Реферат на тему электрические цепи

Обновлено: 30.06.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Напряжения и токи в электрических цепях

Линейные электрические цепи

Элементы электрических цепей и их свойства

Напряжения и токи в электрических цепях

Электрической цепью называют совокупность элементов и устройств, предназначенных для прохождения тока по определенному, заранее заданному алгоритму и описываемых с помощью понятий тока и напряжения.

Понятия электрического тока и напряжения являются одними из основных в теории электрических цепей. Напряжения и токи представляют собой скалярные величины, которые могут принимать лишь вещественные значения – положительные или отрицательные. Значение напряжения (тока) в данный момент времени называют мгновенным значением напряжения (тока). Мгновенные значения напряжений и токов принято обозначать соответственно буквами . Чтобы подчеркнуть их зависимость от переменной

Если в данный момент времени , это означает, что направление тока в проводнике совпадает с направлением, указанным стрелкой, т. е. положительные заряды перемещаются в направлении стрелки.

В теории электрических цепей допускается возможность однозначной, не зависящей от выбора пути, оценки электрических напряжений меду любыми двумя зажимами исследуемой электрической цепи. Это позволяет определять электрическое напряжение как разность потенциалов между соответствующими зажимами электрической цепи. Между зажимами 1-2. (рис. 1.2.) напряжение можно определить двумя способами:

Чаще других используются понятия двухполюсника и четырехполюсника.

Двухполюсником (N-полюсником) может быть названа любая электрическая цепь, которая взаимодействует с внешними по отношению к ней цепями, т. е. обменивается с ними энергией, через посредство двух (N) ее полюсов и только через них. Двухполюсник будет пассивным, если энергия, отданная двухполюсником во внешнюю цепь, ни при каких условиях не может превышать той, которая была к нему подведена за все предшествующее время.

Определение пассивного (активного) N-полюсника аналогично определению пассивного (активного) двухполюсника.

Следует различать понятия пассивного (активного) N-полюсника и пассивной (активной) электрической цепи. Электрическая цепь будет активной, если в нее входит хотя бы один активный двухполюсник, или N-полюсник, и пассивной в противном случае. Цепь всегда будет активной, если она содержит активные компоненты, например транзисторы, электронные лампы, операционные усилители, или те или иные генераторы.

Если величины R, L, C не зависят от электрического режима (от протекающих в них токах или приложенных напряжений) и остаются постоянными во времени, т. е. R, L, C = const, то элементы называются линейными. Соответственно и РТУ, содержащие только такие элементы, называются линейными. Процессы в линейных электрических цепях описываются линейными дифференциальными или алгебраическими уравнениями с постоянными коэффициентами.

Если R, L, C зависят от электрического режима, т. е.

Различают активные и пассивные элементы электрических цепей. К первым относятся источники, а ко вторым – элементы резистивного сопротивления, индуктивности и емкости. Индуктивности и емкости часто называют реактивными элементами.

Резистивное сопротивление

Элемент электрической цепи, который обладает свойством только рассеивать энергию, называется элементом резистивного сопротивления.

Напряжение, приложенное к элементу, и ток, проходящий через него, при согласном выборе положительных направлений напряжения и тока связаны между собой линейным соотношением

Мгновенная мощность электрических колебаний в резистивном сопротивлении:

ни при одном значении времени не может быть отрицательной, иначе элемент мог бы вводить или возвращать энергию во внешнюю по отношению к нему цепь. Положительно, естественно, и количество электрической энергии, рассеянное в элементе за любой конечный интервал времени , [Дж].

Индуктивность

Элемент электрической цепи, который обладает свойством только запасать энергию в магнитном поле, называется элементом индуктивности. Между напряжением, приложенным к элементу и током, проходящем через элемент, при согласном выборе их положительных направлений существует линейное соотношение:

Мгновенная мощность в элементе

Энергия, запасенная в емкости к моменту t, такова:

Рис. 1. 8. Рис. 1. 9.

Источники, параметры которых не зависят от свойств цепи, называются независимыми.

Примером источника электрической энергии, имеющего в первом приближении свойства источника напряжения, является аккумулятор большой емкости. Его внутренне сопротивление настолько мало, что при изменении тока в широких пределах напряжение на зажимах аккумулятора практически не изменяется.

Источником тока считается такой источник, через внешние зажимы которого проходит ток, независящий от свойств цепи, внешней по отношению к источнику. Этот ток называют задающим током источника.

Условное обозначение источника тока приведено на рис. 1. 9. левее пунктирной линии. Пунктиром показаны пассивные элементы с той целью, чтобы подчеркнуть, что в цепи всегда должен быть замкнутый путь для прохождения тока источника. При и задающим током

Величина e определяется из опыта холостого хода. Действительно, при разомкнутых зажимах 1-2 ток через R0 не проходит и напряжение на нем равно нулю. Подключенный к этим зажимам вольтметр покажет напряжение равное e.

Если закоротить зажимы 1-2, то весь ток источника пойдет через короткозамкнутые зажимы. Включенный между ними амперметр покажет величину тока равную .

Это выражение дает возможность по известным одной схемы находить и другой.

В теории электрических цепей рассматриваются и зависимые, или управляемые источники. Они представляют собой результат идеализации свойств реальных транзисторных и ламповых усилителей, используемых в линейном режиме.

Зависимый источник напряжения представляет собой идеализированную электрическую цепь с двумя парами зажимов. К одной из них подсоединен источник напряжения, у которого задающее напряжение пропорционально напряжению (току), подведенному к другой паре зажимов, и только этому (управляющему) напряжению (току). Аналогично вводится и понятие зависимого источника тока.

При анализе колебаний в реальной линейной электрической цепи она заменяется некоторой идеализированной цепью из того или иного числа элементов, колебания в которой пренебрежимо мало отличаются от колебаний в анализируемой цепи.

Теория электрических цепей как наука посвящена решению задач анализа и синтеза электрических цепей. К электрическим цепям относятся огромное число технических устройств самого разнообразного назначения. Там, где речь идет об электрическом токе или электрическом напряжении, имеют дело с электрической цепью. Задача анализа состоит в качественной и количественной оценках свойств заданной электрической цепи, а задача синтеза – в построении цепи с заданными свойствами.

1. Белецкий А. Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986.

2. Бакалов В. П. и др. Теория электрических цепей. – М.: Радио и связь, 1998.

3. Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974.

Электрической цепью называют совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об ЭДС, токе и напряжении.

Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, в противном случае — нелинейным.

Линейная электрическая цепь — цепь, все элементы которой являются линейными.

Нелинейная электрическая цепь — цепь, содержащая хотя бы один нелинейный элемент.

Электрическая схема — графическое изображение электрической цепи, содержащее условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи с источником ЭДС, обладающим внутренним сопротивлением R0 , и приемником электрической энергии с сопротивлением Rн , представлена на рис. 1.1.


Контур — любой замкнутый путь, проходящий по нескольким ветвям.

Независимый контур — контур, в состав которого входит хотя бы одна ветвь, не принадлежащая другим контурам. Число независимых контуров в электрической схеме n = p - (q - 1).

В электрической схеме, представленной на рис. 1.2, три узла (q = 3), пять ветвей (p = 5), шесть контуров и три независимых контура (n = 3). Между узлами 1 и 3 имеются две параллельные ветви с источниками ЭДС Е1 и Е2 , между узлами 2 и 3 также имеются две параллельные ветви с резисторами R1 и R2 .

Условные положительные направления ЭДС источников, токов в ветвях и напряжений между узлами или на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На электрических схемах их указывают стрелками (см. рис. 1.2):

а) для ЭДС источников — произвольно, при этом полюс (зажим), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу (зажиму);

б) для токов в ветвях, содержащих источники ЭДС — совпадающими с направлением ЭДС, во всех других ветвях — произвольно;

в) для напряжений — совпадающими с направлением тока в ветви или элементе цепи.


Источник ЭДС на электрической схеме можно заменить источником напряжения, при этом условное положительное направление напряжения источника задается противоположным направлению ЭДС (см. рис. 1.2, напряжения U1 и U2)

Закон Ома для участка цепи:

I = U / R или U = RI. (1.1)

Для ветви 1 – 2 (см. рис. 1.2): U3 = R3 I3 – называют напряжением или падением напряжения на резисторе R3 , I3 = U3 / R3 – ток в резисторе.

Первый закон Кирхгофа: сумма токов в узле равна нулю


(1.2)

где т — число ветвей, подключенных к узлу.

Второй закон Кирхгофа. Формулировка 1 : сумма ЭДС в любом контуре электрической цепи равна сумме падений напряжений на всех элементах этого контура


(1.3а)

где n — число источников ЭДС в контуре, m — число элементов с сопротивлением Rk в контуре, Uk = Rk Ik — напряжение или падение напряжения на k-м элементе контура.

Формулировка 2: сумма напряжений на всех элементах контура, включая источники ЭДС, равна нулю, т. е.


(1.3б)

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

Например, для контура II (см. рис. 1.2) при указанном направлении обхода уравнения имеют вид

Вторым законом Кирхгофа можно пользоваться и для определения напряжения между двумя произвольными точками схемы. Для этого в уравнения (1.3) необходимо ввести напряжение между этими точками, которое как бы дополняет незамкнутый контур до замкнутого. Например, для определения напряжения Uab (см. рис. 1.2) можно написать уравнение U0l – U02 – Uab = 0, откуда Uab = E1 – E2 = U1 – U2 .

Закон Джоуля-Ленца: количество теплоты, выделяемой в элементе электрической цепи, обладающем сопротивлением R, за время t равно:

Q = PI 2 t = GU 2 t = UIt = Pt, (1.4)

где G = 1 / R – электрическая проводимость, Р = UI – электрическая мощность.

1.2 Расчет линейных электрических цепей с использованием

законов Ома и Кирхгофа

Законы Ома и Кирхгофа используют, как правило, при расчете относительно простых электрических цепей с небольшим числом контуров, хотя принципиально с их помощью можно рассчитать сколь угодно сложные электрические цепи. Однако решение в этом случае может оказаться слишком громоздким и потребует больших затрат времени. По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже.

При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС или напряжения, сопротивления элементов электрической цепи, и задача сводится к определению токов в ветвях цепи. Зная токи, можно найти напряжения на элементах цепи, мощность отдельных элементов и электрической цепи в целом, мощность источников и др.

1.3 Основные методы расчета сложных электрических цепей

1.3.1 Метод контурных токов (МКТ)

В общем случае система уравнений для цепи, имеющей и независимых контуров имеет следующий вид:

где E11 , E22 , E33 , … , Enn – контурные ЭДС, равные алгебраической сумме ЭДС в соответствующих контурах, причем ЭДС считают положительными, если их условные положительные направления совпадают с направлением обхода контура (контурного тока), и отрицательными, если их направления противоположны; R11 , R22 , R33 , … , Rnn — собственные сопротивления тех же контуров, равные сумме сопротивлений всех резисторов, принадлежащих соответствующему контуру; R12 = R21 , R23 = R32 и так далее — взаимные сопротивления контуров, равные сумме сопротивлений резисторов, принадлежащих одновременно двум контурам, номера которых указаны в индексе. При этом взаимные сопротивления надо принимать: а) положительными, если контурные токи в них направлены одинаково; б) отрицательными, если они направлены встречно; в) равными нулю, в) равными нулю, если контуры не имеют общей ветви.

Число независимых контуров, следовательно, и уравнений, определяют из соотношения n = p – (q – 1), где по-прежнему p — число ветвей, а q – число узлов. Таким образом, МКТ позволяет понизить порядок системы уравнений на (q – 1). После решения системы уравнений относительно контурных токов определяют токи в ветвях, предварительно задав их условные положительные направления.

Например, для схемы (рис. 1.3), имеющей три независимых контура I, II и III с контурными токами I11 , I22 и I33 в них, система уравнений имеет вид



Токи в ветвях при указанных на схеме условных положительных направлениях:

Если некоторые токи в ветвях окажутся отрицательными, его означает, что действительные направления токов в них противоположны условно принятым.

1.3.2 Метод узловых потенциалов (МУП)

Ток в любой ветви электрической цепи можно определить по известным потенциалам узлов, к которым она подключена, или напряжению между этими узлами.


Согласно второму закону Кирхгофа для любой ветви электрической цепи, схема которой приведена на рисунке, при заданных условных положительных направлениях ЭДС, тока и напряжения и указанном направлении обхода контура можно написать уравнение -Ukm + Rkm Ikm = Ekm , откуда

Метод расчета электрических цепей, в котором в качестве неизвестных принимают потенциалы узлов схемы, называют методом узловых потенциалов. Метод более эффективен по сравнению с методом контурных токов в случае, если число узлов в схеме меньше или равно числу независимых контуров, так как в любой электрической цепи потенциал одного из узлов можно принять равным нулю, а число узлов, потенциалы которых следует определить относительно этого узла, станет равным (q -1).

Система уравнений для неизвестных потенциалов любой электрической цепи, имеющей q узлов, может быть получена из системы уравнений, составленной по первому закону Кирхгофа для (q - 1) узлов, если в ней токи в ветвях выразить через потенциалы узлов в соответствии с (1.8). В общем случае эта система имеет вид

После решения системы (1.9) относительно узловых потенциалов определяют напряжения между узлами Ukm и токи в ветвях в соответствии с (1.8). Токи в ветвях, не содержащих источников ЭДС, определяют аналогично, полагая в уравнении (1.8) Ekm = 0.

Например, для электрической цепи (см. рис. 1.3), если принять потенциал узла 3 равным нулю (φ3 = 0), система уравнений будет иметь вид


Метод узловых потенциалов особенно эффективен при расчете электрических цепей с двумя узлами и большим количеством параллельных ветвей, при этом, если принять потенциал одного из узлов равным нулю, например, j2 = 0, то напряжение между узлами будет равно потенциалу другого узла


где п — число параллельных ветвей цепи, а m — число ветвей, содержащих источники ЭДС.


1.3.3 Метод эквивалентного генератора (МЭГ)

Метод позволяет в ряде случаев относительно просто определить ток в какой-либо одной ветви сложной электрической цепи и исследовать поведение этой ветви при изменении ее сопротивления. Сущность метода заключается в том, что по отношению к исследуемой ветви сложная цепь заменяется эквивалентным источником (эквивалентным генератором — ЭГ) с ЭДС Ег и внутренним сопротивлением Rг .

Например, по отношению к ветви с резистором R3 электрическую схему, приведенную на рис. 1.4, а, можно заменить эквивалентной (см. рис. 1.4, б).

Если известны ЭДС и сопротивление эквивалентного генератора, то ток ветви может быть найден как

и задача сводится к определению значений Ег и Rг .

Уравнение (1.12) справедливо при любых значениях сопротивления резистора R3 . Так, при холостом ходе ЭГ, когда узлы 1 и 2 разомкнуты, I3 = 0 и Ег = U0 , где U0 = (φ1 – φ2 ) — напряжение холостого хода эквивалентного генератора, φ1 и φ2 — потенциалы узлов 1 и 2 в этом режиме.

При коротком замыкании ветви (R3 = 0) ток в ней Iкз = Eг /Rг = U0 /Rг ,откуда внутреннее сопротивление ЭГ Rг = U0 /Iкз . Таким образом, для определения параметров эквивалентного генератора необходимо рассчитать любым из известных методов потенциалы узлов φ1 и φ2 в режиме холостого хода ЭГ и ток короткого замыкания в исследуемой ветви.

Приведенный метод определения параметров эквивалентного генератора является наиболее универсальным, однако в ряде случаев сопротивление Rг , проще рассчитать как эквивалентное сопротивление между разомкнутыми узлами исследуемой ветви сложной цепи в предположении, что все источники ЭДС в цепи закорочены, как показано на рис. 1.4, в.

1. Иванов И. И., Лукин А. Ф., Соловьев Г. И.

2. Иванов И. И., Равдоник В.С.

Электротехника: Учебник для вузов. — М.: Высшая школа, 1984.

3. Электротехнический справочник. В 3-х т. Т. 1. Э45 Общие вопросы. Электротехнические материалы/ Под общ. ред. профессоров МЭИ В. Г.Герасимова, П. Г. Грудинского, Л. А. Жукова и др. — 6-е изд., испр. и доп. — М.: Энергия, 1980.

Электрические цепи для чайников: определения, элементы, обозначения

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.


Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.


Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.


При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы


Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.


Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:


Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов


Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Гост

ГОСТ

Любая электрическая цепь состоит из различных объектов и устройств, которые создают оптимальные условия для прохождения электрического тока. Для того чтобы описать электромагнитные процессы, которые происходят в каждом устройстве, применяются такие понятия, как ток, напряжение и электродвижущая сила.

Электрические цепи: понятие, классификация элементов и источников

Электрическая цепь – это совокупность электротехнических устройств, которые образуют путь для нормального прохождения электрического тока и которые предназначены для распределения, передачи и взаимного преобразования электрической и другой энергии.

Электрические цепи, в которых образуется электрическая энергия, а ее преобразование и передача осуществляется при неизменных напряжениях, называются цепями постоянного тока.

В таких цепях магнитные и электрические поля во времени не изменяются. Поскольку напряжения и токи постоянны, то изменения во времени этих величин приравниваются нулю:

Поэтому ток через емкость и напряжение на индуктивности, которые зависят от этих величин, также приравниваются нулю:

Исходя из этого, можно сделать вывод, что сопротивление постоянному току в индуктивности равно нулю, а емкость, напротив, - это бесконечно большое сопротивление. Поэтому катушка индуктивности в цепи постоянного тока представляет собой обычный провод, сопротивлением которого можно пренебречь, а емкость – это разрыв электрической цепи.

Все элементы электрической цепи условно можно классифицировать на три составные части:

  1. Источники питания. Все элементы цепи, что относятся к данной группе, вырабатывают электрическую энергию.
  2. Преобразующие элементы. Элементы, которые относятся ко второй группе, преобразуют электричество в другие виды энергии. В физике они известны как приемники.
  3. Передающие устройства. К третьей группе относятся передающие устройства. Это провода и другие установки, которые обеспечивают качество и уровень напряжения.

Готовые работы на аналогичную тему

В источниках электрической энергии происходит преобразование химической, механической, тепловой и других видов энергии в электрическую. К источникам электроэнергии можно отнести:

  • гальванические элементы;
  • электромагнитные генераторы;
  • термопреобразователи.

В приемниках электрической энергии (электротермические устройства, электродвигатели, лампы накаливания, электролизные ванны, резисторы) электроэнергия преобразуется в световую, тепловую, химическую, механическую.

Схемы электрических цепей

Элементы электрических цепей соединяются в схемы разными способами. Для каждой из схем существуют определенные закономерности, которые сформулированы и установлены учеными Омом и Кирхгофом.

Соединение потребителей в электрических цепях может быть трех видов:

  1. Последовательное соединение. В таком случае с увеличением количества потребителей происходит увеличение общего сопротивления электрической цепи. Из этого следует, что значение общего сопротивления состоит из суммы сопротивлений подключенной нагрузки. Поскольку во всех участках электрической цепи протекает одинаковый ток, то на каждый отдельный элемент распределяется только часть общего напряжения. Если какое-то устройство или прибор останавливает свою работу, то происходит разрыв электрической цепи. Иными словами, если из строя выйдет хотя бы одна лампочка, остальные тоже не будут работать (например, елочная гирлянда). Но в последовательную цепь можно включить огромное количество элементов, каждый из которых рассчитан на меньшее напряжение.
  2. Параллельное соединение. При такой схеме к двум точкам электрической цепи подключается несколько потребителей. На каждом участке напряжение будет приравниваться тому напряжению, которое приложено к каждой узловой точке. Данная схема позволяет увидеть возможность протекания электрического тока различными путями. Ток, который протекает у места разветвления, дальше проходит по двум нагрузкам, что имеют определенное сопротивление. В результате этого он приравнивается сумме токов, которые расходятся от данной точки. Происходит снижение сопротивления с увеличением ее общей проходимости. Благодаря соединению обеспечивается независимая работа потребителей. Если из строя выйдет один из них, то остальные потребители будут работать слаженно, поскольку цепь не разрывается.
  3. Комбинированное соединение. Большинство приборов на практике включаются в электрическую цепь сразу двумя способами (параллельно и последовательно). Поэтому подобные соединения носят название комбинированные. Например, вся защитная аппаратура соединяется последовательно, тем самым, обеспечивая разрыв цепи. Лампочки и розетки, всегда включаются параллельно, исключая взаимодействие между собой. Частое использование комбинированного соединения вызвано различным энергопотреблением. Их сопротивления при постоянном напряжении будут отличаться между собой. Комбинированное соединение позволяет распределить нагрузку на линиях и предотвратить перегрузку.

Она представлена в виде идеализированной цепи, которая является расчетной моделью реальной электрической цепи. Иногда она называется эквивалентной схемой замещения. По возможности данная схема должна отражать реальные процессы, что происходят в действительности. Каждый реальный элемент цепи при расчетах заменяется элементами схемы.

В цепях постоянного электрического тока используются два элемента: резистивный элемент с сопротивлением $R$ и источник энергии с внутренним сопротивлением $r_0$. Под внутренним сопротивлением генератора понимается сопротивление всех его внутренних элементов электрическому току.

Сопротивление приемника $R$ может охарактеризовать потребление электрической энергии, иными словами, превращение электроэнергии в другие виды энергии с выделением мощности:

Для того чтобы провести анализ электрической цепи важно выделить несколько понятий: ветвь, узел, контур.

Ветвь – это участок цепи, который образуется элементами, что соединены последовательно, и характеризуется собственными значениями электрического тока в определенный момент.

Узлом является точка соединения нескольких ветвей. Если в месте пересечения на электрической схеме отображается точка, то на этом месте существует электрическое соединение двух линий. В противном случае узла нет.

Контур – это замкнутая часть электрической цепи, которая состоит из нескольких узлов и ветвей.

Заземление любой точки схемы говорит о том, что потенциал данной точки приравнивается нулю.

Активные элементы электрической цепи

В качестве источников энергии в линейных электрических цепях различают источники ЭДС и источники электрического тока. Идеальный источник ЭДС имеет неизменную электродвижущую силу и напряжение на выходных зажимах. У реального источника напряжение и ЭДС изменяются при изменении нагрузки. В электрической схеме это можно учесть последовательным включением резистора $r_0$.

Напряжение $U_ab$ напрямую зависит от тока приемника и приравнивается разности между электродвижущей силой генератора и уменьшением напряжения на его внутреннем сопротивлении $r_0$.

$U_ab = \varphi_a - \varphi_b$

Ток, который протекает по электрической цепи, зависит от сопротивления нагрузки:

Если принять ЭДС источника, где внутреннее сопротивление и сопротивление приемника не зависит от напряжения и тока, то внешняя характеристика источника энергии $U_12 = f(l)$ и вольтамперная характеристика приемника $U_ab = f(l)$ будут линейными.

Для источника электрического тока характерно бесконечное внутреннее сопротивление и бесконечное значение электродвижущей силы. При этом выполняется следующее равенство:

Если $r_0\geqslant R_H$ и $l_0\leqslant l$, то источник энергии находится в режиме, который близок к короткому замыканию. Тогда $l_0=0$/

Источник с внутренним сопротивлением $g_0 = 0$ называется идеальным источником.

Пассивные элементы электрической цепи

Главными пассивными элементами электрических цепей являются индуктивные, резистивные и емкостные. Чтобы понять их силовые характеристики, необходимо рассмотреть их при постоянном токе.

Электротехническое устройство, которое обладает сопротивлением и применяется для ограничения электрического тока, называется резистором.

Резистивными элементами называются идеализированные модели резисторов. Основной величиной, которая характеризует резистор, является сопротивление $R$. Определить его можно из следующего соотношения:

$U_ab = RI$ - закон Ома.

Сопротивление можно измерить в Омах: $[R] = [\frac ] = \frac = Ом$

К пассивным элементам также можно отнести катушку индуктивности L.

Катушка – это обмотка изолированного провода, который намотан на каркас или без каркаса (имеются выводы для присоединения).

$L$ – это параметр, определяющий способность катушки формировать магнитное поле. Он напрямую зависит от геометрических параметров катушки, количества витков, а также от магнитных свойств сердечника, на который наматывается катушка.

Из-за возникновения магнитного поля электрическая цепь пронизывается магнитным потоком. Для того чтобы охарактеризовать катушку индуктивности, как основного элемента цепи, нужно найти потокосцепление $\psi$. Индуктивность $L$ – это коэффициент пропорциональности между $\psi$ и $l$:

Между двумя проводниками, которые разделяются диэлектриком, есть электрическая емкость. Коэффициент пропорциональности С в таком случае называют емкостью:

Электрические цепи для чайников: определения, элементы, обозначения

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.


Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.


Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.


При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы


Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.


Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:


Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов


Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Читайте также: