушение пород. Далее образуется зона уплотнения, которая переходит в зону упругих колебаний. Процесс упругих деформаций сопровождается чередованием областей уплотнения и разрежения. Граница между зонами затронутыми и незатронутыми колебаниями есть фронт, а граница, где волна прошла и колебания затухли называется тылом волны(рис. 2.33).

Читайте также: