Металлы полупроводники и диэлектрики реферат

Обновлено: 05.07.2024

Проводники отличаются от диэлектриков наличием свободных зарядов — заряженных частиц, положение которых не связано с какой-то точкой внутри вещества. Свободные заряды приходят в движение под действием электрического поля и могут перемещаться по всему объёму проводника.

Проводниками являются также электролиты. Так называются растворы и расплавы, свободные заряды в которых возникают в результате диссоциации молекул на положительные и отрицательные ионы. Бросим, например, в стакан воды щепотку поваренной соли. Молекулы NaCl распадутся на ионы Na+ и Cl?. Под действием электрического поля эти ионы начнут упорядоченное движение, и возникнет электрический ток.

Природная вода, даже пресная, является проводником из-за растворённых в ней солей (но, конечно, не таким хорошим, как металлы).

Человеческое тело в основным состоит из воды, и в ней также растворены соли (хлориды натрия, калия, кальция, магния).

Поэтому наше тело —проводник электрического тока.

Из-за наличия свободных зарядов, способных перемещаться по всему объёму, проводники обладают некоторыми характерными общими свойствами.

1.1 Поле внутри проводника

Первое общее свойство проводников в электростатическом поле состоит в том, что напряжённость поля внутри проводника везде равна нулю.

Докажем от противного, как в математике. Предположим, что в какой-то области проводника имеется электрическое поле. Тогда под действием этого поля свободные заряды проводника начнут направленное движение. Возникнет электрический ток — а это противоречит тому, что мы находимся в электростатике.

Конечно, такое рассуждение не оставляет ощущения удовлетворённости. Хотелось бы понять, почему обнуляется поле внутри проводника. Давайте попробуем.

Рассмотрим незаряженный проводящий шар, помещённый во внешнее электростатическое поле E. Для простоты считаем это поле однородным, но наши рассуждения останутся верными и в общем случае.

Под действием электрического поля E свободные электроны нашего шара скапливаются в левом его полушарии, которое заряжается отрицательно. Справа остаётся не скомпенсированный положительный заряд. Возникновение этих зарядов, как вы помните, называется электростатической индукцией: заряды на поверхности проводника индуцируются (т. е. Наводятся)внешним электростатическим полем. Подчеркнём ещё раз, что происходит реальное разделение зарядов: если сейчас распилить шар по диаметру в вертикальной плоскости, то получатся два разноимённо заряженных полушария.

Электрический ток и магнитное поле

. магнитного поля. Силы, с которыми взаимодействуют проводники с током, называются магнитными. Магнитное поле - это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока .

Перестроение свободных зарядов шара продолжается до тех пор, пока поле Ei не компенсирует полностью внешнее поле E во всей области внутри шара. При наступлении этого момента(а наступает он почти мгновенно) результирующее поле внутри шара станет равным нулю, дальнейшее движение зарядов прекратится, и они окончательно займут свои фиксированные статические положения на поверхности шара.

До сих пор наши рассуждения относились к случаю незаряженного проводника. Что изменится, если проводнику, помещённому в электростатическое поле, сообщить вдобавок некоторый заряд q?

Легко понять, что результирующее поле внутри проводника всё равно окажется равным нулю. В самом деле, заряд q начнёт перераспределяться по поверхности проводника таким образом, что поле Ei этого заряда внутри проводника будет направлено против внешнего электростатического поля E. Перераспределение будет продолжаться до тех пор, пока оба поля E и Ei не компенсируют друг друга во всей внутренней области проводника.

1.2 Поле вне проводника

Теперь рассмотрим область пространства, внешнюю по отношению к проводнику. Оказывается, линии напряжённости электрического поля входят в проводник (или выходят из него)перпендикулярно поверхности проводника.

Посмотрите ещё раз на рис. 2. Вы видите, что любая силовая линия, пересекающая шар, направлена точно под прямым углом к его поверхности.

Почему так получается? Давайте снова проведём доказательство от противного. Предположим, что в некоторой точке поверхности проводника силовая линия не перпендикулярна поверхности. Тогда в данной точке имеется составляющая вектора напряжённости, направленная по касательной к поверхности проводника — так называемая касательная составляющая вектора напряжённости. Под действием этой касательной составляющей возникнет электрический ток — а это противоречит тому, что мы находимся в электростатике.

1.3 Потенциал проводника

Раньше мы говорили о потенциале той или иной точки электростатического поля. Большой интерес представляют множества точек, потенциал которых одинаков. Один пример такого множества мы знаем — это эквипотенциальные поверхности. Другим замечательным примером служит проводник.

Проводники, полупроводники и диэлектрики

. тел на проводники, полупроводники и диэлектрики. 1. Проводниковые материалы 1.1. Общие сведения В качестве проводников электрического тока . электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода. Электрическое сопротивление проводников Электрическое . тел и поведение их в электрическом поле определяются строением и расположением .

Все точки проводника имеют одинаковый потенциал. Иными словами, разность потенциалов между любыми двумя точками проводника равна нулю.

В самом деле, если бы между какой-либо парой точек проводника существовала ненулевая разность потенциалов, возник бы ток от одной точки к другой — ведь в этом случае электрическое поле совершало бы ненулевую работу по перемещению зарядов между данными точками.

Но в электростатике никакого тока быть не может.

Потенциал какой-либо (и тогда любой) точки проводника называется потенциалом проводника.

2. Диэлектрики в электрическом поле

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются связанными: электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направленного движения зарядов. Поэтому для диэлектриков не проходят наши доказательства свойств проводников — ведь все эти рассуждения опирались на возможность появления тока.

2.1 Диэлектрическая проницаемость

Но тем не менее, одно важнейшее общее свойство у диэлектриков имеется. Напряжённость поля уменьшается внутри диэлектрика в некоторое число е раз по сравнению с вакуумом.

Величина е даётся в таблицах и называется диэлектрической проницаемостью диэлектрика.

Давайте разберёмся, каковы причины ослабления поля в диэлектрике. Рассмотрим диэлектрик, помещённый во внешнее однородное (для простоты) поле E0. Опыт показывает, что на противоположных поверхностях диэлектрика появляются заряды разных знаков.

Результирующее поле внутри диэлектрика равно:

Один из таких перескоков показан в средней части рисунка: электрон прыгнул влево, заполнив вакансию, а дырка, соответственно, сместилась вправо. Следующий возможный скачок электрона, вызванный электрическим полем, изображён в правой части рисунка; в результате этого скачка дырка заняла новое место, расположенное ещё правее.

Мы видим, что дырка в целом перемещается по направлению линий поля — то есть туда, куда и полагается двигаться положительным зарядам. Подчеркнём ещё раз, что направленное движение дырки вдоль поля вызвано перескоками валентных электронов от атома к атому, происходящими преимущественно в направлении против поля.

Таким образом, в кристалле кремния имеется два типа носителей заряда: свободные электроны и дырки. При наложении внешнего электрического поля появляется электрический ток, вызванный их упорядоченным встречным движением: свободные электроны перемещаются противоположно вектору напряжённости поля E~, а дырки — в направлении вектора E~.

Возникновение тока за счёт движения свободных электронов называется электронной проводимостью, или проводимостью n-типа. Процесс упорядоченного перемещения дырок называется дырочной проводимостью, или проводимостью p-типа. Обе проводимости — электронная и дырочная — вместе называются собственной проводимостью полупроводника.

Разработка игрового приложения мозаика

. Игровое приложение позволяет пользователю проанализировать, обобщить, систематизировать и активно развивать знания, умения, личностные качества [7]. Объектом исследования в данной работе является разработка клиентсерверных приложений. Предметом исследования является разработка кроссплатформенного клиент-серверного приложения. . масштаба [21]. Преимущества: 1. Свободное ПО (PHP license). 2. Простое .

Изменение внешних условий смещает состояние динамического равновесия в ту или иную сторону. Равновесное значение концентрации носителей заряда при этом, естественно, изменяется. Например, число свободных электронов и дырок возрастает при нагревании полупроводника или при его освещении.

При комнатной температуре концентрация свободных электронов и дырок в кремнии приблизительно равно 1010 см?3. Концентрация же атомов кремния — порядка 1022 см?3. Иными словами, на 1012 атомов кремния приходится лишь один свободный электрон! Это очень мало. В металлах, например, концентрация свободных электронов примерно равна концентрации атомов. Соответственно, собственная проводимость кремния и других полупроводников при нормальных условиях мала по сравнению с проводимостью металлов.

3.4 Примесная проводимость

Важнейшей особенностью полупроводников является то, что их удельное сопротивление может быть уменьшено на несколько порядков в результате введения даже весьма незначительного количества примесей. Помимо собственной проводимости у полупроводника возникает доминирующая примесная проводимость. Именно благодаря этому факту полупроводниковые приборы нашли столь широкое применение в науке и технике.

Предположим, например, что в расплав кремния добавлено немного пятивалентного мышьяка (As).

После кристаллизации расплава оказывается, что атомы мышьяка занимают места в некоторых узлах сформировавшейся кристаллической решётки кремния.

Создание мобильного приложения для организации

. котором приложение запущено. мобильный информационный интерфейс Пользовательский интерфейс приложения должен быть нативным для платформы Android и соответствовать основным рекомендациям по разработке приложений для . с ними является актуальной задачей. Целью данной дипломной работы является создание мобильного приложения для организации информационного обмена между мобильными сотрудниками компании .

Таким образом, внедрение атомов пятивалентного мышьяка в кристаллическую решётку кремния создаёт электронную проводимость, но не приводит к симметричному появлению дырочной проводимости. Главная роль в создании тока теперь принадлежит свободным электронам, которые в данном случае называются основными носителями заряда.

Механизм собственной проводимости, разумеется, продолжает работать и при наличии примеси: ковалентные связи по-прежнему рвутся за счёт теплового движения, порождая свободные электроны и дырки. Но теперь дырок оказывается гораздо меньше, чем свободных электронов, которые в большом количестве предоставлены атомами мышьяка. Поэтому дырки в данном случае будут неосновными носителями заряда.

Примеси, атомы которых отдают свободные электроны без появления равного количества подвижных дырок, называются донорными. Например, пятивалентный мышьяк — донорная примесь. При наличии в полупроводнике донорной примеси основными носителями заряда являются свободные электроны, а неосновными — дырки; иными словами, концентрация свободных электронов намного превышает концентрацию дырок. Поэтому полупроводники с донорными примесями называются электронными полупроводниками, или полупроводниками n-типа(или просто n-полупроводниками).

А насколько, интересно, концентрация свободных электронов может превышать концентрацию дырок в n-полупроводнике? Давайте проведём простой расчёт.

Предположим, что примесь составляет 0,1 %, то есть на тысячу атомов кремния приходится один атом мышьяка. Концентрация атомов кремния, как мы помним, порядка 1022 см?3.

Концентрация атомов мышьяка, соответственно, будет в тысячу раз меньше: 1019 см?3. Такой же окажется и концентрация свободных электронов, отданных примесью — ведь каждый атом мышьяка отдаёт по электрону. А теперь вспомним, что концентрация электронно-дырочных пар, появляющихся при разрывах ковалентных связей кремния, при комнатной температуре примерно равна 1010 см?3. Чувствуете разницу? Концентрация свободных электронов в данном случае больше концентрации дырок на 9 порядков, то есть в миллиард раз! Соответственно, в миллиард раз уменьшается удельное сопротивление кремниевого полупроводника при введении столь небольшого количества примеси.

Приведённый расчёт показывает, что в полупроводниках n-типа основную роль действительно играет электронная проводимость. На фоне столь колоссального превосходства численности свободных электронов вклад движения дырок в общую проводимость пренебрежимо мал.Можно, наоборот, создать полупроводник с преобладанием дырочной проводимости. Так получится, если в кристалл кремния внедрить трёхвалентную примесь — например, индий (In).

Измерение концентрации растворов

. устройства и принципа работы спектрофотометра; Проведение измерений оптической плотности окрашенных растворов при помощи спектрофотоколориметра; Проведение измерений концентраций растворенных компонентов в двухкомпонентных окрашенных растворах при помощи спектрофотоколориметра; Обработка и анализ .

Если в кристалл чистого кремния ввести акцепторную примесь, то число дырок, порождённых примесью, будет намного больше числа свободных электронов, возникших за счёт разрыва ковалентных связей между атомами кремния. Полупроводник с акцепторной примесью — это дырочный полупроводник, или полупроводник p-типа (или просто p-полупроводник).Дырки играют главную роль при создании тока в p-полупроводнике; дырки — основные носители заряда. Свободные электроны — неосновные носители заряда в p-полупроводнике.

Движение свободных электронов в данном случае не вносит существенного вклада: электрический ток обеспечивается в первую очередь дырочной проводимостью.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

по дисциплине "Электротехника" на тему: "Проводники, полупроводники и диэлектрики" Курчатов 2008

СодержаниеВведение

Общие сведенияМедьЛатуниПроводниковые бронзыАлюминий

Полупроводники. Полупроводниковые приборы

2.1. Общие сведения

2.2. Полупроводниковые диоды

3.1. Основные определения и классификация диэлектриков

3.2. Характеристики электроизоляционных материалов

1. Проводниковые материалы 1.1. Общие сведения В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. К проводниковым материалам в электротехнике относятся металлы, их сплавы, контактные металлокерамические композиции и электротехнический уголь. Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы, характеризующиеся электронной проводимостью; основной параметр для них – удельное электрическое сопротивление в функции температуры.

Диапазон удельных сопротивлений металлических проводников весьма узок и составляет от 0,016 мкОм٠м для серебра до 1,6 мкОм٠м для жаростойких железохромоалюминиевых сплавов. Электрическое сопротивление графита с увеличением температуры проходит через минимум с последующим постепенным повышением.

По роду применения проводниковые материалы подразделяются на группы:

проводники с высокой проводимостью – металлы для проводов линий электропередачи и для изготовления кабелей, обмоточных и монтажных

Похожие работы

2014-2022 © "РефератКо"
электронная библиотека студента.
Банк рефератов, все рефераты скачать бесплатно и без регистрации.

"РефератКо" - электронная библиотека учебных, творческих и аналитических работ, банк рефератов. Огромная база из более 766 000 рефератов. Кроме рефератов есть ещё много дипломов, курсовых работ, лекций, методичек, резюме, сочинений, учебников и много других учебных и научных работ. На сайте не нужна регистрация или плата за доступ. Всё содержимое библиотеки полностью доступно для скачивания анонимному пользователю

Одно из наиболее характерных свойств металлов — высокая электрическая проводимость, обусловленная направленным переносом их электронов в электрическом поле. С другом стороны, имеется большая группа твердых веществ с молекулярной, ионной или ковалентной решеткой, которые образуют класс диэлектриков. Их электрическая проводимость на 20—30 порядков ниже электрической проводимости металлов.

Известно большое число веществ, занимающих промежуточное положение между металлами и диэлектриками и относящихся к классу полупроводников. При очень низких температурах полупроводники не проводят электрический ток, т. е. являются типичными диэлектриками. Однако по мере роста температуры отмечается возрастание их электрической проводимости.

Любая теория твердого тела должна удовлетворительно объяснить наблюдающиеся огромные различия в электрической проводимости веществ, принадлежащих разным классам. К сожалению, ни теория ковалентной связи, рассматривающая электроны, принадлежащие лишь данной химической связи, как в ковалентных кристаллах, ни модель свободного электрона в металлах не в состоянии объяснить изменение электрической проводимости твердых тел больше чем на два порядка. С этой точки зрения применение в теории твердого тела квантово-механических представлений может быть весьма успешным.

Зонная теория кристаллов.

В модели свободного электрона волновое движение электрона может осуществляться по любому направлению и будет ограничиваться лишь размерами кристалла. Для простоты ограничимся одномерной задачей, рассматривая движение электрона лишь вдоль одной оси (одномерный

ящик). Решение уравнения Шредингера для такого свободного электрона дает следующее выражение для его энергии:

где — целое число; — постоянная Планка; — масса электрона; а — размеры кристалла в направлении характеристической оси (постоянная решетки).

Из формулы (III.4) видно, что с увеличением размеров кристалла разность энергий соседних уровней электрона будет уменьшаться. При большом числе энергетических уровней разность между ними будет настолько мала, что они образуют почти непрерывную зону энергий.

В процессе образования кристалла происходит перекрывание внешних электронных орбиталей атомов по аналогии с образованием химической связи в молекулах. В соответствии с методом при взаимодействии двух атомных орбиталей образуются две молекулярные орбитали: связывающая и разрыхляющая. При одновременном взаимодействии N микрочастиц образуется N молекулярных орбиталей. Величина N в кристаллах может достигать огромных значений (порядка 1023). Поэтому и число электронных орбиталей в твердом теле чрезвычайно велико. При этом разность между энергиями соседних орбиталей будет ничтожно мала. Так, в кристалле натрия разность энергетических уровней двух соседних орбиталей имеет порядок Дж. Таким образом, в кристалле металла образуется энергетическая зона с почти непрерывным распределением энергии, называемая зоной проводимости. Каждая орбиталь в этой зоне охватывает кристалл по всем его трем измерениям. Заполнение орбиталей зоны проводимости электронами происходит в соответствии с положениями квантовой механики. Так, из условий минимума энергии электроны будут последовательно заполнять все орбитали, начиная с наинизшей, причем на каждой орбитали в соответствии с запретом Паули может располагаться лишь два электрона с антипараллельными спинами. С повышением температуры за счет теплового возбуждения электроны будут последовательно перемещаться на более высокие энергетические уровни, передавая тепловую энергию с одного конца кристалла на другой и обеспечивая таким образом его теплопроводность.

Аналогично можно объяснить и действие приложенного к кристаллу электрического поля. Оно несколько изменяет относительные энергии орбиталей в зоне, понижая одни уровни и повышая другие (по отношению к силовым линиям поля). Это в свою очередь приводит к направленному переносу электронов на энергетически более выгодные орбитали, т. е. вызывает электронную проводимость кристалла.

С позиций квантовой механики орбиталь, занимаемая электроном, характеризует его полную энергию. Переходя с одного уровня на другой в зоне проводимости, электрон приобретает дополнительную энергию, за счет которой он ускоряется в силовом

поле. Какую же максимальную энергию способен приобрести электрон в твердом теле? Этот вопрос тесно связан с определением ширины энергетических зон в кристалле, т. е. разности энергий между самой высшей и самой низшей орбиталями в зоне.

Ширина энергетической зоны зависит от характера электронных орбиталей взаимодействующих атомов и -состояния), а также от глубины их перекрывания. Так, внутренние электронные орбитали атомов перекрываются довольно слабо. Поэтому образуемые ими зоны узки. Кроме того, такие зоны полностью или почти полностью заполнены электронами, так что их вклад в проводимость кристалла незначителен. Напротив, зоны, соответствующие валентным электронным состояниям, широки, хотя и в этом случае зоны, образованные d-орбнталямн, обычно значительно уже зон, сформированных р- и особенно -орбиталямн с тем же главным квантовым числом.

Количество взаимодействующих атомных орбиталей не влияет на ширину зоны, а определяет лишь плотность ее заполнения электронами. Ширина энергетических зон в твердых телах существенно зависит от внутренней структуры их кристаллов. Эта зависимость тесно связана с волновой природой движения электронов. Перемещаться по кристаллу способны лишь те электроны, длины волн которых не укладываются целое число раз между узлами кристаллической решетки. Электроны с длиной волны, равной где а — постоянная решетки, будут находиться в кристалле в условиях замкнутого отражения и не способны переносить энергию.

Таким образом, в кристаллах между энергетическими зонами, образованными взаимодействиями атомных орбиталей разного характера, могут возникать области запрещенных энергий, называемые запрещенными зонами. Теория, объясняющая свойства твердых тел на основании анализа строения и плотности заполнения электронами энергетических зон в их кристаллах, называется зонной теорией.

Металлы.

Рассмотрим в соответствии с положениями зонной теории энергетическую структуру металлов. На рис. II 1.5, а показано образование зон в кристалле натрия. Внутренние электронные орбитали атомов, в частности в кристалле натрия практически не перекрываются.

В зоне проводимости, образованной за счет взаимодействия З-орбиталей, N атомов натрия образуют такое же число энергетических уровней. Так как у каждого атома натрия имеется лишь по одному валентному электрону, при низких температурах в зоне проводимости будет заполнена только половина уровней. Большое число незанятых энергетических уровней в зоне приводит к высокой подвижности электронов и обеспечивает высокую электрическую проводимость металлического натрия. Аналогичное строение зоны проводимости имеют кристаллы и других элементов первой группы периодической системы элементов, причем ширина зоны проводимости максимальна у элементов побочной

Рис. III. 5. Возникновение энергетических зон кристалла из энергетических уровней атомов по мере их сближения: а натрий; б — алмаз

подгруппы: меди, серебра и золота, а у элементов главной подгруппы ширина зоны убывает с ростом их порядкового номера.

Итак, с точки зрения зонной теории металлические свойства проявляют те твердые тела, в кристаллах которых зона проводимости заполнена электронами лишь частично. При этом в переносе электричества будут участвовать не все электроны, находящиеся в зоне, а лишь те, для которых доступны незанятые орбитали с низкой энергией. Так, при нагревании металла тепловое возбуждение перемещает электроны с низкой энергией на более высокие энергетические уровни и тем самым ограничивает их возможность участвовать в переносе тока.

В кристаллическом натрии происходит перекрывание зон, образованных 3s- и 3р-орбиталями. Для металлов первой группы это перекрывание не играет существенной роли, так как число свободных орбиталей в -зоне у них велико. Однако такое перекрывание s- и р-зон, наблюдаемое и для металлов второй группы периодической системы элементов, играет важную роль. Атомы этих элементов имеют по два валентных -электрона, следовательно, все орбитали в -зоне их кристаллов будут полностью заполнены. Лишь глубокое перекрывание зон, образованных -орбиталями их атомов, сообщает металлические свойства кристаллам этих элементов. Образование зон проводимости в кристаллах d-элементов обычно сопровождается значительным перекрыванием -зон, причем последние значительно уже зон, образованных -орбиталями. Это значит, что перекрывание d-орбиталей в таких кристаллах невелико. Поэтому целый ряд свойств d-элементов можно трактовать на основании модели

локализованных d-электронов. Последние придают металлической связи в кристаллах d-элементов частично ковалентный характер. Так, малую химическую активность металлов, расположенных близко к концам периодов, качественно можно объяснить значительной ролью, которую играют в их кристаллах направленные ковалентные связи. Поэтому d-элементы иногда называют переходными металлами в отличие от типичных металлов главных подгрупп.

Электрическая проводимость кристаллов d-элементов обеспечивается главным образом электронами внешних -орбиталей. В связи с этим электрическая проводимость переходных металлов ниже, чем у типичных металлов. Исключением являются металлы подгрупп меди и цинка, у которых d-орбитали полностью заполнены электронами и не перекрываются с внешними -зонами.

Диэлектрики и полупроводники.

Рассмотрим применение зонной теории к кристаллам с ковалентными связями. При формировании подобных кристаллов наружные электронные орбитали их атомов, взаимодействуя, также образуют энергетические зоны. Однако направленный характер ковалентных связей приводит к тому, что симметрия кристалла полностью изменяет характер волновых функций электронов взаимодействующих атомов.

У атомов подавляющего большинства элементов, образующих ковалентные кристаллы (углерод, кремний, германий, серое олово), во внешнем квантовом слое имеются четыре орбитали: одна и три При образовании кристалла из N атомов эти орбитали расщепляются, образуя две энергетические зоны по орбиталей в каждой, как это показано на рис. III.5,б для кристалла алмаза.

Из условий минимума энергии все валентные электроны атомов углерода заполняют нижнюю зону, а так как их число составляет 4, то эта зона (ее называют валентной) оказывается заполненной полностью. Зона же проводимости кристалла пуста. Для перехода в эту зону электронам необходимо сообщить энергию порядка 7 эВ Требуемая энергия превышает энергию связи в кристалле алмаза и не может быть реализована. Поэтому подобные вещества не проводят электрический ток и являются диэлектриками.

Особенность собственных полупроводников состоит в том, что при переходе части электронов в зону проводимости в валентной зоне появляется эквивалентное им число так называемых дырок,

имеющих положительный заряд, которые также могут участвовать в переносе тока. Собственные полупроводники имеют электронно-дырочную проводимость.

Наряду с собственными большое распространение получили также полупроводники примесного типа. В них основное число переносчиков тока — электронов или дырок — поставляют введенные в собственный полупроводник специальные примеси, энергетические уровни которых располагаются между валентными зонами и зонами проводимости полупроводника. Так, при введении в кристалл германия так называемых донорных примесей, как, например, фосфора, мышьяка, сурьмы, электроны последних переходят в зону проводимости полупроводника, резко увеличивая в ней число электронов — переносчиков тока (п-про-водимость). При добавлении к германию акцепторных примесей типа бора, алюминия, индия электроны валентной зоны полупроводника переходят на свободные уровни зоны примесей, что увеличивает число дырок (р-проводимость) в валентной зоне.

При 0 К полупроводники представляют собой типичные диэлектрики, так как их зона проводимости пуста. При нагревании их проводимость растет, так как все большее число электронов перебрасывается в зону проводимости. Температурная зависимость электрической проводимости полупроводников обратна аналогичной зависимости для металлов.

Большая часть ионных кристаллов относится к классу диэлектриков. Изучение проводимости этих кристаллов позволило установить основные черты их зонной структуры. Особенность ионных кристаллов состоит в том, что они образованы при взаимодействии атомов разных элементов, внешние электронные орбитали которых имеют неодинаковую энергию. Так как зона образуется взаимодействием близких по энергии орбиталей, в ионных кристаллах всегда имеется две раздельные внешние зоны с большей и меньшей средней энергией.

Как и в ковалентных кристаллах, валентные электроны взаимодействующих атомов полностью заполняют зону с более низкой энергией (валентная зона). Зона же проводимости, образованная внешними орбиталями второго атома, пуста, и переброс в нее электронов требует затраты энергии. В кристалле например, все 3р-электроны атомов хлора и -электроны атомов натрия заполняют зону с более низкой энергией, образованную взаимодействием 3р-орбиталей атомов хлора. Зона же, соответствующая -орбиталям атомов натрия (зона проводимости), оказывается незаполненной, причем ширина запрещенной зоны достигает 7 эВ. Электронная проводимость большинства ионных кристаллов примерно на двадцать порядков ниже, чем у металлов. Известен ряд ионных кристаллов, ширина запрещенной зоны у которых не так велика и составляет порядка 2—3 эВ, как, например, у кристаллов Такие вещества при повышенных температурах проявляют полупроводниковые свойства.

Наконец, все твердые вещества типа молекулярных кристаллов

принадлежат к классу диэлектриков. Перекрывание электронных орбиталей взаимодействующих частиц в их кристаллах ничтожно мало. В связи с этим состояние электронов у частиц, занимающих узлы пространственных решеток в таких кристаллах, мало отличается от состояний в соответствующих свободных атомах и молекулах.

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Все вещества состоят из атомов и молекул, имеющих положительно заряженные ядра и отрицательно заряженные электроны. Атомы и молекулы электрически нейтральны, так как заряд ядра равен суммарному заряду

электронов, окружающих ядро. При наличии внешних факторов (повышение температуры, электрическое поле и т.д.) атом или молекула теряет электрон. Этот атом превращается в положительный ион, а электрон, оторвавшийся от атома, может присоединиться к другому атому, превратив его в отрицательный ион, остаться свободным. Процесс образования ионов называют ионизацией. Количество свободных электронов или ионов в единице объема вещества называется концентрацией заряженных частиц. Таким образом, в веществе, которую поместили в электрическое поле, под действием сил поля возникает процесс движения свободных электронов или ионов в направлении сил поля, назвали электрическим током.

Свойство вещества проводить ток под действием электрического поля называется электропроводностью вещества, которая зависит от концентрации свободных электрически заряженных частиц. Чем больше концентрация заряженных частиц, тем больше электропроводность вещества. Все вещества в зависимости от электропроводности делятся на:

1 Проводник. Обладают очень большой электропроводностью. Проводники делятся на две группы. К проводникам первой группе относятся металлы (медь, алюминий, серебро и т.д.) и их сплавы, в которых возможно перемещение только электронов. То есть в металлах электроны очень слабо связаны с ядрами атомов и легко от них отделяются. В металлах явление электрического тока связано с движением свободных электронов, которые обладают очень большой подвижностью и находятся в состоянии теплового движения. Эту электропроводность называют электронной. Проводники используются для изготовления проводов, ЛЭП, обмоток электрических машин и т.п.. К проводникам второй группе относятся водные растворы солей, кислот и т.д., которые называют электролитами. Под действием раствора молекулы вещества распадаются на положительные и отрицательные ионы, которые под действием электрического поля начнут перемещаться. Ионы электролита при прохождении тока начнут осаждатися на электродах, опущенных в электролит. Процесс выделения вещества из электролитов электрическим током называется электролизом. Его используют для добычи цветных металлов из растворов их соединений (медь, алюминий), а также для покрытия металлов защитным слоем другого металла (например, хромирование).

2 Диэлектрики (или электроизоляционные вещества). Вещества с очень малой электропроводностью (газы, резиновые вещества, минеральные масла и т.п.). В этих веществах электроны очень сильно связаны с ядрами атомов и под действием электрического поля редко отделяются от ядер. Т.е. диэлектрики не проводят электрический ток. Это их свойство используют при производстве электрозащитных средств: диэлектрические перчатки, обувь, коврики, изолирующие подставки, накладки, колпаки, изоляторы на электрооборудовании и т.п..

Диэлектрики могут быть: твердые, газообразные, жидкости.

Читайте также: