Модели пластов и процессов разработки реферат

Обновлено: 02.07.2024

Научно обоснованное применение каждого нового процесса разработки нефтяных и газовых месторождений начинают с его экспериментального изучения в лабораторных условиях. Все существующие процессы извлечения нефти и газа из недр вначале были изучены в лабораторных исследованиях. В свое время прошло эту стадию и такое широко развитое на практике воздействие на нефтяные пласты, как заводнение. За стадией лабораторного исследования следуют первые промышленные испытания процессов. В этот период развития технологических процессов становится весьма необходимым их количественная формулировка, т. е. создание моделей.

Центральный этап моделирования – постановка соответствующих процессу разработки нефтяного месторождения математических задач, включающих дифференциальные уравнения, начальные и граничные условия. Процедуры расчетов на основе моделей называют методиками расчетов.

Дифференциальные уравнения, описывающие процессы разработки нефтяных месторождений, основаны на использовании двух фундаментальных законов природы – закона сохранения веществаизакона сохранения энергии, а также на целом ряде физических, физико-химических, химических законов и специальных законах фильтрации.

Закон сохранения вещества в моделях процессов разработки месторождений записывают либо в виде, дифференциального уравнения неразрывности массы вещества, именуемого часто просто уравнением неразрывности, либо в виде формул, выражающих материальный баланс веществ в пласте в целом. В последнем случае закон сохранения вещества используют непосредственно для расчета данных процессов разработки месторождений, а соответствующий ему метод расчета получил название метода материального баланса.

Закон сохранения энергии используют в моделях разработки нефтяных месторождений в виде дифференциального уравнения сохранения энергиидвижущихся в пластах веществ.

3.1. МОДЕЛИ ПЛАСТА И ПРОЦЕССОВ ВЫТЕСНЕНИЯ НЕФТИ

Нефтяные месторождения как объекты природы обладают весьма разнообразными свойствами. Известно, что нефть может насыщать не только пористые песчаники, но и находиться в микроскопических трещинах, кавернах, имеющихся в известняках, доломитах и даже в изверженных породах.

Одна из основных особенностей нефтегазосодержащих пород – различие коллекторских свойств (пористости, проницаемости) на отдельных участках пластов. Эту пространственную изменчивость свойств пород-коллекторов нефти и газа называют литологической неоднородностью пластов.

Вторая – основная особенность нефтегазоносных коллекторов – наличие в них трещин, т. е. трещиноватость пластов.

При разработке месторождений эти особенности нефтегазоносных пород оказывают наиболее существенное влияние на процессы извлечения из них нефти и газа.

3.1.1. Модели пласта. Модель пласта – это система количественных представлений о его геолого-физических свойствах, используемая в расчетах разработки нефтяного месторождения.

Модели пластов с известной степенью условности подразделяют на детерминированные и вероятностно-статистические.

Дифференциальные уравнения разработки месторождения заменяют конечно-разностными соотношениями, а затем производят расчет на ЭВМ.

Вероятностно-статистические модели не отражают детальные особенности строения и свойства пластов. При их использовании ставят в соответствие реальному пласту некоторый гипотетический пласт, имеющий такие же вероятностно-статистические характеристики, что и реальный. К числу наиболее известных и чаще всего используемых в теории и практике разработки нефтяных месторождений вероятностно-статистических моделей пластов относятся следующие.

3.1.1.1. Модель однородного пласта. В этой модели основные параметры реального пласта (пористость, проницаемость), изменяющиеся от точки к точке, усредняют. Часто, используя модель такого пласта, принимают гипотезу и о его изотропности, т.е. равенстве проницаемостей в любом направлении, исходящем от рассматриваемой точки пласта. Однако иногда считают пласт анизотропным. При этом принимают, что проницаемость пласта по вертикали (главным образом вследствие напластования) отличается от его проницаемости по горизонтали. Модель однородного в вероятностно-статистическом смысле пласта используют для пластов с небольшой неоднородностью.

Наиболее просты модели однородного пласта в виде толщи горной породы с одинаковыми во всех точках физическими свойствами. Непроницаемые верхняя (кровля) и нижняя (подошва) границы ее параллельны и горизонтальны.

Свойства пласта в количественном выражении определяют как средневзвешенные по объему величины:

Чаще используют средневзвешенные по площади залежи величины, которые устанавливают с помощью карт равных значений рассматриваемых параметров:

где – параметр, определяемый как средний между двумя соседними линиями равных его значений; площадь, образованная двумя соседними линиями с параметрами и ;

– общая площадь залежи.

3.1.1.2. Модель зонально-неоднородного пласта, свойства которого не изменяются по толщине, а на его площади выделяются зоны прямоугольной или квадратной формы с различными свойствами. Каждую зону можно рассматривать как элементарный однородный объем пласта (сторона квадрата) размером больше или равным расстоянию между соседними скважинами.

3.1.1.3. Модель слоисто-неоднородного пласта представляет собой пласт, в пределах которого выделяются слои с непроницаемыми кровлей и подошвой, характеризующиеся различными свойствами. По площади распространения свойства каждого слоя остаются неизменными. Сумма всех слоев равна общей нефтенасыщенной толщине пласта, т. е.

, где n – число слоев.

3.1.1.4. Модель зонально-неоднородноrо и слоисто-неоднородноrо пласта объединяет характеристики предыдущих двух моделей. Для иллюстрации на рис. 24 изображена схематично модель такого пласта.

3.1.1.5. Модель пласта с двойной пористостью представляет собой пласт, сложенный породами с первичной (гранулярной) и вторичной (трещиноватой) пористостью. По первичной пористости определяют запасы углеводородов в пласте, поскольку коэффициент пористости на порядок больше коэффициента трещиноватости. Однако гидродинамическое движение жидкостей и газов, вызванное перепадом давления, происходит по системе трещин. Считают, что весь объем пласта равномерно пронизан системой трещин. Расстояния между двумя соседними трещинами значительно меньше расстояния между двумя соседними скважинами.

3.1.1.6. Модель зонально-неоднородного и слоисто- неоднородного пласта с двойной пористостью объединяет характеристики двух предыдущих моделей и наиболее полно отражает особенности реальных продуктивных пластов. На основе этой модели трудно определять показатели процесса разработки месторождения.

3.1.1.7. Вероятностно-статистическая модель неоднородности пластов. В этой модели неоднородный пласт представлен в виде набора параллельно работающих цилиндрических (призматических) или конических трубок тока с неодинаковой проницаемостью, расположенных вдоль направления фильтрации и пересекающихся рядами добывающих и нагнетательных скважин. Плотность распределения, длину и площадь поперечного сечения трубок выбирают на основании изучения геологического строения залежи таким образом, чтобы полный их набор соответствовал по проницаемости набору действительных трубок тока в пласте. Распределение трубок тока по проницаемости обычно устанавливают по результатам статистического анализа проницаемости кернового материала или по геофизическим данным. Опыт показывает, что часто распределение проницаемости образцов керна подчиняется логарифмически нормальному закону или же описывается гамма-распределением и различными модификациями распределения Максвелла.

Прерывистость пласта учитывается длиной трубок тока, непрерывная его часть моделируется трубками, простирающимися от начала до конца залежи, а линзы и полулинзы – короткими трубками, соответствующими по длине их размерам.

Создание моделей нефтяных месторождений и осуществление на их основе расчетов разработки месторождений - одна из главных областей деятельности инженеров и исследователей-нефтяников.

На основе геолого-физических сведений о свойствах нефтяного, газового или газоконденсатного месторождения, взглядов на его будущую систему и технологию разработки создают количественные представления о их разработке. Система взаимосвязанных количественных представлений о разработке месторождения - модель его разработки, которая состоит из модели пласта и модели процесса разработки месторождения.

Модель пласта - это система количественных представлений о его геолого-физических свойствах, используемая в расчетах разработки нефтяного месторождения.

Модель процесса разработки месторождения - система количественных представлений о процессе извлечения нефти из недр. Вообще говоря, в модели разработки нефтяного месторождения можно использовать любую комбинацию моделей пласта и процесса разработки, лишь бы эта комбинация наиболее точно отражала свойства пластов и процессов. Вместе с тем выбор той или иной модели пласта может повлечь за собой учет в модели процесса каких-либо дополнительных его особенностей и наоборот [2].

Модель пласта следует, конечно, отличать от его расчетной схемы, которая учитывает только геометрическую форму пласта. Например, моделью пласта может быть слоисто-неоднородный пласт. В расчетной же схеме пласт при одной и той же его модели может быть представлен как пласт круговой формы, прямолинейный пласт и т. д.

Модели пластов и процессов извлечения из них нефти и газа всегда облечены в математическую форму, т. е. характеризуются определенными математическими соотношениями.

Главная задача инженера, занимающегося расчетом разработки нефтяного месторождения, заключается в составлении расчетной модели на основе отдельных представлений, полученных в результате геолого-геофизического изучения месторождения, а также гидродинамических исследований скважин.

По данным геолого-геофизических и гидродинамических исследований, можно получить весьма пеструю картину месторождения. В расчетной модели ее следует упорядочить, выделив главные особенности моделируемых пластов и охарактеризовав их количественно.

Обычно все многообразие пластов-коллекторов нефти и газа сводят к определенным типам моделей пластов, которые и будут рассмотрены.

Типы моделей пластов

Нефтяные месторождения как объекты природы обладают весьма разнообразными свойствами. Известно, что нефть может насыщать не только пористые песчаники, но и находиться в микроскопических трещинах, кавернах, имеющихся в известняках, доломитах и даже в изверженных породах.

Одна из основных особенностей нефтегазосодержащих пород - различие коллекторских свойств (пористости, проницаемости) на отдельных участках пластов. Эту пространственную изменчивость свойств пород-коллекторов нефти и газа называют литологической неоднородностью пластов.

Вторая основная особенность нефтегазоносных коллекторов - наличие в них трещин, т. е. трещиноватость пластов.

При разработке месторождений эти особенности нефтегазоносных пород оказывают наиболее существенное влияние на процессы извлечения из них нефти и газа.

Модели пластов с известной степенью условности подразделяют на детерминированные и вероятностно-статистические.

При расчете данных процессов разработки нефтяного месторождений с использованием детерминированной модели всю площадь пласта или его объем разбивают на определенное число ячеек в зависимости от заданной точности расчета, сложности процесса разработки и мощности ЭВМ. Каждой ячейке придают те свойства, которые присущи пласту в области, соответствующей ее положению.

Дифференциальные уравнения разработки месторождения заменяют конечно-разностными соотношениями, а затем производят расчет на ЭВМ.

Вероятностно - статистические модели не отражают детальные особенности строения и свойства пластов. При их использовании ставят в соответствие реальному пласту некоторый гипотетический пласт, имеющий такие же вероятностно-статистические характеристики, что и реальный. К числу наиболее известных и чаще всего используемых в теории и практике разработки нефтяных месторождений вероятностно-статистических моделей пластов относятся следующие.

1. Модель однородного пласта. В этой модели основные параметры реального пласта (пористость, проницаемость), изменяющиеся от точки к точке, осредняют. Часто, используя модель такого пласта, принимают гипотезу и о его изотропности, т. е. равенстве проницаемости в любом направлении, исходящем из рассматриваемой точки пласта. Однако иногда считают пласт анизотропным. При этом принимают, что проницаемость пласта по вертикали (главным образом вследствие напластования) отличается от его проницаемости по горизонтали. Модель однородного в вероятностно-статистическом смысле пласта используют для пластов с действительной небольшой неоднородностью.

2. Модель слоистого пласта. Эта модель представляет собой структуру (пласт), состоящую из набора слоев с пористостью mi и проницаемостью ki. При этом считают, что из всей толщины пласта h слои с пористостью в пределах Δmi и проницаемостью в пределах Δki, составляют часть Δhi. Если каким-либо образом, например путем анализа кернового материала, геофизическими методами и т. д., измерять проницаемость отдельных прослоев пласта в различных скважинах, то окажется, что из суммарной толщины всех измеренных пропластков h часть их Δhi обладает проницаемостью в пределах Δk2. Другая часть пропластков Δhi будет иметь проницаемость в пределах Δk2 и т. д. Можно для реального пласта построить зависимость:


(1)

и на ее основе создать модель слоистого пласта, которая будет представлять собой структуру, состоящую из набора прослоев различной проницаемости и характеризующуюся той же функцией (1), что и реальный пласт.


Рисунок 1. Гистограмма проницаемости: 1 — кривая, аппроксимирующая гистограмму

С помощью зависимости вида (1) построена гистограмма, показанная на рис. 1, где ступеньками представлены доли общей толщины пласта, которые занимают пропластки с соответствующей проницаемостью.

3. Модель трещиновато-пористого пласта. В реальном пласте, которому соответствует эта модель, содержатся промышленные запасы нефти как в трещинах, так и в блоках, пористых и проницаемых. Эта модель также может быть представлена в виде набора кубов с длиной грани l*, разделенных трещинами со средней шириной b*. Фильтрация жидкостей и газов, насыщающих трещиновато-пористый пласт, происходит как по трещинам, так и по блокам. При этом вследствие значительной проницаемости трещин по сравнению с проницаемостью блоков любые изменения давления распространяются по трещинам быстрее, чем по блокам, в результате чего для разработки трещиновато-пористых пластов характерны перетоки жидкостей и газов из блоков в трещины и наоборот.

Все перечисленные модели (однородного, слоистого, и трещиновато-пористого пластов) отнесены к вероятностно-статистическому классу. Если же реальный пласт действительно весьма однородный, соответствующую модель однородного пласта можно считать детерминированной. Однако в природе совершенно однородные пласты встречаются крайне редко.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Современный этап проектирования разработки нефтяных месторождений характеризуется необходимостью комплекса процесса нефтедобычи с определением оптимальных физических параметров пластовых систем и учетом технических, экологических, экономических, управленческих факторов. Для получения количественных соотношений между технологическими показателями разработки нефтяного месторождения, для осуществления прогноза поведения технологических показателей в процессе разработки нефтяных месторождений необходимо моделирование пластов.

Файлы: 1 файл

реферат мат.продукты.doc

Оглавление

Современный этап проектирования разработки нефтяных месторождений характеризуется необходимостью комплекса процесса нефтедобычи с определением оптимальных физических параметров пластовых систем и учетом технических, экологических, экономических, управленческих факторов. Для получения количественных соотношений между технологическими показателями разработки нефтяного месторождения, для осуществления прогноза поведения технологических показателей в процессе разработки нефтяных месторождений необходимо моделирование пластов. Модель для нефтяного пласта можно представить как совокупность отдельных компонентов, каждый из которых представляет собой модель данных определенного типа, связанных, в основном, с конкретной подсистемой. Именно в этой подсистеме проводятся основные процедуры обработки и интерпретации видов данных с соответствующими компонентами нефтяного пласта. Создание моделей нефтяных месторождений и осуществление на их основе расчетов прогнозных показателей разработки – одна из главных областей деятельности инженеров – нефтяников.

1.Понятие и виды различных моделей пласта.

Модель пласта — это система количественных представлений о его геолого-физических свойствах, используемая в расчетах разработки нефтяного месторождения. Построение модели пласта в конкретном случае на основе разрозненной исходной информации требует творческого подхода и научного поиска. От принятой модели зависит надежность полученных результатов проектирования [1].

Моделируемая система описывается соответствующими математическими уравнениями. При этом практически всегда требуются некоторые допущения, необходимые с практической точки зрения для того, чтобы сделать задачу разрешимой. Например, каждый инженер-нефтяник знает, что теория относительной проницаемость имеет свои ограничения, но поскольку иной теории нет, используется именно это понятие. Математические системы составляют на основе системы нелинейных дифференциальных уравнений в частных производных с соответствующими начальными и граничными условиями. [2]

С развитием теории разработки нефтяных месторождений представления о моделях пластов изменялись, усложнялись модели пластов, учитывалось большее число факторов реального пласта. Одна из первых моделей пласта — модель однородного по параметрам пласта. Она реализует гипотезу об однородности пласта как по площади, так и по вертикальному разрезу залежи. Главные параметры модели — это абсолютная проницаемость, пористость, нефтенасыщенность и эффективная толщина. Их определяют по данным промыслово-геофизических исследований скважин. С использованием кернов определяют пористость, абсолютную проницаемость и реже нефтенасыщенность. Затем устанавливают статистическую связь между результатами лабораторных и промыслово-геофизических исследований (обычно в виде количественных зависимостей). По этим зависимостям определяют средние значения изучаемых параметров в каждой скважине, которые усредняют для пласта в целом. При таком построении модель является вероятностно-статистической. Для построения ее можно использовать также результаты гидродинамических исследований скважин и пластов. Такая модель позволяла получить относительно строгие аналитические выражения для расчета процессов движения флюидов. Однако, сочетая модель однородного пласта с моделью поршневого вытеснения нефти, устанавливали, что разработка месторождения при заводнении может осуществляться без отбора воды. Такое в принципе противоречит фактическим данным. Это привело к тому, что нашли распространение модели слоисто-неоднородного пласта.

Модель слоисто-неоднородного пласта включает в себя серию (два или более) пропластков (слоев) разной проницаемости, которые либо разделены практически непроницаемыми тонкими пропластками, либо гидродинамически свободно сообщаются между собой, либо частично сообщаются между собой. Обычно используется первая модификация. Пласт может характеризоваться закономерным или обычно вероятностным (случайным) распределением проницаемости слоев в разрезе. Построение модели аналогично предыдущему, однако при этом необходимо определение параметров не только пласта в целом по скважинам, но и отдельных его слоев.

Для этого используются методы детальной корреляции разрезов пластов, промыслово-геофизических и лабораторных исследований, а также изучения профилей притока (отбора) в добывающих скважинах и приемистости (поглощения, закачки вытесняющего агента) в нагнетательных скважинах (глубинная дебито-, расходо- или термометрия).

В скважинах осуществляют отбор керна, проводят промыслово-геофизические исследования, в том числе глубинную профилеметрию, изучают в лаборатории керны и строят при увязке всех данных зависимость пористости, проницаемости и других параметров от промыслово-геофизических данных. На основе полученных зависимостей определяют параметры слоев во всех скважинах. По этим данным строят гистограммы проницаемости (аналогично других параметров), которые принимают за плотности вероятностно-статистического распределения параметров и используют при окончательном представлении модели пласта.

Эта модель уже учитывает реальную неоднородность пластов и позволяет рассчитывать добычу обводненной продукции даже в сочетании с моделью поршневого вытеснения. Различные модификации ее связаны в основном с принятием того или иного теоретического закона распределения проницаемости. В нефтепромысловой практике используются различные законы распределения: нормальный (Гаусса), Максвелла, гамма-распределения, логарифмически нормальный и др.

Модель зонально- неоднородного пласта представляет реальный неоднородный пласт состоящим из зон различной проницаемости. Дальнейшим развитием этой модели было принятие большого числа хаотически расположенных зон, обладающих различными свойствами.

В 50-е годы возникли и стали развиваться модели трещиноватых и трещиновато-пористых пластов. В этих моделях соответственно непроницаемый и проницаемый однородные пласты рассекаются трещинами на блоки (матрицы) породы.[1]

2.Примеры уравнений для расчета некоторых характеристик нефтяного пласта.

Развитие моделирования нефтяных месторождений происходило параллельно развитию вычислительной техники за последние 30 лет. Специалисты и раньше старались использовать математические методы для изучения механики нефтяного пласта, процесса нефтедобычи и выбора способа эффективной разработки месторождений. В настоящее время в результате применения методов моделирования вычислительная машина стала таким же обычным инструментом в расчетах, какими когда-то были логарифмическая линейка и арифмометр. Ниже исследуются некоторые способы, ранее используемые при оценке процесса разработки пласта, и покажем, каким образом недостатки каждого из этих способов были устранены с помощью новых методов моделирования. Некоторые из этих методов все еще применяют на практике, так как они достаточно просты и дают достоверные результаты. Характерный пример - использование уравнения материального баланса.

2.1.Уравнение материального баланса

В 1936 г. Шильтуис вывел уравнение сохранения массы для продуктивного пласта. При выводе этого уравнения пласт рассматривался как однородный с постоянными свойствами породы и флюида. Баланс составлялся путем учета всех масс флюида, втекающего и вытекающего за данный период времени. Уравнение материального баланса иногда называют моделью нулевой размерности, так как внутри системы порода— флюид не происходит изменений параметров ни в одном направлении. Насыщенности и давления распределены равномерно по пласту, и любые изменения давлений мгновенно .передаются всем его точкам.

Здесь: Nр - количество добытой нефти; N - количество нефти, первоначально заключенной в пласте; Wр - суммарная добыча воды; We - суммарный объем поступающей в продуктивный пласт краевой воды; Wi - количество закачанной воды; Вt - коэффициент пластового объема нефти с растворенным газом; Вti - коэффициент пластового объема нефти при начальном пластовом давлении; Вg - коэффициент пластового объема газа; Вgi - коэффициент пластового объема газа при начальном пластовом давлении; m - отношение объема начальной газовой шапки к начальному объему нефти в пласте; Rр - суммарный газовый фактор; Rsi - начальная растворимость газа; Sw - текущая водонасыщенность пористой среды; Swi - начальная водонасыщенность пористой среды; Сf - сжимаемость породы; Сw - сжимаемость воды; Δр - депрессия давления в пласте; Gi - суммарное количество нагнетаемого газа.

При различных алгебраических преобразованиях с помощью этого уравнения можно определить любой из следующих параметров:

2) количество втекающей в пласт воды;

3) размеры газовой шапки и запасы газа;

Уравнение материального баланса решалось либо графически, либо численно. Метод материального баланса имеет следующие недостатки:

1) он не позволяет учитывать изменения свойств флюидов и породы в пласте;

2) не рассматриваются динамические эффекты движения флюидов внутри системы.

Основные уравнения характеристик нефтяного пласта получают путем объединения следующих физических законов:

1) сохранения массы;

2) сохранения моментов;

3) сохранения энергии (первый закон термодинамики);

4) уравнения движения—закон Дарси;

5) уравнения состояния.

Основные уравнения с учетом необходимых граничных и начальных условий образуют математическую модель системы. Для использования такой модели необходимо определить значения независимых параметров, удовлетворяющих одновременно всем уравнениям и граничным условиям. Решать уравнения можно с помощью аналитических или численных методов. Первые не используются вследствие того, что основные уравнения нелинейны и на сегодняшний день не существует аналитических методов их решения. Для решения этих уравнений более приемлемы численные методы.

2.2.Порядок составления уравнений

1. Выбирается элемент системы (рис. 3.4). 2, Описываются все потоки флюидов, входящие и выходящие из элемента, за определенный промежуток времени с учетом правила знаков (рис. 3.5).

3. Количество втекающего и вытекающего флюида приравниваются к количественным изменениям массы внутри системы за это время, т. е. обеспечивается сохранение массы.

4. Переходим к пределу, когда элементарный объем стягивается к бесконечно малому размеру:

и получаем необходимое дифференциальное уравнение.

2.3.Фильтрация однофазного флюида

Уравнение однофазной фильтрации флюида в пористой среде образуется путем объединения:

1) уравнения сохранения массы;

2) уравнения движения;

3) уравнения состояния [3].

3.Вывод

Математическое моделирование всегда будет играть основополагающую роль в процессе разработки месторождений. С помощью модели получают множество выходных данных, которые специалист использует для решения различных задач. Математическое моделирование можно применять для изучения характеристик пластов, содержащих одиночные скважины, группы скважин пли несколько скважин, взаимодействующих как единый комплекс. Модели также широко применяют для изучения механики движения флюидов в пористой среде.

В случае многопластового месторождения могут потребоваться данные по добыче и запасам нефти для какого-либо горизонта или зоны. При моделировании объекта полученная информация позволяет более эффективно планировать добычу и намечать интервалы вскрытия пластов в скважинах.

Математическое моделирование нефтяных пластов – инструмент, позволяющий специалисту глубже изучить механизм нефтеотдачи. При правильном его использовании можно получить ценнейшие результаты.

Гост

ГОСТ

Цели и виды моделирования в нефтегазовой отрасли

Моделирование – это построение моделей реальных объектов, систем, процессов, с целью их исследования и прогнозирования.

Компьютерное моделирование в нефтегазовой отрасли имеет несколько целей:

  1. Получение данных для экономических расчетов.
  2. Оптимизация систем нефтегазодобычи.
  3. Исследование процесса фильтрации.
  4. Исследование эксплуатационных и разведочных скважин.
  5. Планирование объемов добычи.
  6. Планирование объемов хранилищ полезного ископаемого.
  7. Оценка запаса углеводородов.

Моделирование месторождения нефти и газа, а также процессов разработки и эксплуатации состоит из нескольких последовательных этапов: оценки геологии района, определение закономерностей осадконакоплений, построение геологической модели, построение гидродинамической модели, расчета параметров гидродинамической модели, прогнозирование процесса разработки и эксплуатации месторождения.

Основными видами моделирования в нефтегазовой отрасли являются: гидродинамическое моделирование, моделирование пласта, моделирование процессов разработки и эксплуатации месторождений геолого-фильтрационное моделирование.

Моделирование пласта

Моделирование пласта необходимо для получения данных о текущем состоянии продуктивного пласта, а также для прогнозирования его поведения в процессе эксплуатации

Модель пласта – это совокупность количественных представлений о его геолого-физических параметрах и показателях, которые необходимы для дальнейших инженерных расчетов.

К модели пласта предъявляются два основных требования: она должна быть простой для понимания и адекватно рассматриваемой. Обычно источниками для моделирования пластов и месторождений служат данные лабораторных исследований, данные сейсмических исследований, анализ результатов других месторождений, интерпретация результатов гидродинамических исследований и другие. Модели пластов делятся на два основных вида:

Готовые работы на аналогичную тему

  1. Вероятностно-статистические. Такие модели не отражают особенностей строения и свойств продуктивных пластов. При их применении в соответствие моделируемому пласту ставят некоторый гипотетический пласт, который имеет вероятностно-статистически характеристики такие же, как у реального. Чаще всего используются следующие вероятностно-статистические модели: модель однородного пласта (в данной модели все главные характеристики пласта усредняют), модель слоистого пласта и модель трещиновато-пористого пласта.
  2. Детерминированные. При использовании данных моделей инженеры-проектировщики стараются максимально точно воспроизвести строение и свойства продуктивного пласта. Пример простой детерминированной модели пласта изображена на рисунке.

Рисунок 1. Простая модель пласта. Автор24 — интернет-биржа студенческих работ

где, 1 – условный контур нефтеносности, 2 – участок пласта одинаковыми показателями пористости и проницаемости, 3 – границы участков пласта с разными показателями пористости и проницаемости.

Адаптация моделей разработки и эксплуатации нефтяных и газовых месторождений и их практическое применение

Адаптация моделей играет важную роль в процессе проектирования разработки и эксплуатации нефтегазовых месторождений. Обычно адаптацию модели того или иного объекта (системы или процесса) производят по четырем основным параметрам: уточнение геометрических характеристик залежи (месторождения), определение фильтрационных и емкостных свойств месторождения, определение энергетических параметров объекта, определение показателей проницаемости и пористости продуктивного пласта.

Для качественной адаптации моделей объектов и процессов нефтегазовой отрасли необходимы следующие исходные данные, которые получают в процессах разнообразных исследований и наблюдений: сведения о компонентном составе углеводородов, данные о конструкциях используемых скважин, данные влагометрии, данные термометрии, данные дебитометрии, данные инклинометрии, результаты литологических исследований, данные об измерениях различных параметров (коэффициент вытеснения нефти, капиллярное давление, фазовая проницаемость и другие), интерпретация данных геофизических и других (геохимических, гидродинамических) исследований и другие.

Моделирование разработки и эксплуатации нефтегазовых месторождений дает возможность получить более полные данные о строении, фильтрационных и емкостных свойствах продуктивного пласта. Гидродинамическое моделирование позволяет наладить процесс управления разработкой месторождения.

Благодаря современным инструментам моделирования у инженеров появляется возможность отслеживания технологических показателей разработки и эксплуатации месторождений в динамике. Это позволяет спрогнозировать несколько вариантов процесса разработки и эксплуатации месторождения и вовремя принять меры для их изменения.

Читайте также: