Реферат на тему цифровой звук

Обновлено: 02.07.2024

Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, завывание ветра и шелест листьев, пение птиц и голоса людей. О том, как рождаются звуки и что они собой представляют люди начали догадываться очень давно. Еще древнегреческий философ и ученый - энциклопедист Аристотель, исходя из наблюдений, объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. Так, колеблющаяся струна то разряжает, то уплотняет воздух, а из-за упругости воздуха эти чередующиеся воздействия передаются дальше в пространство - от слоя к слою, возникают упругие волны. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущение звука.

Содержание

Введение 3
Кодирование звуковой информации 4
Компьютерное представление звуковой информации4
Аналого-цифровой преобразователь4
одмешивание псевдослучайного сигнала6
2.3. Кодирование оцифрованного звука перед его записью на носитель7
2.4. Цифро-аналоговый преобразователь9
2.5. Теорема Котельникова10
3. Помехоустойчивое и канальное кодирование11
4. Основные звуковые форматы12
5. Цифровые синтезаторы музыкальных звуков14
6. Анализ музыкальных инструментов14
7. Синтез музыкальных звуков17
8. Обработка звука17
Заключение19
Список литературы20

Вложенные файлы: 1 файл

тертычный реферат.docx

  1. Кодирование звуковой информации 4
  2. Компьютерное представление звуковой информации4
    1. Аналого-цифровой преобразователь4
    2. одмешивание псевдослучайного сигнала6

    2.3. Кодирование оцифрованного звука перед его записью на носитель7

    2.4. Цифро-аналоговый преобразователь9

    2.5. Теорема Котельникова10

    3. Помехоустойчивое и канальное кодирование11

    4. Основные звуковые форматы12

    5. Цифровые синтезаторы музыкальных звуков14

    6. Анализ музыкальных инструментов14

    7. Синтез музыкальных звуков17

    8. Обработка звука17

    Заключение19

    Список литературы20

    Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, завывание ветра и шелест листьев, пение птиц и голоса людей. О том, как рождаются звуки и что они собой представляют люди начали догадываться очень давно. Еще древнегреческий философ и ученый - энциклопедист Аристотель, исходя из наблюдений, объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. Так, колеблющаяся струна то разряжает, то уплотняет воздух, а из-за упругости воздуха эти чередующиеся воздействия передаются дальше в пространство - от слоя к слою, возникают упругие волны. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущение звука.

    На слух человек воспринимает упругие волны, имеющие частоту где-то в пределах от 16 Гц до 20 кГц (1 Гц - 1 колебание в секунду). В соответствии с этим упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. В учении о звуке важны такие понятия как тон и тембр звука. Всякий реальный звук, будь то игра музыкальных инструментов или голос человека, - это своеобразная смесь многих гармонических колебаний с определенным набором частот.

    Колебание, которое имеет наиболее низкую частоту, называют основным тоном, другие - обертонами.

    Тембр - разное количество обертонов, присущих тому или иному звуку, которое придает ему особую окраску. Отличие одного тембра от другого обусловлено не только числом, но и интенсивностью обертонов, сопровождающих звучание основного тона. Именно по тембру мы легко можем отличить звуки рояля и скрипки, гитары и флейты, узнать голос знакомого человека.

    Музыкальный звук можно характеризовать тремя качествами: тембром, т. е. окраской звука, которая зависит от формы колебаний, высотой, определяющейся числом колебаний в секунду (частотой), и громкостью, зависящей от интенсивности колебаний.

    Компьютер широко применяют в настоящее время в различных сферах. Не стала исключением и обработка звуковой информации, музыка. До 1983 года все записи музыки выходили на виниловых пластинках и компакт-кассетах. В настоящее время широкое распространение получили компакт-диски. Если имеется компьютер, на котором установлена студийная звуковая плата, с подключенными к ней MIDI-клавиатурой и микрофоном, то можно работать со специализированным музыкальным программным обеспечением.

    Из курса физики известно, что звук является волной, т.е. колебанием среды. В повседневной жизни средой является воздух, но на самом деле это необязательное условие. К примеру, звук хорошо распространяется по поверхности земли и в одной среде. Напротив, в вакууме и космосе звук не распространяется.

    Звуковые колебания легко преобразуются в электрические с помощью микрофона. Сигнал микрофона является очень слабым, но на современном уровне развития техники его усиление не представляет проблемы. Форму полученных колебаний, т.е. зависимость интенсивности сигнала от времени, можно наблюдать на экране осциллографа - электроннолучевого, прибора для наблюдения функциональной связи между двумя или несколькими величинами (параметрами и функциями; электрическими или преобразованными в электрические).

    В эпоху аналоговой записи звука, для сохранения полученного электрического сигнала его преобразовывали в ту или иную форму другой физической природы, которая зависела от применяемого носителя.

    Например, при изготовлении грампластинок сигнал вызывал механические изменения размеров звуковой дорожки ( с помощью специальной аппаратуры сигнал преобразовался в механические колебания сапфирового резца, который нарезал на слое материала концентрические звуковые канавки).

    Для старых киноаппаратов звук на пленку наносился оптическим методом (запись электрических колебаний звуковой частоты, осуществлялась фотографическим способом на движущейся киноплёнке).

    Наибольшее распространение в быту получил процесс магнитной звукозаписи (запись производилась с помощью специального устройства - записывающей магнитной головки, создающей переменное магнитное поле на участке движущегося носителя (зачастую магнитной ленты), обладающего магнитными свойствами).

    Во всех случаях интенсивность звука была строго пропорциональна какой-либо величине, например, ширине оптической звуковой дорожки, причем эта величина имела непрерывный диапазон значений.

    1. Компьютерное представление звуковой информации.
      1. . Аналого-цифровой преобразователь

      Переход к записи звука в компьютерном виде потребовал принципиально новых подходов. При цифровой записи зависимости интенсивности звука от времени возникает принципиальная трудность: исходный сигнал непрерывен (т.е. его параметр может принимать любе значение в пределах некоторого интервала), а компьютер способен хранить в памяти только дискретные (параметр может принимать только конечное число значений в пределах некоторого интервала). Отсюда следует, что в процессе сохранения звуковой информации она должна быть “оцифрована”, т.е. из аналоговой непрерывной формы переведена в цифровую дискретную. Данную функцию выполняет специальный блок, входящий в состав звуковой карты компьютера, который называется АЦП -- аналого-цифровой преобразователь.

      Основные принципы работы АЦП:

      • АЦП производит дискретизацию записываемого звукового сигнала по времени. Это означает, что измерение уровня интенсивности звука в определенные фиксированные моменты времени (чаще всего через равные временные промежутки). Частоту, характеризующую периодичность измерения звукового сигнала, принято называть частотой дискретизации. Её выбор в значительной степени зависит от частотного спектра сохраняемого сигнала: существует специальная теорема Найквиста, согласно которой частота оцифровки звука должна как минимум в 2 раза превышать максимальную частоту, входящую в состав спектра сигнала. Считается, человек слышит звук частотой не более 20 000 Гц = 20 кГц, поэтому для высококачественного воспроизведения звука верхнюю границу обычно с некоторым запасом принимают равной 22 кГц. Частота при таких требованиях должна быть не ниже 44 кГц. Такая частота чаще всего используется, при записи музыкальных компакт-дисков. Однако часто такое высокое качество не требуется, и частоту дискретизации можно значительно снизить. Например, при записи речи вполне достаточно частоты 8 кГц. Результат при этом получается хотя и не блестящий, но вполне разборчивый, к примеру такое качество у голоса в телефоне.

      Качество воспроизведения тем лучше, чем выше частота дискретизации, но в то же время и объем занимаемое памяти звуковых данных при этом тоже возрастает, так что оптимального “на все случаи” значения частоты не существует и частота всегда выбирается из расчета что более важно качество или объем занимаемой памяти.

      • АЦП производит дискретизацию амплитуды звукового сигнала Это следует понимать так, что при измерении имеется “сетка” стандартных уровней (например, 256 или 65 536 -- это количество характеризует глубину кодирования (количество бит на кодировку звука)), и текущий уровень измеряемого сигнала округляется до ближайшего из них. В итоге появляется линейная зависимость между величиной входного сигнала и номером уровня. То есть в том случае, когда, например, громкость возрастает в 2 раза, то ожидается, что и соответствующее ему число возрастет вдвое. Но такое распределение применяется только в простейших случаях. Чаще всего при записи звука используют неравномерные распределения уровней громкости, в основе которых лежит логарифмический закон.

      Таким образом, в ходе оцифровки звука мы получаем поток целых чисел, причем величина числа соответствует силе звука в данный момент.

      Данный метод преобразования показывает, что звук, как и любая другая информация, для возможности хранения в памяти компьютера, нуждается в представлении его в числовом форме и в последующем переводе в двоичную систему счисления.

      Некоторые характеристики АЦП могут быть улучшены путём использования методики подмешивания псевдослучайного сигнала. Она заключается в добавлении к входному аналоговому сигналу случайного шума ( белый шум ) небольшой амплитуды. Амплитуда шума, как правило, выбирается на уровне половины МЗР . Эффект от такого добавления заключается в том, что состояние МЗР случайным образом переходит между состояниями 0 и 1 при очень малом входном сигнале (без добавления шума МЗР был бы в состоянии 0 или 1 долговременно). Для сигнала с подмешанным шумом вместо простого округления сигнала до ближайшего разряда происходит случайное округление вверх или вниз, причём среднее время, в течение которого сигнал округлён к тому или иному уровню зависит от того, насколько сигнал близок к этому уровню. Таким образом, оцифрованный сигнал содержит информацию об амплитуде сигнала с разрешающей способностью лучше, чем МЗР, то есть происходит увеличение эффективной разрядности АЦП. Негативной стороной методики является увеличение шума в выходном сигнале. Фактически, ошибка квантования размазывается по нескольким соседним отсчётам. Такой подход является более желательным, чем простое округление до ближайшего дискретного уровня. В результате использования методики подмешивания псевдослучайного сигнала мы имеем более точное воспроизведение сигнала во времени. Малые изменения сигнала могут быть восстановлены из псевдослучайных скачков МЗР путём фильтрации. Кроме того, если шум детерминирован (амплитуда добавляемого шума точно известна в любой момент времени), то его можно вычесть из оцифрованного сигнала, предварительно увеличив его разрядность, тем самым почти полностью избавиться от добавленного шума.

      Звуковые сигналы очень малых амплитуд, оцифрованные без псевдослучайного сигнала, воспринимаются на слух очень искажёнными и неприятными. При подмешивании псевдослучайного сигнала истинный уровень сигнала представлен средним значением нескольких последовательных отсчётов.

      Однако, в последнее время ( 2009 год ), в связи с удешевлением 24-битных АЦП, имеющих даже без dihter’а динамический диапазон более 120 дБ, что на несколько порядков превышает полный воспринимаемый человеком диапазон слуха, данная технология потеряла актуальность в звукотехнике. При этом, она используется в ВЧ и СВЧ технике, где битность АЦП обычно мала из-за высокой частоты дискретизации.

        1. Кодирование оцифрованного звука перед его записью на носитель

        Для хранения цифрового звука существует много различных способов. Оцифрованный звук являет собой набор значений амплитуды сигнала, взятых через определенные промежутки времени.

        Блок оцифрованной аудио информации можно записать в файл без изменений, то есть последовательностью чисел – значений амплитуды. В этом случае существуют два способа хранения информации.

          • Первый – PCM (Pulse Code Modulation – импульсно-кодовая модуляция) - способ цифрового кодирования сигнала при помощи записи абсолютных значений амплитуд. (В таком виде записаны данные на всех аудио CD.)
          • Второй – ADPCM (Adaptive Delta PCM – адаптивная относительная импульсно-кодовая модуляция) – запись значений сигнала не в абсолютных, а в относительных изменениях амплитуд (приращениях).

          Можно сжать данные так, чтобы они занимали меньший объем памяти, нежели в исходном состоянии. Тут тоже есть два способа.

          Кодирование данных без потерь (lossless coding) – способ кодирования аудио, который позволяет осуществлять стопроцентное восстановление данных из сжатого потока. К нему прибегают в тех случаях, когда сохранение оригинального качества данных особо значимо. Существующие сегодня алгоритмы кодирования без потерь (например, Monkeys Audio) позволяют сократить занимаемый данными объем на 20-50%, но при этом обеспечить стопроцентное восстановление оригинальных данных из полученных после сжатия.

          Аналоговый и цифровой звук очень похожи, их характеристики частотный диапазон, однако, каждый из них имеет свои индивидуальные особенности, а также преимущества и недостатки. В основном связано отличие этих сигналов в технологии их записи и преобразования. Какой из них лучше или хуже до последнего времени всё ещё остаётся актуальным и зависит от слушателя и от его предпочтений.

          Дело в том, что аналоговый сигнал как звуковой, так и видео это переменная величина тока которая в зависимости от информации выражается в кривой которая является постоянной во времени. То по большому счёту это сигнал, который выражается уровнем и амплитудой напряжения и от его величины, и характеристики несут в себе определённую информацию. Цифровой сигнал — это набор дискретных величин в виде единиц и нулей, который преобразуется в итоге в звуковые колебания слышимые человеческому уху. Вся аудио информация представлена в виде дискретного нуля или единицы и отклонения невозможны.

          В любом случае, цифровой сигнал в чистом виде является формой не акустической, поэтому в любом случае на акустическую систему с оконечного каскада усилителя звука, выходит аналоговый сигнал в виде переменного напряжения определённой величины и частоты.

          Источников аналогового сигнала в современном мире остаётся не так уж много, это виниловые пластинки, бобины, и аудиокассеты. Для хранения информации в цифровом виде сейчас есть много способов и механизмов как переносных, так и стационарных — это любые CD или DVD диски, флеш накопители, жёсткие диски, устанавливаемые в ноутбуках и персональных компьютерах. Такие файлы могут храниться в разных форматах, с большим разбросом по объёму, от которого, естественно, заливист качество и продолжительность сохранённого звука. Аналоговый и цифровой звук, получается отличаются только способом хранения, передачи и его воспроизведения.

          Достоинства и недостатки аналогового звукового сигнала

          Если говорить о преимуществах аналогового сигнала как аудио таки видео, то одно из них связано с тем что именно в таком образе и виде человек воспринимает его своим органом слуха. И хотя впоследствии слух человека преобразует сигнал всё равно в набор импульсов, передаваемых в мозг, но тем не мнение современная техника ещё не научилась миновать уши как основной орган слуха и передавать сигнал непосредственно в мозг. Хотя нельзя и не отметить что данные исследования ведутся уже последние 70 лет и если они обвенчаются успехом то с таким понятием, как человеческая глухота будет покончено, а пока звуковые колебания каждый слышащий человек и воспринимающий их в полном объёме получает в виде аналогового сигнала. То есть, аналоговой звуковой сигнал имеет высокие показатели частотной глубины, а также неплохую сбалансированность между высокими и низкими частотами.

          Основная проблема и недостаток с использованием чистого аналогового сигнала заключается в его хранении, а также способах тиражирования и передачи. Запись на любой из аналоговых хранителей аудио информации подвержен размагничиванию и механическим повреждением, поэтому спустя время записанная на них информация, значительно снижает качество в случае её воспроизведения. Виниловые диски сильно подвержены царапинам, да и тиражирование их довольно проблематичный и трудоемкий процесс. Выполнить копию аудио сигнала, записанного в аналоговом формате обозначает почти то же что и создать её заново.

          Преимущества и недостатки цифрового сигнала

          Неоспоримыми преимуществами цифрового сигнала и звука, в частности, являются:

          Основным недостатком цифрового сигнала является то, что он всего лишь промежуточный этап формирования итогового звукового сигнала и для его преобразования необходимы специальные устройства ЦАП (цифро-аналоговый преобразователь).

          Таким образом, аналоговый и цифровой звук являются неотъемлемыми и связанными величинами, которые улучают и упрощают человеческую жизнь и, в частности, тех людей, которые связаны с музыкой. По крайней мере, это будет до тех пор, пока человечество не научится передавать импульс непосредственно в человеческий мозг.

          • Для учеников 1-11 классов и дошкольников
          • Бесплатные сертификаты учителям и участникам

          Цифровой звук — это аналоговый звуковой сигнал, представленный посредством дискретных численных значений его амплитуды ]

          Оцифровка звука — технология поделенным временным шагом и последующей записи полученных значений в численном виде [2] .
          Другое название оцифровки звука — аналогово-цифровое преобразование звука.

          Оцифровка звука включает в себя два процесса:

          процесс дискретизации (осуществление выборки) сигнала по времени

          процесс квантования по амплитуде.

          Дискретизация по времени

          hello_html_5427ebdf.jpg

          Пример представления аналогового сигнала в цифровой форме

          Линейное (однородное) квантование амплитуды

          Другие способы оцифровки

          Способ неоднородного квантования предусматривает разбиение амплитудной шкалы на уровни по логарифмическому закону. Такой способ квантования называют логарифмическим квантованием . При использовании логарифмической амплитудной шкалы, в области слабой амплитуды оказывается большее число уровней квантования, чем в области сильной амплитуды (при этом, общее число уровней квантования остается таким же, как и в случае однородного квантования). Аналогово-цифровое преобразование, основанное на применении метода неоднородного квантования, называется неоднородной импульсно-кодовой модуляцией — неоднородной ИКМ (Nonuniform PCM).

          Аналогово-цифровые преобразователи (АЦП)

          Вышеописанный процесс оцифровки звука выполняется аналогово-цифровыми преобразователями (АЦП) .
          Это преобразование включает в себя следующие операции:

          Ограничение полосы частот производится при помощи фильтра нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации.

          Дискретизацию во времени, то есть замену непрерывного аналогового сигнала последовательностью его значений в дискретные моменты времени — отсчетов. Эта задача решается путём использования специальной схемы на входе АЦП — устройства выборки-хранения .

          Квантование по уровню представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин — уровней квантования.

          Кодирование или оцифровку, в результате которого значение каждого квантованного отсчета представляется в виде числа, соответствующего порядковому номеру уровня квантования.

          Для хранения цифрового звука существует много различных способов. Оцифрованный звук являет собой набор значений амплитуды сигнала, взятых через определенные промежутки времени.

          Блок оцифрованной аудио информации можно записать в файл без изменений, то есть последовательностью чисел - значений амплитуды. В этом случае существуют два способа хранения информации.

          Первый - PCM (Pulse Code Modulation - импульсно-кодовая модуляция) - способ цифрового кодирования сигнала при помощи записи абсолютных значений амплитуд. (В таком виде записаны данные на всех аудио CD.)

          Второй - ADPCM (Adaptive Delta PCM - адаптивная относительная импульсно-кодовая модуляция) – запись значений сигнала не в абсолютных, а в относительных изменениях амплитуд (приращениях).

          Можно сжать данные так, чтобы они занимали меньший объем памяти, нежели в исходном состоянии. Тут тоже есть два способа.

          Кодирование данных без потерь (lossless coding) - способ кодирования аудио, который позволяет осуществлять стопроцентное восстановление данных из сжатого потока. К нему прибегают в тех случаях, когда сохранение оригинального качества данных особо значимо. Существующие сегодня алгоритмы кодирования без потерь (например, Monkeys Audio) позволяют сократить занимаемый данными объем на 20-50%, но при этом обеспечить стопроцентное восстановление оригинальных данных из полученных после сжатия.

          Терминология

          кодер – программа (или устройство), реализующая определенный алгоритм кодирования данных (например, архиватор, или кодер MP 3), которая в качестве ввода принимает исходную информацию, а в качестве вывода возвращает закодированную информацию в определенном формате.

          декодер – программа (или устройство), реализующая обратное преобразование закодированного сигнала в декодированный.

          Компьютер работает с цифровой информацией, которую можно представить в виде серии электрических импульсов - логических нулей и единиц. Но тот звук, который мы слышим,непрерывен. Эта звуковая волна с меняющейся амплитудой и частотой является аналоговым сигналом. Чтобы записать такой звук на диск компьютера его надо преобразовать в цифровую форму. Этим занимается аналого-цифровой преобразователь (АЦП). Для воспроизведения звука, записанного в цифровом виде, цифроаналоговый преобразователь преобразовывает его в аналоговый сигнал.

          Дискретизация звука

          Непрерывная звуковая волна разбивается на отдельные участки по времени, для каждого устанавливается своя величина амплитуды. Каждой ступеньке присваивается свой уровень громкости звука, который можно рассматривать как набор возможных состояний

          Характеристики качества звука:

          1. "Глубина" кодирования звука - количество бит на один звуковой сигнал
          Современные звуковые карты обеспечивают 16-битную "глубину" кодирования звука. Количество уровней (градаций амплитуды) можно рассчитать по формуле

          N = 2I = 216 = 65 536 уровней сигнала
          (градаций амплитуды)

          2. Частота дискретизации – это количество измерений уровней сигнала за 1 секунду

          Одно измерение в 1 секунду соответствует частоте 1 Гц

          1000 измерений в 1 секунду - 1 кГц

          Количество измерений может лежать в диапазоне от 8000 до 48 000
          (8 кГц – 48 кГц)

          8 кГц соответствует частоте радиотрансляции,

          48 кГц – качеству звучания аудио- CD.

          Ухо человека воспринимает звук в диапазоне от ~20 Гц до 20 кГц.

          Опыт показывает, что точное соответствие цифрового сигнала аналоговому достигается, если частота дискретизации будет вдвое выше максимальной звуковой частоты, то есть составит не менее 40 кГц.

          На практике значения частоты дискретизации, применяемые в звуковых системах, равны 44,1 кГц или 48 кГц. Чем больше частота дискретизации, тем качественнее звук.

          При двоичном кодировании непрерывного звукового сигнала он заменяется серией его отдельных выборок — отсчетов.

          Современные звуковые карты могут обеспечить кодирование 65536 различных уровней сигнала или состояний.

          Таким образом, современные звуковые карты обеспечивают 16-битное кодирование звука. При каждой выборке значению амплитуды звукового сигнала присваивается 16-битный код.

          Звук - это физическое природное явление, распространяющееся посредством колебаний воздуха и, следовательно, можно сказать, что мы имеем дело только с волновыми характеристиками. Задачей преобразования звука в электронный вид является повторение всех его этих самых волновых характеристик. Но электронный сигнал не является аналоговым, и может записываться посредством коротких дискретных значений. Пусть они имеют малый интервал между собой и практически неощутимы, на первый взгляд для человеческого уха, но мы должны всегда иметь в виду, что имеем дело только с эмуляцией природного явления именуемого звуком.

          Такая запись называется импульсно-кодовой модуляцией и являет собой последовательную запись дискретных значений. Разрядность устройства, исчисляемая в битах, говорит о том сколькими значениями одновременно в одном записанном дискрете, берется звук. Чем больше разрядность, тем больше звук соответствует оригиналу.

          РСМ
          РСМ расшифровывается как pulse code modulation, что и является в переводе как импульсно-кодовая. Файлы именно с таким расширением встречаются довольно редко. Но РСМ является основополагающей для всех звуковых файлов.

          WAV
          Самое простое хранилище дискретных данных. Один из типов файлов семейства RIFF. Помимо обычных дискретных значений, битности, количества каналов и значений уровней громкости, в wav может быть указано еще множество параметров, о которых Вы, скорее всего, и не подозревали - это: метки позиций для синхронизации, общее количество дискретных значений, порядок воспроизведения различных частей звукового файла, а также есть место для того, чтобы Вы смогли разместить там текстовую информацию.

          RIFF
          Resource Interchange File Format. Уникальная система хранения любых структурированных данных.

          IFF
          Эта технология хранения данных проистекает от Amiga-систем. Interchange File Format. Почти то же, что и RIFF, только имеются некоторые нюансы. Начнем с того, что система Amiga - одна из первых, в которой стали задумываться о программно-сэмплерной эмуляции музыкальных инструментов. В результате, в данном файле звук делится на две части: то, что должно звучать вначале и элемент того, что идет за началом. В результате, звучит начало один раз, за тем повторяется второй кусок столько раз, сколько Вам нужно и нота может звучать бесконечно долго.

          MOD
          Файл хранит в себе короткий образец звука, который потом можно использовать в качестве шаблона для инструмента.

          AIFили AIFF
          Audio Interchange File Format. Данный формат распространен в системах Apple Macintosh и Silicon Graphics. Заключает в себе сочетание MOD и WAV.

          МР3
          Самый скандальный формат за последнее время. Многие для объяснения параметров сжатия, которые в нем применяют, сравнивают его с jpeg для изображений. Там очень много наворотов в вычислениях, чего и не перечислишь, но коэффициент сжатия в 10-12 раз сказали о себе сами. Специалисты говорят о контурности звука как о самом большом недостатке данного формата. Действительно, если сравнивать музыку с изображением, то смысл остался, а мелкие нюансы ушли. Качество МР3 до сих пор вызывает много споров, но для "обычных немузыкальных" людей потери не ощутимы явно.

          VQF
          Хорошая альтернатива МР3, разве что менее распространенная. Есть и свои недостатки. Закодировать файл в VQF - процесс гораздо более долгий. К тому же, очень мало бесплатных программ, позволяющих работать с данным форматом файлов, что, собственно, и сказалось на его распространении.

          RA
          Real Audio или потоковая передача аудиоданных. Довольно распространенная система передачи звука в реальном времени через Интернет. Скорость передачи порядка 1 Кб в секунду. Полученный звук обладает следующими параметрами: 8 или 16 бит и 8 или 11 кГц.

          Ввод музыки в компьютер.

          Если источником музыки является виниловая пластинка или музыкальный инструмент/другое устройство со стереофоническим линейным выходом, то такая музыка, как правило, вводится с помощью установленной в компьютер звуковой карты. К современной звуковой карте через гнездо линейного входа можно напрямую подключить любой музыкальный инструмент (синтезатор, гитару и т.д.) или устройство воспроизведения (проигрыватель грампластинок, магнитофон и т.п.), после чего ПК может начать запись. Здесь исключительно важную роль играет размер и форма соединительных разъемов — многие современные звуковые карты высшего класса имеют входные разъемы, позволяющие подключать оптические, раздельные кабели и кабели с миништекерами. Существует множество вариантов соединений, каждый из которых обеспечивает определенный уровень качества и соответствует определенному стандарту.

          MIDI – это общепринятая спецификация, связанная с организацией цифрового интерфейса для музыкальных устройств, включающая в себя стандарт на аппаратную и программную части.

          Эта спецификация предназначена для организации локальной сети электронных инструментов (рис. 2). К MIDI-устройствам относятся различные аппаратные и музыкальные инструменты, отвечающие требованиям MIDI. Таким образом, MIDI-синтезатор – это музыкальный инструмент, предназначенный обычно для синтеза звука и музыки, а также удовлетворяющий спецификации MIDI. Давайте разберемся кратко, почему выделен отдельный класс устройств, названный MIDI.

          Дело в том, что осуществление программной обработки звука часто сопряжено с неудобствами, обусловленными различными техническими особенностями этого процесса. Даже возложив операции по обработке звука на звуковую карту или любую другую аппаратуру, остается множество различных проблем. Во-первых, зачастую желательно пользоваться аппаратным синтезом звучания музыкальных инструментов (как минимум потому, что компьютер – это общий инструмент, часто необходим просто аппаратный синтезатор звуков и музыки, не более). Во-вторых, программная обработка звука часто сопровождается временными задержками, в то время как при концертной работе необходимо мгновенное получение обработанного сигнала. По этим и другим причинам и прибегают к использованию специальной аппаратуры для обработки, а не компьютеров со специальными программами. Однако при использовании аппаратуры возникает необходимость в едином стандарте, который позволил бы соединять устройства друг с другом и комбинировать их. Эти предпосылки и заставили в 1982 году несколько ведущих в области музыкального оборудования компаний утвердить первый MIDI-стандарт, который впоследствии получил продолжение и развивается по сей день. Что же, в конечном счете, представляет собой MIDI-интерфейс и устройства в него входящие с точки зрения персонального компьютера?

          Следует отметить, что в отношении синтезаторов звука MIDI устанавливает строгие требования к их возможностям, примененным в них способам синтеза звука, а также к управляющим параметрам синтеза. Кроме того, для того, чтобы музыка созданная на одном синтезаторе могла бы быть легко перенесена и успешно воспроизведена на другом, были установлены несколько стандартов на соответствие инструментов (голосов) и их параметров в различных синтезаторах: стандарт General MIDI (GM), General Synth (GS) и eXtended General (XG). Базисным стандартом является GM, остальные два являются его логическими продолжениями и расширениями.

          В качестве практического примера устройства MIDI, можно рассмотреть обычную MIDI-клавиатуру. Упрощенно, MIDI-клавиатура представляет собой укороченную клавиатуру рояля, в корпусе с которой находится MIDI-интерфейс, позволяющий подключать ее к другим MIDI-устройствам, например, к MIDI-синтезатору, который установлен в звуковой карте компьютера. Используя специальное программное обеспечение (например, MIDI-секвенсор) можно включить MIDI-синтезатор в режим игры, например, на рояле, и нажимая на клавиши MIDI-клавиатуры слышать звуки рояля. Естественно, что роялем дело не ограничивается – в стандарте GM имеются 128 мелодических инструментов и 46 ударных. Кроме того, используя MIDI-секвенсор можно записывать исполняемые на MIDI-клавиатуре ноты в компьютер, для последующего редактирования и аранжировки, либо просто для элементарной распечатки нот.

          Надо отметить, что поскольку MIDI-данные – это набор команд, то музыка, которая написана с помощью MIDI, также записывается с помощью команд синтезатора. Иными словами, MIDI-партитура – это последовательность команд: какую ноту играть, какой инструмент использовать, какова продолжительность и тональность ее звучания и так далее. Знакомые многим MIDI-файлы (.MID) есть нечто иное, как набор таких команд. Естественно, что поскольку имеется великое множество производителей MIDI-синтезаторов, то и звучать один и тот же файл может на разных синтезаторах по-разному (потому что в файле сами инструменты не хранятся, а есть лишь только указания синтезатору какими инструментами играть, в то время как разные синтезаторы могут звучать по-разному).

          Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

          1. Амплитудные преобразования.Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

          4. Временные преобразования.Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

          Приведу несколько практических примеров использования указанных видов преобразований при создании реальных звуковых эффектов:

          Наиболее важный класс программ – редакторы цифрового аудио. Основные возможности таких программ это, как минимум, обеспечение возможности записи (оцифровки) аудио и сохранение на диск. Развитые представители такого рода программ позволяют намного больше: запись, многоканальное сведение аудио на нескольких виртуальных дорожках, обработка специальными эффектами очистка от шумов. Они имеют развитую навигацию и инструментарий в виде спектроскопа и прочих виртуальных приборов, управление/управляемость внешними устройствами, преобразование аудио из формата в формат, генерация сигналов, запись на компакт диски и многое другое. Некоторыеизтакихпрограмм: Cool Edit Pro
          рис.8

          Специализированные реставраторы аудио играют также немаловажную роль в обработке звука. Такие программы позволяют восстановить утерянное качество звучания аудио материала, удалить нежелательные щелчки, шумы, треск, специфические помехи записей с аудиокассет, и провести другую корректировку аудио. Программыподобногорода: Dart, Clean (отSteinberg Inc.), Audio Cleaning Lab. (от Magix Ent.), Wave Corrector.

          Цифровой звук – это набор импульсных сигналов формирующих цифровой код, в котором закодировано текущее значение амплитуды аналогового сигнала. Цифровой код – это двоичный код двоичной системы представления сигналов во времени, которыми обмениваются устройства ЭВМ.

          Характеристики:

          · Высота звука - определяется частотой звуковой волны (или, периодом волны). Чем выше частота, тем выше звучание. Высота звука измеряется в герцах (Гц, Hz) или килогерцах (КГц, KHz). 1 Гц = 1/С. То есть колебание в 1 Гц соответствует волне с периодом в 1 секунду.

          · Громкость звука - определяется амплитудой сигнала. Чем выше амплитуда звуковой волны, тем громче сигнал. Громкость звука измеряется децибелах и обозначается дБ.

          Цифровой звук: понятие, обработка звука.

          Цифровой звук – это набор импульсных сигналов формирующих цифровой код, в котором закодировано текущее значение амплитуды аналогового сигнала. Цифровой код – это двоичный код двоичной системы представления сигналов во времени, которыми обмениваются устройства ЭВМ.

          Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

          Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

          Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

          10. Векторная графика: понятие, преимущества и недостатки, примеры векторных графических редакторов.

          В векторной графике основным элементом изображения является линия или примитивные геометрические фигуры (окружности, квадраты и т.д.). Этим объектам присваиваются атрибуты - толщина линий и цвет заполнения. Векторный рисунок хранится в файле как набор координат, векторов и др. чисел.

          Достоинства:

          -занимают относительно небольшой объем памяти;

          -могут быть легко масштабируемы без потери качества;

          Недостатки:

          -не позволяет получать изображения фотографического качества;

          -сложность векторного принципа описания изображения не позволяет автоматизировать ввод графической информации и сконструировать устройство подобное сканеру для растровой графики;

          -программная зависимость: каждая программа сохраняет данные в своем формате, поэтому изображение, созданное в одном векторном редакторе, как правило, не конвертируется в формате др. программы без погрешностей;

          11. Растровая графика: понятие, преимущества и недостатки, примеры растровых графических редакторов.

          Под растровой графикой понимают способ представления изображения в компьютерной графике в виде совокупности отдельных точек - пикселей, различных цветов и оттенков.

          Достоинства

          Возможность получения фотореалистичного изображения в высоком качестве и различном цветовом диапазоне.

          Читайте также: