Модели эволюции вселенной реферат

Обновлено: 05.07.2024

Содержание Введение 3 1. Космологические модели Вселенной 4 2. Стандартная модель эволюции Вселенной 8 3. Философско-мировоззренческие проблемы космологической эволюции 14 Заключение 16 Литература 17 Введение Проблемы зарождения и существования Вселенной занимали самого древнего человека. Современные ученые ищут ответы на следующие вопросы: Что было, когда Вселенная рождалась? Как давно это было и как происходило? Рождалась ли Вселенная вообще или она глобально стационарна? Для.

3270 Слова | 14 Стр.

Эволюция Вселенной 2

работа на тему: Эволюция Вселенной. Выполнил: студент гр. П-3 ОЗО Проверила: 2016 Содержание Введение 3 1. Модель Фридмана. Два варианта развития Вселенной 4 2. Строение Вселенной – современные космологические модели Вселенной .

4220 Слова | 17 Стр.

Строение и эволюция Вселенной

Строение и эволюция Вселенной Выполнил: студент Проверил: к.ф.н., доцент Волжский 2013 СОДЕРЖАНИЕ Познание Вселенной человеком ……………………………………………. 4 Ньютоновско-картезианская парадигма……………………………………..6 Современное познание вселенной…………………………………………. 8 Строение и эволюция Вселенной………………….…………………………11 Космологические модели Вселенной………………………………………11 Структура вселенной………………………………………….

3867 Слова | 16 Стр.

эволюция вселенной

дисциплине палеогеография Эволюция вселенной Выполнил студент 3 курса гр.ПП13 Егоров В.В. Проверил: Ядрихинский И.В. Якутск 2016 Оглавление Введение 3 Глава 1 . Понятие Вселенной и ее начало 5 1.1 Первые модели мира 6 1.2 Рождение Вселенной 11 Гдава 2. Этапы эволюции вселенной 15 2.1 Ранний этап эволюции Вселенной 17 2.2 Структурная самоорганизация Вселенной 19 2.3 Возникновение и эволюция звезд 22 2.4 Образование Солнечной системы 25 2.5 Возникновение и эволюция планет 32 Глава 3. Теория.

23883 Слова | 96 Стр.

ксе эволюция вселенной

Содержание Введение………………………………………..……………….……………. 31. Образование Вселенной…………………………………………………….5 2. Эволюция Вселенной…………….…………………………………….. . ..9 3. Рождение Галактик ……………. …………………………………….….14 4. Модели будущего Вселенной……………………………………………..17 Заключение……………………………………………………………………21Список литературы……………………………………………………….…..23 Введение Вселенная как целое является предметом особой астрономической науки - космологии, имеющей древнюю историю. Истоки ее уходят в античность. Космология.

Проблемы зарождения и существования Вселенной занимали самого древнего человека. Современные ученые ищут ответы на следующие вопросы: Что было, когда Вселенная рождалась? Как давно это было и как происходило? Рождалась ли Вселенная вообще или она глобально стационарна?

Современная космология - это астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной. Космология основывается на астрономических наблюдениях Галактики и других звездных систем, общей теории относительности, физике микропроцессов и высоких плотностей энергии, релятивистской термодинамике и ряде других новейших физических теорий.

Данное определение космологии берет в качестве предмета этой науки только Метагалактику. Это связано с тем, что все данные, которыми располагает современная наука, относятся только к конечной системе - Метагалактике, и ученые не уверены, что при простой экстраполяции свойств этой Метагалактики на всю Вселенную будут получены истинные результаты. При этом, безусловно, суждения о свойствах всей Вселенной являются необходимой составной частью космологии. Космология сегодня является фундаментальной наукой. И она больше, чем какая-либо другая фундаментальная наука, связана с различными философскими концепциями, по-разному понимающими устройство мира.

Цель работы: рассмотреть основные космологические подходы к пониманию эволюции Вселенной.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Классическая ньютоновская космология явно или неявно принимала следующие постулаты [4]

Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной.

Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим Л. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием [4]

Эта модель казалась в то время вполне удовлетворительной, поскольку она согласовывалась со всеми известными фактами. Но новые идеи, выдвинутые А. Эйнштейном, стимулировали дальнейшее исследование, и вскоре подход к проблеме решительно изменился.

В 1922 г. российский математик и геофизик Л. А. Фридман отбросил постулат классической космологии о стационарности Вселенной и дал принятое в настоящее время решение космологической проблемы [7]

Решение уравнений А. А. Фридмана, допускает три возможности. Если средняя плотность вещества и излучения во Вселенной равна некоторой критической величине, мировое пространство оказывается евклидовым и Вселенная неограниченно расширяется от первоначального точечного состояния.

Если плотность меньше критической, пространство обладает геометрией Лобачевского и так же неограниченно расширяется. И, наконец, если плотность больше критической, пространство Вселенной оказывается римановым, расширение на некотором этапе сменяется сжатием, которое продолжается вплоть до первоначального точечного состояния. По современным данным, средняя плотность материи во Вселенной меньше критической, так что более вероятной считается модель Лобачевского, т. е. пространственно бесконечная расширяющаяся Вселенная. Не исключено, что некоторые виды материи, которые имеют большое значение для величины средней плотности, пока остаются неучтенными. В связи с этим делать окончательные выводы о конечности или бесконечности Вселенной пока преждевременно.

Начало третьего периода развития космологии связано с работами известного американского физика Георгия А. Гамова (1904—1968), русского по происхождению. В них исследуются физические процессы, происходившие на разных стадиях расширяющейся Вселенной [7]

Общим для современных моделей вселенной является представление о нестационарном изотропном и однородном характере ее моделей.

Изотропность указывает на то, что во Вселенной не существует каких- либо выделенных точек и направлений, т. е. ее свойства не зависят от направления Однородность характеризует распределение в среднем вещества во Вселенной. Последние утверждения часто называют космологическим постулатом. К нему добавляют также правдоподобное требование об отсутствии во Вселенной сил, препятствующих силам тяготения. При таких предположениях модели оказываются наиболее простыми. В их основе лежат уравнения общей теории относительности Эйнштейна, а также представления о кривизне пространства — времени и связи этой кривизны с плотностью массы вещества [6]

В зависимости от кривизны пространства различают: открытую модель, в которой кривизна отрицательна или равна нулю; замкнутую модель с положительной кривизной.

Расстояния между скоплениями галактик со временем непрерывно увеличиваются, что соответствует бесконечной Вселенной. В замкнутых моделях Вселенная оказывается конечной, но столь же неограниченной, так как, двигаясь по ней, нельзя достичь какой-либо границы. Независимо от того, рассматриваются ли открытые или замкнутые модели Вселенной, все ученые сходятся в том, что первоначально Вселенная находилась в условиях, которые трудно вообразить на Земле.

Эти условия характеризуются наличием высокой температуры и давления в сингулярности, в которой была сосредоточена материя. Такое допущение вполне согласуется с установлением расширения Вселенной, которое могло начаться с некоторого момента, когда она находилась в очень горячем состоянии и постепенно охлаждалась по мере расширения.

Такая модель "горячей" Вселенной впервые была выдвинута Г. А. Гамовым и впоследствии названа стандартной.

В 1929 г. американский астроном Э. П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию,— система галактик расширяется [6]

Известный американский астроном Карл Саган (р. 1934) построил наглядную модель эволюции Вселенной, в которой космический год равен 15 млрд. земных лет, а 1 секунда — 500 годам; тогда в земных единицах времени эволюция представится так:

Оглавление
Файлы: 1 файл

Реферат Вселенная.doc

2. МОДЕЛЬ ВСЕЛЕННОЙ

Когда мы говорим о Вселенной, нас в первую очередь интересует распределение вещества в самых больших масштабах и ее движение. Значит, нам предстоит построить математическую модель, описывающую распре

деление вещества в пространстве и его движение. Что касается распределения вещества в больших масштабах, то, как уже было сказано, его можно с хорошей точностью считать однородным по пространству. Нет во Вселенной и каких-либо выделенных направлений. Как говорят, наша Вселенная однородна и изотропна. Что определяет движение вещества в космических масштабах? Конечно же, это, в первую очередь, силы всемирною тяготения — они главенствуют во Вселенной. Их называют также силами гравитации.

Итак, для построения модели Вселенной необходимо воспользоваться уравнениями тяготения. Закон всемирного тяготения был установлен И. Ньютоном. Его справедливость подтверждалась на протяжении веков самыми разнообразными астрономическими наблюдениями и лабораторными экспериментами. Однако А. Эйнштейн показал, что закон тяготения Ньютона справедлив лишь в сравнительно слабых полях тяготения. Для сильных же полей необходимо применять релятивистскую теорию гравитации — общую теорию относительности. Какие же поля следует считать достаточно сильными? Ответ таков: если поле тяготения разгоняет падающие в нем тела до скоростей, близких к скорости света, то это сильное поле. Какова сила гравитационного поля во Вселенной? Легко показать, что поля там должны быть огромными.

А. А. Фридман воспользовался для построения модели Вселенной уравнениями Эйнштейна. Однако много лет спустя выяснилось, что для построения механики движения масс в однородной Вселенной нет необходимости использовать сложнейший математический аппарат теории Эйнштейна. Это было показано в 1934 г. Э. Милном и В. Маккри. Причина этой удивительной возможности состоит в следующем. Сферически-симметричная материальная оболочка не создает никакого гравитационного поля во всей внутренней полости.

Теперь обратимся к рассмотрению сил тяготения во Вселенной. В больших масштабах распределение вещества во Вселенной можно считать однородным. Рассмотрим сначала силы тяготения, создаваемые на поверхности шара только веществом самого шара, и не будем пока рассматривать все остальное вещество Вселенной. Пусть радиус шара выбран не слишком большим, так что поле тяготения, создаваемое веществом шара, относительно слабо и применима теория Ньютона для вычисления силы тяготения. Тогда галактики, находящиеся на граничной сфере, будут притягиваться к центру шара с силой, пропорциональной массе шара, и обратно пропорциональной квадрату его радиуса.

Теперь вспомним обо всем остальном веществе Вселенной вне шара и попытаемся учесть силы тяготения, им создаваемые. Для этого будем рассматривать последовательно сферические оболочки все большего и большего радиуса, охватывающие шар. Но, как было сказано выше, что сферически-симметричные слои вещества никаких гравитационных сил внутри полости не создают. Следовательно, все эти сферически-симметричные оболочки (т. е. все остальное вещество Вселенной) ничего не добавят к силе притяжения, которое испытывает галактика на поверхности шара к его центру. Такой же вывод справедлив в общей теории относительности. Теперь ясно, почему для вывода законов движения масс в однородной Вселенной можно воспользоваться теорией Ньютона, а не Эйнштейна.

Мы выбрали шар достаточно малым, чтобы была применима теория Ньютона для вычисления гравитационных сил, создаваемых его веществом. Массы остальной Вселенной, окружающие шар, на силы гравитации в данном шаре никак не повлияют. Но никаких других сил в однородной Вселенной вообще нет. Действительно, это могли бы быть только силы давления вещества. Но даже если давление есть (а в далеком прошлом давление во Вселенной было огромным), то оно не создает гидродинамической силы. Ведь такая сила возникает только при перепаде давления от места к месту. Вспомним, что мы не чувствуем никакой силы от большого давления нашей атмосферы из-за того, что внутри нас воздух создает точно такое же давление. Никакого перепада нет — нет и силы. Но наша Вселенная однородна. Значит, в любой момент времени и плотность, и давление (если оно есть) везде одинаковы, и никакого перепада давлений быть не может.

Итак, для определения динамики вещества нашего шара существенно только тяготение его массы, определяемое по теории Ньютона. Но Вселенная однородна. Это значит, что все области ее эквивалентны. Если определить движение вещества в данном шаре, можно найти, как меняются в нем плотность, давление, то тем самым найдем изменение этих величин и в любом другом месте, во всей Вселенной.

3. ПЕРВАЯ КОСМОЛОГИЧЕСКАЯ МОДЕЛЬ ВСЕЛЕННОЙ - МОДЕЛЬ ЭЙНШТЕЙНА

Первая космологическая модель была построена А. Эйнштейном в 1917 г. вскоре после создания им Общей теории относительности. Как и все тогда, он считал, что Вселенная должна быть стационарна, она не может

Исходя из таких соображений, Эйнштейн ввел космическую силу отталкивания, которая делала мир стационарным. Эта сила универсальна: она зависит не от массы тел, а только от расстояния, их разделяющего. Ускорение, которое эта сила сообщает любым телам, разнесенным на расстояние, должно быть пропорционально расстоянию. Силы отталкивания, если они, конечно, существуют в природе, можно было бы обнаружить в достаточно точных лабораторных опытах. Однако малость величины делает задачу ее лабораторного обнаружения совершенно безнадежной. Действительно, это ускорение пропорционально расстоянию и в малых масштабах ничтожно. Легко подсчитать, что при свободном падении тела на поверхность Земли добавочное ускорение в 10 30 раз меньше самого ускорения свободного падения. Даже в масштабе Солнечной системы или всей нашей Галактики эти силы ничтожно малы по сравнению с силами тяготения.. Разумеется, это отталкивание никак не сказывается на движении тел Солнечной системы и может быть обнаружено только при исследовании движений самых отдаленных наблюдаемых галактик.

Так, в уравнениях тяготения Эйнштейна появилась космологическая постоянная, описывающая силы отталкивания вакуума. Действие этих сил столь же универсально, как и сил всемирного тяготения, т. е. оно не зависит от физической природы тела, на котором проявляется, поэтому логично назвать это действие гравитацией вакуума.

Через несколько лет после работы Эйнштейна, А. А. Фридманом была создана теория расширяющейся Вселенной. А. Эйнштейн сначала не соглашался с выводами советского математика, но потом полностью их признал.

После открытия Э. Хабблом расширения Вселенной какие-либо основания предполагать, что в природе существуют космические силы отталкивания, казалось бы отпали.

Что будет, если из Вселенной убрать все вещество? На первый взгляд кажется, что такая операция совершенно абстрактна и получаемая модель будет соответствовать лишь воображению теоретиков. Но это вовсе не так и ничего фантастического или тем более наивного в такой операции нет. В истории Вселенной, по-видимому, был период, когда она была практически пуста, свободна от обычной физической материи, и модель пустой Вселенной описывала тогда ее эволюцию.

Итак, следуя де Ситтеру, уберем из Вселенной все вещество. Поместим в нашу пустую Вселенную две свободные пробные частицы на расстоянии друг от друга. Частицы называются пробными, так как предполагается, что их массы достаточно малы, чтобы не влиять на их относительное движение, а свободными они называются потому, что на них не действует никакая сила, кроме гравитации. Во Вселенной это могут быть, например, две галактики, расположенные достаточно далеко друг от друга. Тогда отрицательная гравитация заставляет обе галактики двигаться друг от друга с ускорением, пропорциональным расстоянию. Если по ускорению найти скорость, а затем изменение расстояния со временем, то легко показать, что относительная

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Многие религии, такие как иврит, христианин и ислам, верили, что Вселенная создана Богом, и только недавно. Например, епископ Ашер рассчитал для сотворения Вселенной дату в четыре тысячи четыреста лет и прибавил возраст людей в Ветхом Завете. Фактически, дата библейского сотворения не так далека от конца последнего ледникового периода, когда появился первый современный человек.

Исследование Вселенной

Великий немецкий ученый и философ Иммануил Кант (1724-1804) создал первую универсальную концепцию развивающейся Вселенной, обогатил образ ее плоской структуры и представил Вселенную бесконечно в особом смысле. Он установил возможности и значительную вероятность возникновения такой вселенной исключительно под воздействием механических сил притяжения и отталкивания. Кант пытался выяснить будущую судьбу этой вселенной на всех ее масштабных уровнях, от планетарной системы до мира туманностей.

Этим Фридман доказал, что материя во вселенной не может быть в покое. В своих выводах Фридман теоретически способствовал открытию необходимости глобальной эволюции Вселенной.

Происхождение Вселенной

Современные астрономические наблюдения позволяют предположить, что начало Вселенной около десяти миллиардов лет назад было огромным огненным шаром, раскаленным и плотным. Его состав довольно прост. Этот огненный шар был настолько горячим, что состоял только из свободных элементарных частиц, которые быстро двигались, когда они сталкивались друг с другом.

Существует несколько теорий эволюции. Теория пульсирующей вселенной утверждает, что наш мир был создан гигантским взрывом. Но расширение Вселенной не будет длиться вечно, потому что гравитация остановит его.

Согласно этой теории, наша Вселенная расширялась в течение 18 миллиардов лет после взрыва. В будущем расширение полностью замедлится и будет остановлено. И тогда вселенная начнет сжиматься, пока материя снова не сжимается и не произойдет еще один взрыв.

Теория стационарного взрыва: Согласно этой теории, у Вселенной нет ни начала, ни конца. Он постоянно в одном и том же состоянии. Новый вихрь постоянно формируется, чтобы сбалансировать материю в далеких галактиках. По этой причине вселенная всегда одна и та же, но если вселенная, начавшаяся со взрыва, расширится до бесконечности, то она постепенно остынет и полностью исчезнет.

Но пока ни одна из этих теорий не может быть доказана, потому что нет точных доказательств хотя бы для одной из теорий.

Однако следует отметить, что существует и другая теория (принцип).

Антропогенный (человеческий) принцип был впервые сформулирован в 1960 году Г.И. Иглисом. Но он вроде как неофициальный автор книги. А официальным автором был ученый по имени Картер.

Антропийский принцип гласит, что Вселенная — это то, что она есть, потому что есть наблюдатель или она должна появиться на определенной стадии развития. Создатели этой теории принесли очень интересные факты, чтобы доказать это. Такова критичность фундаментальных констант и совпадение большого числа. Получается, что они полностью взаимосвязаны, и их малейшее изменение приведет к полному хаосу. Тот факт, что такое явное совпадение, даже закономерность можно увидеть, дает этой довольно интересной теории шанс на жизнь.

Эволюция Вселенной

Эволюция вселенной очень медленная. Ведь Вселенная во много раз старше астрономии и человеческой культуры в целом. Зарождение и развитие жизни на Земле — лишь крошечное звено в эволюции Вселенной. И все же исследования, проведенные в нашем веке, открыли занавес, скрывающий от нас далекое прошлое.

Вселенная разделена на четыре эпохи: Адрон, Лептон, фотон и звезда.

Галактики и структура вселенной…

Дезинтеграция протоскопических слоев на отдельные утолщения, по-видимому, также произошла из-за гравитационной неустойчивости, что привело к протогалактическим изменениям. Многие из них, казалось бы, быстро вращались из-за вихревого состояния вещества, из которого они образовались. Фрагментация протогалактических облаков в результате их гравитационной неустойчивости привела к образованию первых звезд, и облака превратились в звездные системы — галактики. Протогалактические галактики с быстрым вращением превращаются в спиральные галактики с более медленным вращением или вообще без вращения в эллиптические или нерегулярные галактики. Параллельно с этим процессом развивалась масштабная структура Вселенной — создавались суперскульптуры галактик, которые, соединяясь своими краями, принимали облик сотов.

Классификация галактик

Эдвин Пауэлла Хаббл (1889-1953), известный американский наблюдатель и астроном, выбрал самый простой метод классификации галактик по их внешнему виду. И надо сказать, что хотя другие исследователи делали разумные предположения о классификации в ретроспективе, исходная система, выведенная Хабблом, до сих пор является основой для классификации галактик.

Через 20-30 лет. XX век Хаббл разработал основу для структурной классификации галактик — огромных звездных систем, согласно которой выделяются три класса галактик.

Спиральные Галактики

Спиральные галактики характеризуются двумя относительно яркими спиральными ветвями. Ветви происходят либо от яркого сердечника (обозначенного — S), либо от концов световой перемычки, пересекающей сердечник (обозначенного — SB).

Спиральные галактики — пожалуй, самые живописные объекты во Вселенной. Обычно галактика имеет две спиральные ветви, которые возникают в противоположных точках ядра, развиваются аналогично симметрично и теряются в противоположных частях периферии. Однако известны примеры более чем двух спиральных ветвей в галактике. В других случаях есть две спирали, но они неравномерны — одна гораздо более развита, чем другая. В спиральных галактиках больше светопоглощающей пыли. Она колеблется от нескольких тысяч до сотой части своей полной массы. Из-за концентрации пылевой материи в экваториальной плоскости она образует в галактиках темную полосу, которая обращена к нам от ребер и похожа на веретена.

Представитель — Галактика M82 в созвездии В. Медведей, не имеет четких очертаний и состоит в основном из горячих синих звезд и нагретых ими газовых облаков. М82 находится на расстоянии 6,5 миллионов световых лет. Примерно миллион лет назад в его центральной части произошел огромный взрыв, который принял тот облик, который имеет сегодня.

Эллиптические галактики

Эллиптические галактики (обозначены E) — это эллипсоидные галактики. Эллиптические галактики не выражены снаружи. Они имеют форму гладких эллипсов или кругов с постепенным круговым уменьшением яркости от центра к периферии. Космическая пыль в них, как правило, ничем не отличается от спиральных галактик, где светопоглощающая пыль присутствует в больших количествах. Внешне эллиптические галактики отличаются друг от друга главным образом одной особенностью — более или менее сжатием.

Представительная Кольцевая туманность в созвездии Лира находится на расстоянии 2100 световых лет и состоит из светящегося газа, окружающего центральную звезду. Этот корпус сформировался, когда старая звезда сбросила свою газовую крышку и погрузилась в космос. Звезда уменьшилась и пришла в состояние, сопоставимое по массе с Солнцем и размерам с Землей.

Галактика может быть не в правильной форме из-за низкой плотности материи или ее молодого возраста. Существует и другая возможность: галактика может стать нерегулярной из-за искажений формы, вызванных взаимодействием с другой галактикой. Видимо, эти два случая происходят среди неправильных галактик, и это может быть связано с делением неправильных галактик на 2 подтипа.

Ложные галактики подтипа II характеризуются относительно большой площадью поверхности, яркостью и сложностью ложной структуры. Французский астроном Вакулер обнаружил признаки спирального разрушения в некоторых галактиках этого подтипа, таких как Магеллановы Облака.

Ложные галактики подтипа III имеют очень низкую площадь поверхности и яркость. Эта особенность отличает их от всех других типов галактик. В то же время это препятствует открытию этих галактик, так что можно выделить лишь несколько относительно близких галактик подтипа III.

Представители нерегулярных галактик — Большое Магеллановое Облако. Он находится на расстоянии 165000 световых лет и, таким образом, ближайшая к нам галактика, относительно небольшая галактика, рядом с ней находится меньшая галактика — Маленькое Магеллановое Облако. Они оба спутники нашей галактики.

Последующие наблюдения показали, что описываемая классификация недостаточна для систематизации всего разнообразия форм и свойств галактик. Обнаружено, что галактики являются в некотором роде промежуточными между спиральными галактиками и эллиптическими галактиками (обозначены как So). Эти галактики имеют огромное центральное утолщение и окружающий плоский диск, но спиральные ветви отсутствуют.

Структура вселенной

С образованием атомов водорода начинается эра звезд, точнее эра протонов и электронов.

Вселенная вступает в звездный век в виде газа водорода с огромным количеством света и ультрафиолетовых фотонов. Водородный газ распространялся в разных частях Вселенной с разной скоростью. Плотность также была различной. Она образовала огромные куски, много миллионов световых лет. Масса таких космических комочков водорода была в сотни тысяч, а то и миллионы раз больше, чем в нашей Галактике сегодня. Расширение газа внутри сгустка происходило медленнее, чем расширение разбавленного водорода между самим сгустком. Позже супергалактики и кластеры галактик из отдельных областей, образованных собственной гравитацией. Таким образом, крупнейшие структурные единицы Вселенной — супергалактики — являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной.

Звезды во Вселенной сгруппированы в гигантские звездные системы, называемые галактиками. Звездная система, содержащая наше Солнце, как обычная звезда, называется галактикой.

Количество звезд в галактике составляет около 1012 (триллионы). Млечный Путь, яркая серебряная полоса звезд, окружает все небо и составляет большую часть нашей Галактики. Млечный Путь — самый яркий в созвездии Стрельца, где находятся самые мощные звездные облака. Противоположная часть неба — наименее яркая. Нетрудно сделать вывод, что Солнечная система не находится в центре галактики, которая видна от нас в направлении созвездия Стрельца. Чем дальше от плоскости Млечного Пути, тем меньше слабых звезд и тем дальше в этих направлениях распространяется звездная система.

В центре галактики находится ядро диаметром 1000-2000 пк — огромное конденсированное звездное скопление. Он находится почти в 10 000 пк (30 000 световых лет) от нас в направлении созвездия Стрельца, но почти полностью скрыт плотным занавесом облаков, что препятствует визуальным и рутинным фотографическим наблюдениям этого самого интересного объекта в Галактике.

Масса нашей Галактики в настоящее время оценивается по-разному, она соответствует 2*1011 массам Солнца (масса Солнца 2*1030 кг.) и 1/1000 из них содержится в межзвездном газе и пыли. В 1944 году В.В. Кукарин обнаружил свидетельства спиральной структуры галактики, и оказалось, что мы живем между двумя спиральными рукавами.

В некоторых местах на небе в телескопе, а в некоторых даже невооруженным глазом, можно выделить близкие группы звезд, связанные со взаимной гравитацией, или звездные скопления.

Существует два типа звездных скоплений: рассеянные и сферические.

Помимо звезд, галактика содержит также рассеянное вещество — чрезвычайно рассеянное вещество, состоящее из межзвездного газа и пыли. Она образует туманности. Туманности могут быть диффузными и планетарными. Они светлые, потому что их освещают близлежащие звезды.

Во Вселенной нет ничего уникального и своеобразного в том смысле, что нет такого тела, такого явления, основные и общие свойства которого не повторялись бы в другом теле, в других явлениях.

Заключение

Открытие различных эволюционных процессов в различных системах и телах, составляющих Вселенную, позволило изучить законы эволюции Космоса на основе данных наблюдений и теоретических расчетов.

Очевидно, что вторая характеристика может быть определена только на основе теоретических расчетов. Обычно первое из приведенных значений называется возрастом, а второе — ожидаемой продолжительностью жизни.

Тот факт, что галактики, составляющие метаглактику, взаимно далеки друг от друга, говорит о том, что некоторое время назад она находилась в качественно ином состоянии и была более плотной.

Сегодня астрофизики с полным основанием называют золотой век астрофизики — удивительные и по большей части неожиданные открытия в мире звезд следуют друг за другом. В последнее время Солнечная система является объектом прямых экспериментальных, а не только наблюдательных исследований. Полеты межпланетных космических станций, орбитальных лабораторий, экспедиции на Луну принесли много новых специфических открытий о Земле, околоземном пространстве, планетах и Солнце.

Исследование Вселенной, даже той ее части, которая нам известна, является огромной задачей. Потребовалось много поколений, чтобы получить информацию, которой обладают современные ученые.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: