Чугуны строение свойства классификация чугунов реферат

Обновлено: 02.07.2024

Чёрная металлургия - основа развития большинства отраслей народного хозяйства. Несмотря на бурный рост продукции химической промышленности, цветной металлургии, промышленности стройматериалов, чёрные металлы остаются главным конструкционным материалом в машиностроении и строительстве.

Современная чёрная металлургия имеет высокий технический потенциал. Значительный прогресс достигнут в технологии производства в отдельных подотраслях и переделах чёрной металлургии. Так, добыча железной руды в основном ведётся прогрессивным открытым способом; в коксовом производстве внедрены бездымная загрузка шихты и сухое тушение кокса; в доменном производстве в печах с повышенным давлением газа под колошником выплавляется 97%, а с вдуванием природного газа - 84% всего чугуна; в сталеплавильном производстве растет выплавка стали в кислородных конвертерах и электропечах, внедрены внепечная обработка стали под вакуумом, синтетическими шлаками, инертными газами, переплавные процессы; увеличивается доля непрерывной разливки стали; в прокатном производстве эффективно применяются термическая обработка металлопродукции, средства неразрушающего автоматического контроля; в трубном - совершенствуется технология производства сварных труб большого диаметра, бесшовных труб; в метизном производстве внедряются автоматизированное поточные линии. Осуществляется разработка промышленных способов прямого получения железа. Ведутся работы по созданию автоматизированной системы управления чёрной металлургии.

Цель данной работы - сравнить по свойствам два продукта черной металлургии: чугун и сталь, столь важные для человечества.

1. Изучить характеристику материалов.

2. Разобрать и сравнить физико-химические, механические и специфические свойства чугуна и стали.

3. Сделать вывод.

При написании данной работы использовалась учебная и методическая литература.

Чугун (тюрк.), сплав железа с углеродом (обычно более 2%) содержащий также постоянные примеси (Si, Mn, Р и S). Широко применяемые марки чугунов обычно содержат 2,5-4% углерода, 1-5% кремния, до 2% марганца, а также примеси фосфора и серы. В состав специальных чугунов входят легирующие добавки: ванадий, молибден, никель, титан, хром и др. Температура плавления чугунов зависит от их химического состава и примерно составляет 1200-1250 о С.

Виды: белый, серый, ковкий, высокопрочный, половинчатый чугуны.

Структура чугуна зависит от скорости охлаждения и содержания в нём углерода и легирующих примесей. По структуре чугуны разделяют на белые и серые.

Белый чугун получил своё название от вида излома, который имеет белый или светло-серый цвет. Углерод в нём находится в химически связанном состоянии в виде цементита Fe3 C. Цементит хрупок и обладает высокой твёрдостью, поэтому белый чугун не поддаётся механической обработке, для изготовления изделий применяется редко и сварке не подлежит.

Из белого чугуна путём специальной термической обработки (длительная выдержка при температуре 1000 о С) получают ковкий чугун. По механическим свойствам он пластичнее белого чугуна. Название "ковкий" это условное название, чугуны не используют в виде поковок, они практически не куются.

Высокопрочные чугуны получают добавлением в сплав некоторых легирующих элементов (магния, церия и др.). Серый чугун содержит в своём составе почти весь углерод в виде графита, поэтому излом его имеет серебристо-серый цвет. Серый чугун хорошо обрабатывается режущим инструментом, поэтому он широко применяется как конструкционный материал. Серый чугун дешевле стали, отличается хорошими литейными свойствами, высокой износостойкостью, способностью гасить вибрации, хорошей обрабатываемостью. Отрицательными его свойствами являются пониженная прочность и высокая хрупкость.

Историческая справка. Первые сведения о чугуне относятся к 6 в. до нашей эры. В Китае из высокофосфористых железных руд получали чугун, содержащий до 7% Р, с низкой температурой плавления, из которого отливали различные изделия. Чугун был известен и античным металлургам 4-5 вв. до нашей эры. Производство чугуна в Западной Европе началось в 14 в. с появлением первых доменных печей (штюкофенов) для выплавки чугуна из руд. Полученный чугун использовали или для передела в сталь в кричном горне, или для изготовления различных строительных деталей и оружия (пушки, ядра, колонны и др.). В России производство чугуна началось в 16 в.; в дальнейшем оно непрерывно расширялось, и при Петре I Россия по выпуску чугуна превзошла все страны, но через столетие отстала от западно-европейских стран. Появление во 2-й пол.18 в. вагранок позволило литейным цехам отделиться от доменных, т.е. положило начало независимому существованию чугунолитейного производства (при машиностроительных заводах). В начале 19 в. возникает производство ковкого чугуна. Во 2-й четверти 20 в. начинают применять легирование чугуна, что дало возможность существенно повысить его свойства и получать специальный чугун (износостойкие, коррозионностойкие, жаростойкие и т.д.). К этому же периоду относится также разработка способов модифицирования чугуна. В конце 40-х гг. был получен модифицированный чугун с включениями графита шаровидной формы вместо обычной пластинчатой. В 60-х гг. в электрических печах начали получать из стальных отходов с добавлением карбюризаторов т. н. синтетический чугун с высокими механическими свойствами при пластинчатой форме графита.

Маркировка. Чугун маркируют по буквенно-цифровой системе: первые буквы (С, К и В) обозначают серый, ковкий и высокопрочный чугун соответственно; вторая буква (Ч) обозначает чугун. В сером чугуне две цифры указывают на временное сопротивление. Например, в марке СЧ10 буквы СЧ обозначают серый чугун, 10 - временное сопротивление. В обозначениях ковкого и высокопрочного чугунов после буквенной маркировки (КЧ и ВЧ) первые две цифры также обозначают временное сопротивление, а вторые две - относительное удлинение, например КЧ 35-10 (ковкий чугун с временным сопротивлением не менее 350 МПа и относительным удлинением не менее 10%).

В промышленности разновидности чугуна маркируются следующим образом:

· передельный чугун - П1, П2;

· передельный чугун для отливок - ПЛ1, ПЛ2,передельный фосфористый чугун - ПФ1, ПФ2, ПФ3,передельный высококачественный чугун - ПВК1, ПВК2, ПВК3;

· чугун с пластинчатым графитом - СЧ (цифры после букв "СЧ", обозначают величину временного сопротивления разрыву в кгс/мм);

o антифрикционный серый - АЧС,

o антифрикционный высокопрочный - АЧВ,

o антифрикционный ковкий - АЧК;

· чугун с шаровидным графитом для отливок - ВЧ (цифры после букв "ВЧ" означают временное сопротивление разрыву в кгс/мм и относительное удлиненние (%);

· чугун легированный со специальными свойствами - Ч.

Сталь (польск. stal, от нем. Stahl), деформируемый (ковкий) сплав железа с углеродом (до 2%) и др. элементами. Сталь - важнейший продукт чёрной металлургии, являющийся материальной основой практически всех отраслей промышленности. Масштабы производства стали в значительной степени характеризуют технико-экономический уровень развития государства.

Историческая справка. Сталь как материал, используемый человеком, имеет многовековую историю. Наиболее древний способ получения стали в тестообразном состоянии - сыродутный процесс, в основе которого лежало восстановление железа из руд древесным углём в горнах (позднее в небольших шахтных печах). Для получения литой стали древние мастера применяли тигельную плавку - расплавление мелких кусков стали и чугуна в огнеупорных тиглях. Тигельная сталь характеризовалась весьма высоким качеством, но процесс был дорогим и малопроизводительным. Таким способом изготовляли, в частности, булат и его разновидность - дамасскую сталь. Тигельный процесс просуществовал до начала 20 в. и был полностью вытеснен электроплавкой. В 14 в. возник кричный передел, заключавшийся в рафинировании предварительно полученного чугуна в кричном горне. В конце 18 в. начало применяться пудлингование, при котором, как и при кричном переделе, исходным материалом был чугун, а продуктом - тестообразный металл (крица) качество металла при этом было выше, а сам процесс характеризовался более высокой производительностью. Пудлингование сыграло важную роль в развитии техники, однако обеспечить всё возраставшие потребности общества в стали не могло. Лишь с появлением во 2-й половине 19 в. бессемеровского процесса и мартеновского процесса, а затем и томасовского процесса стало возможным массовое производство литой стали. В конце 19 в. начала применяться выплавка стали в электрических печах. До середины 20 в. главенствующее положение среди способов производства стали занимал мартеновский процесс, на долю которого приходилось около 80% выплавляемой в мире стали. В 50-х гг. был внедрён кислородно-конвертерный процесс, причём в последующие годы его роль резко возросла. Наряду с указанными способами массового производства стали развиваются более дорогие и менее производительные способы, позволяющие получать особо чистый металл высокого качества: вакуумная дуговая плавка, вакуумная индукционная плавка, электрошлаковый переплав, электроннолучевая плавка, плазменная плавка.

Стали делятся на конструкционные и инструментальные. Разновидностью инструментальной является быстрорежущая сталь.

По химическому составу стали делятся на углеродистые и легированные; в том числе по содержанию углерода - на малоуглеродистые (до 0,25%), среднеуглеродистые (0,3-0,55%) и высокоуглеродистые (0,6-0,85%); легированные стали по содержанию легирующих элементов делятся на низколегированные, среднелегированные и высоколегированные.

Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.

По структуре сталь различается на аустенитную, ферритную, мартенситную, бейнитную или перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.

Маркировка сталей. Единой мировой системы маркировки стали не существует. В СССР проведена большая работа по унификации обозначений различных марок стали, что нашло отражение в государственных стандартах и технических условиях. Марки углеродистой стали обыкновенного качества обозначаются буквами Ст и номером (Ст0, Ст1, Ст2 и т.д.). Качественные углеродистые стали маркируются двузначными числами, показывающими среднее содержание стали в сотых долях процента: 05, 08, 10, 25, 40 и т.д. Спокойную сталь иногда дополнительно обозначают буквами сп, полуспокойную - пс, кипящую - кп (например, СтЗсп, Ст5пс, 08кп). Буква Г в марке стали указывает на повышенное содержание Mn (например, 14Г, 18Г). Автоматные стали маркируются буквой А (А12, А30 и т.д.), углеродистые инструментальные стали - буквой У (У8, У10, У12 и т.д. - здесь цифры означают содержание углерода в десятых долях процента).

Обозначение марки легированной стали состоит из букв, указывающих, какие компоненты входят в её состав, и цифр, характеризующих их среднее содержание. В СССР приняты единые условные обозначения химического состава стали: алюминий - Ю, бор - Р, ванадий - Ф, вольфрам - В, кобальт - К, кремний - С, марганец - Г, медь - Д, молибден - М, никель - Н, ниобий - Б, титан - Т, углерод - У, фосфор - П, хром - Х, цирконий - Ц. Первые цифры марки обозначают среднее содержание углерода (в сотых долях процента для конструкционных сталей и в десятых долях процента для инструментальных и нержавеющих сталей); затем буквой указан легирующий элемент и цифрами, следующими за буквой, - его среднее содержание. Например, сталь марки 3Х13 содержит 0,3% углерода и 13% Cr, стали марки 2X17H2 - 0,2% углерода, 17% Cr и 2% Ni. При содержании легирующего элемента менее 1,5% цифры за соответствующей буквой не ставятся: так, сталь марки 12ХН3А содержит менее 1,5% Cr. Буква А в конце обозначения марки указывает на то, что сталь является высококачественной, буква Ш - особо высококачественной. Обозначение марки некоторых легированных сталей включает букву, указывающую на назначение стали (например, ШХ9 - шарикоподшипниковая сталь с 0,9-1,2% Cr; Э3 - электротехническая сталь с 3% Si). Стали, проходящие промышленные испытания, часто маркируют буквами ЭИ или ЭП (завод "Электросталь"), ДИ (завод "Днепроспецсталь") или ЗИ (Златоустовский завод) с соответствующим очередным номером (ЭИ268).

Содержание углерода в стали до 2%, в чугуне – более 2%

Чугун относится к материалам, обладающим плохой технологической свариваемостью, в отличие от стали. Основные трудности при сварке обусловлены высокой склонностью его к отбеливанию, т.е. появлению участков с выделениями цементита, а также образованию трещин в шве и околошовной зоне.

Чугун имеет низкую по сравнению со сталью температуру плавления (1200-1250 о С) и быстро переходит из жидкого состояния в твёрдое. Это вызывает образование пор в шве, поскольку интенсивное выделение газов из сварочной ванны продолжается и на стадии кристаллизации.

В стали растворяясь в феррите, фосфор сильно искажает и уплотняет его кристаллическую решетку. При этом увеличиваются пределы прочности и текучести сплава, но уменьшаются его пластичность и вязкость. Фосфор значительно повышает порог хладноломкости стали и увеличивает склонность сплава к ликвации.

Фосфор повышает жидкотекучесть и износостойкость, но ухудшает обрабатываемость чугуна.

Марганец повышает прочность стали и чугуна, не снижая пластичности, и резко уменьшает хрупкость при высоких температурах (красноломкость). Марганец уменьшает вредное влияние кислорода и серы.

Сера является вредной примесью, образует при затвердевании сернистое железо (FeS),ухудшает литейные свойства чугуна и стали (снижает жидкотекучесть, увеличивает усадку и повышает склонность к образованию трещин).

Механические свойства чугунов зависят от металлической основы, а также формы и размеров включений графита. Наиболее прочными являются серые чугуны на перлитной основе, а наиболее пластичными - серые чугуны на ферритной основе. Поскольку графит имеет очень малую прочность и не имеет связи с металлической основой чугуна, полости, занятые графитом, можно рассматривать как пустоты, надрезы или трещины в металлической основе чугуна, которые значительно снижают его прочность и пластичность. Наибольшее снижение прочностных свойств вызывают включения графитав виде пластинок, наименьшее - включения точечной или шарообразной формы.

В стали твердые частицы цементита повышают сопротивление деформации, уменьшая пластичность и вязкость. Таким образом, с увеличением в стали содержания углерода возрастают твердость, предел прочности и уменьшаются ударная вязкость, относительное удлинение и сужение.

Чугун обладает хорошими литейными свойствами, хорошо обрабатывается резанием, сопротивляется износу, обладает способностью рассеивать колебания при вибрационных и переменных нагрузках. Свойство гасить вибрации называется демпфирующей способностью. Демпфирующая способность чугуна в 2-4 раза выше, чем стали.

Сталь - это сплав железа с углеродом. Содержание углерода до 2 %.

Сталь - основной материал, широко применяемый в машино- и приборостроении, строительстве, а также для изготовления различных инструментов.

Раскислением называют процесс удаления кислорода из жидкой стали. Не раскисленная сталь обладает недостаточной пластичностью и подвержена хрупкому разрушению при горячей обработке давлением.

Спокойные стали раскисляют марганцем, алюминием и кремнием в печи и ковше. Они затвердевают в изложнице спокойно, без газовыделения, с образованием в верхней части слитков усадочной раковины. Дендритная ликвация в крупных слитках такой стали при их прокатке или ковке приводит к появлению полосчатой структуры.

Для улучшения физических, химических, прочностных и технологических свойств стали легируют, вводя в их состав различные легирующие элементы (хром, марганец, никель и др.). Стали могут содержать один или несколько легирующих элементов, которые придают им специальные свойства.

Легирующие элементы вводят в сталь для повышения ее конструкционной прочности.

Чугун - это железоуглеродистый сплав, с содержанием более 2 % углерода

Высокая демпфирующая способность и износостойкость обусловили применение чугуна для изготовления станин различного оборудования, коленчатых и распределительных валов тракторных и автомобильных двигателей и др.

Повышенная жидкотекучесть чугуна затрудняет удержание расплавленного металла от вытекания и усложняет формирование шва. Вследствие окисления кремния на поверхности сварочной ванны возможно образование тугоплавких оксидов, что может привести к непроварам.

Плохо свариваются также чугунные детали, работающие длительное время в соприкосновении с маслом и керосином. Поверхность чугуна пропитывается маслом и керосином, которые при сварке сгорают и образуют газы, способствующие появлению сплошной пористости в сварном шве.

Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного смазочного действия и повышения прочности пленки смазочного материала. Чугуны с графитом, как мягкой и хрупкой составляющей, хорошо обрабатываются резанием (с образованием ломкой стружки) и обеспечивают более чистую поверхность, чем стали (кроме автоматных сталей).

Чугунные детали, работающие длительное время при высоких температурах, почти не поддаются сварке. Это происходит в результате того, что под действием высоких температур (300-400 о С и выше) углерод и кремний окисляются, и чугун становится очень хрупким.

Наиболее прочными являются серые чугуны на перлитной основе, а наиболее пластичными - серые чугуны на ферритной основе.

Механические свойства высокопрочного чугуна позволяют применять его для изготовления деталей машин, работающих в тяжелых условиях, вместо поковок или отливок из стали. Из высокопрочного чугуна изготовляют детали прокатных станов, кузнечно-прессового оборудования, паровых турбин (лопатки направляющего аппарата), тракторов, автомобилей (коленчатые валы, поршни) и др.

чугун сталь свойство металлургия

В результате проделанной работы были рассмотрены характеристики чугуна и стали, их физико-химические, механические и специфические свойства. При сравнении свойств оказалось, что:

· Физико-химические свойства чугуна и стали различны по:

· Физико-химические свойства чугуна и стали сходны по влиянию марганца и серы.

· Механические свойства чугуна зависят от металлической основы и включению графита, а стали - от включений цементита и повышения содержания углерода.

· Специфические свойства стали:

- содержит углерода до 2%;

- обладает свойствами раскисления;

- для улучшения свойств сталь легируют.

· Специфические свойства чугуна:

- содержание углерода более 2%;

- пропитывается маслом и керосином;

- высокая износостойкость и антифрикционные свойства;

- обладает литейными свойствами.

Хоть сталь и производится из чугуна, они имеют различные физико-химические, механические и специфические свойства.

1. Виноградов Ю.Г., Орлов К.С. Материаловедение для слесарей-монтажников. М. 1983.

2. Гузова В.В., Синенко Е.Г. и др. "Прикладная механика: учебное пособие." - 2-е издание, перераб. и доп. - Красноярск: ИПЦ КГТУ, 2002.

Реферат на тему: Чугун
Реферат на тему: Чугун

Чугун - это сплав железа с углеродом и другими элементами, содержащий более 2,14% C.

В металлургическом производстве чугун выплавляют в доменных печах. Получаемый чугун подразделяется на: конверсионный, специальный (ферросплавы) и литейный. Конвертирующий и специальный чугуны используются для последующей обработки в сталь. Чугун (около 20% всего чугуна) отправляется на машиностроительные заводы для использования при изготовлении литых деталей (отливки).

Чугун конструкционный нелегированный для производства отливок в машиностроении имеет следующий химический состав, %: 2,0 - 4,5 С; 1,0 - 3,5 Si; 0,5-1,0 Мп; содержание примесей: не более 0,3% S; не более 0,15% S.

Широкое применение чугуна в промышленности обусловлено оптимальным сочетанием различных свойств: технологических (литейные, обрабатываемость), эксплуатационных (механические и специальные) и технико-экономических показателей.

Классификация чугунов

Характерной особенностью чугунов является то, что углерод в сплаве может находиться не только в растворенном и связанном состоянии (в виде химического соединения - цементита Fe 3 C), но и в свободном состоянии - в виде графита. В этом случае форма выделений графита и структура металлической основы (матрицы) определяют основные типы чугуна и их свойства.

Классификация чугуна с различными формами графита производится по ГОСТ 3443-77. Специально разработанные шкалы используются для оценки формы включений графита, их размера, характера распределения и количества, а также типа металлической основы.

Классификация чугуна проводится по следующим критериям:

  • по состоянию углерода - свободный или связанный;
  • в виде включений графита - пластинчатых, червеобразных, шаровидных, чешуйчатых (рис. 30);
  • по типу структуры металлической основы (матрицы) - ферритная, перлитная; также есть чугуны со смешанной структурой: например, ферритно-перлитные;
  • по химическому составу - чугуны нелегированные (общего назначения) и легированные (специальные).

В зависимости от формы выделения углерода в чугуне различают:

  • белый чугун, в котором весь углерод связан в виде цементита Fe 3 C;
  • полужирный чугун, в котором основное количество углерода (более 0,8%) находится в виде цементита;
  • серый чугун, в котором весь или большая часть углерода свободна в виде пластинчатого графита;
  • беленый чугун, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой белый;
  • ковкий чугун, в котором графит имеет сферическую форму;
  • ковкий чугун, полученный из белого путем отжига, в котором углерод переходит в свободное состояние в виде чешуйчатого графита.

Структура и свойства чугуна

Микроструктура чугуна состоит из металлической основы (матрицы) и включений графита. Свойства чугуна определяются свойствами металлической основы и природой включений графита.

Чугуны содержат следующие конструктивные элементы:

  • графит (G);
  • перлит (П);
  • феррит (F);
  • ледебурит (L);
  • фосфидная эвтектика.

По микроструктуре различают:

  • белый чугун I (C + G);
  • серый перлитный чугун II (P + G);
  • серый ферритный чугун III (F + G);
  • полукруглый чугун II a (P + C + G);
  • высокопрочный чугун IV (П + шаровидный графит).

Формирование микроструктуры чугуна зависит от его химического состава и скорости охлаждения (толщины) отливки. Структура металлической основы определяет твердость чугуна.

Углерод в чугуне может присутствовать в виде химического соединения - цементита Fe 3 C, графита или их смеси. По сравнению с металлической основой графит имеет низкую прочность. Места его возникновения можно рассматривать как нарушения сплошности металла. Чугун как бы пронизан включениями графита, ослабляющими его металлическую основу. По мере того как графитовые включения имеют округлую форму (из-за модификации чугуна добавками SiCa, FeSi, Al, Mg), их отрицательная роль как срезов в металлической основе уменьшается, а механические свойства чугуна повышаются.

Например, серый чугун (пластинчатая форма графита) имеет низкие механические свойства, поскольку пластины с включениями графита играют роль концентратов напряжений в отливке. Однако серый чугун имеет ряд преимуществ: он имеет высокую текучесть и низкую усадку отливки; включения графита делают стружку хрупкой, что облегчает резку чугуна; за счет смазывающего действия графита чугун обладает хорошими антифрикционными свойствами; хорошо гасит колебания и резонансные колебания. Из высокопрочного чугуна (шаровидный графит) изготовлены ответственные детали: шестерни, коленчатые валы.

Кремний способствует графитизации чугуна. Изменяя его состав и скорость охлаждения отливки, можно получать чугун различной структуры.

Марганец предотвращает графитизацию и нейтрализует вредное действие серы, образуя с ней тугоплавкие соединения MnS.

Фосфор не оказывает существенного влияния на процесс графитации. При повышенном содержании фосфора в структуре чугуна образуются твердые включения фосфидной эвтектики, что повышает его литейные свойства.

Сера - вредная примесь. Это вызывает ухудшение литейных свойств чугуна, увеличение усадки, увеличение склонности к растрескиванию и снижение температуры красной хрупкости чугуна.

Серый чугун

Серый чугун - это сплав системы Fe-C-Si, содержащий в качестве примесей марганец, фосфор и серу. Углерод в серых чугунах преимущественно представлен в виде пластинчатого графита.

Структура отливок определяется химическим составом чугуна и технологическими особенностями его термической обработки. Механические свойства серого чугуна зависят от свойств металлической матрицы, формы и размера включений графита. Металлическая матрица чугунов по своим свойствам близка к свойствам стали. Графит, имеющий низкую прочность, снижает прочность чугуна. Чем меньше включений графита и чем выше их дисперсность, тем выше прочность чугуна. Включения графита вызывают снижение предела прочности чугуна. На прочность на сжатие и твердость чугуна практически не влияют частицы графита. Свойство графита образовывать смазочные пленки приводит к снижению коэффициента трения и увеличению износостойкости изделий из серого чугуна. Графит улучшает обрабатываемость.

По своим свойствам серый чугун условно можно разделить на следующие группы:

  • ферритные и ферритно-перлитные чугуны (марки СЧ 10, СЧ 15) используются для изготовления неотзывчивых ненагруженных деталей машин;
  • чугуны перлитные (марки СЧ 20, СЧ 25, СЧ 30) используются для изготовления износостойких деталей, работающих в условиях высоких нагрузок: поршней, цилиндров, блоков цилиндров;
  • модифицированные чугуны (марки СЧ 35, СЧ 40, СЧ 45) получают добавлением ферросилициевых добавок перед заливкой в ​​жидкий серый чугун; такие чугуны имеют перлитную металлическую матрицу с небольшим количеством изолированных графитовых пластин.

Чугун с уплотненным графитом отличается от серого чугуна более высокой прочностью, повышенной теплопроводностью. Этот материал перспективен для изготовления ответственных отливок, работающих в условиях теплообмена (блоки цилиндров, поршневые кольца).

Вермикулярный графит получают обработкой расплава серого чугуна лигатурами, содержащими редкоземельные металлы (РЗМ) и силикобарий.

Модификация серого чугуна магнием, а затем ферросилицием позволяет получить магниевый чугун (SMC), который имеет прочность стального литья и высокие литейные свойства серого чугуна. Применяется для изготовления деталей, подверженных ударам, переменным нагрузкам и интенсивному износу, например, коленчатых валов легковых автомобилей.

Ковкий чугун

Отличительной особенностью высокопрочного чугуна являются его высокие механические свойства за счет присутствия в структуре шаровидного графита, который в меньшей степени, чем пластинчатый графит в сером чугуне, ослабляет рабочий участок металлической основы и, что более важно, не оказывает на него сильного режущего действия, из-за чего концентраторы напряжений создаются вокруг включений графита в меньшей степени. Чугун с шаровидным графитом обладает не только высокой прочностью, но и пластичностью.

Получение шаровидного графита в чугуне достигается за счет модификации расплава добавками, содержащими Mg, Ca, Ce и другие редкоземельные металлы (РЗМ).

Высокопрочный чугун с шаровидным графитом - наиболее перспективный литейный сплав, способный успешно решать задачу снижения веса конструкций при сохранении их высокой надежности и долговечности.

Высокопрочный чугун используется для изготовления ответственных деталей в автомобильной промышленности (коленчатые валы, шестерни, цилиндры и т. д.).

Белый и высокопрочный чугун

Белые чугуны характеризуются тем, что весь их углерод находится в химически связанном состоянии - в виде цементита. Излом такого чугуна тускло-белый. Наличие большого количества цементита придает белому чугуну высокую твердость, хрупкость и очень плохую обрабатываемость режущим инструментом.

Высокая твердость белого чугуна обеспечивает его высокую износостойкость, в том числе при воздействии абразивных сред. Это свойство белых чугунов учитывается при изготовлении из них поршневых колец. Однако белый чугун в основном используется для литья деталей с последующим отжигом до ковкого чугуна.

Ковкий чугун получают путем отжига белого чугуна определенного химического состава, характеризующегося пониженным содержанием графитирующих элементов (2,4-2,9% С и 1,0-1,6% Si), так как необходимо получить полностью отбеленный чугун в состояние литья. по всему сечению отливки, что обеспечивает образование чешуйчатого графита при отжиге (см. рисунок)

Различают ковкий чугун с черным сердцем, полученный в результате графитизирующего отжига, и ковкий чугун, полученный обезуглероживающим отжигом в окислительной среде. В России используется только ковкое железо. Матрица чугуна может быть перлитной, ферритной или перлитно-ферритной в зависимости от режима отжига.

Для ускорения процесса отжига CN используют различные методы: температуру выдержки увеличивают в течение периода P 2 , модифицируют и микролегируют добавками литого алюминия, бора, титана или висмута. Все эти приемы способствуют увеличению количества центров кристаллизации, снижению устойчивости цементита.

Ковкий чугун применяется для изготовления ответственных тонкостенных отливок малых и средних размеров, работающих в условиях динамических переменных нагрузок (детали приводных механизмов, редукторов,

тормозные колодки, шестерни, ступицы и т. д.). Однако ковкий чугун - бесперспективный материал в силу сложной технологии производства и длительности производственного цикла изготовления деталей из него.

Заключение

В зависимости от назначения различают износостойкие, антифрикционные, жаропрочные и коррозионно-стойкие легированные чугуны.

Химический состав, механические свойства при нормальных температурах и рекомендуемые виды термической обработки легированных чугунов регламентируются ГОСТ 7769-82. В обозначении марок легированного чугуна буквы и цифры, соответствующие содержанию легирующих элементов, такие же, как и в марках стали.

Износостойкие чугуны, легированные никелем (до 5%) и хромом (0,8%), используются для изготовления деталей, работающих в абразивных средах. Чугуны (до 0,6% Cr и 2,5% Ni) с добавками титана, меди, ванадия, молибдена обладают повышенной износостойкостью в условиях трения без смазки. Их используют для изготовления автомобильных тормозных барабанов, дисков сцепления, гильз цилиндров и т. д.

Чугуны из жаропрочных сплавов ЧХ 2, ЧХ 3 используются для изготовления деталей контактных устройств химического оборудования, турбокомпрессоров, работающих при температурах 600 ° С (СН 2) и 700 ° С (СН 3).

Чугуны жаропрочные легированные ЧНМШ, ЧНИГ7Х2Ш с шаровидным графитом работоспособны при температурах 500-600 ° С и используются для изготовления деталей дизельных двигателей, компрессоров и др.

Коррозионно-стойкие легированные чугуны марок ЧХ 1, ЧНХТ, ЧНХМД, ЧН2Х (низколегированные) обладают повышенной коррозионной стойкостью в газовых, воздушных и щелочных средах. Их используют для изготовления деталей узлов трения, работающих при повышенных температурах (поршневых колец, блоков цилиндров и головок двигателей внутреннего сгорания, деталей дизелей, компрессоров и др.).

Антифрикционные чугуны используются в качестве подшипниковых сплавов, поскольку они представляют собой группу специальных сплавов, структура которых удовлетворяет правилу Шарпи (включения твердой фазы в мягкое основание), способных работать в условиях трения в качестве подшипников скольжения.

Хром, медь, никель, титан используются для легирования антифрикционных чугунов.

В ГОСТ 1585-85 включены шесть марок антифрикционного серого чугуна (АЧС-1 - АЧС-6) с пластинчатым графитом, две марки высокопрочного (АЧВ-1, АЧВ-2) и две марки ковкого (АЧК-1, АЧК-2) чугуны . Настоящий стандарт регламентирует химический состав, структуру, режимы работы, а также содержит рекомендации по применению антифрикционных чугунов.

Различают перлитные и перлитно-ферритные антифрикционные чугуны. Применяются антифрикционные перлитные чугуны (АЧС-1, АЧС-2) и перлитно-ферритные чугуны (АЧС-3) при давлении в зоне контакта пар трения до 50 МПа. Чугуны с шаровидным графитом АЧВ-1 (перлит) и АЧВ-2 (перлитно-ферритный) используются при повышенных нагрузках (до 120 МПа).

Список литературы

  1. Гуляев А.П. Металловедение, М., 1985.
  2. Лахтин Ю.М., Леонтьева В.П. Материаловедение, М., 1985.
  3. Технология конструкционных материалов. Эд. А. М. Дальский. Москва: Машиностроение, 1991.

Посмотрите похожие темы рефератов возможно они вам могут быть полезны:

Чугун - сплав железа с углеродом (обычно более 2%) содержащий также постоянные примеси (Si, Mn, Р и S), а иногда и легирующие элементы, затвердевает с образованием эвтектики. Чугун — важнейший первичный продукт чёрной металлургии, используемый для передела при производстве стали и как компонент шихты при вторичной плавке в чугунолитейном производстве.

Содержание

1.Введение
2.Диаграмма состояния Fe-C
3. Классификация
4.Структура и свойства чугуна
5.Белые чугуны
6.Серые чугуны
7.Ковкие чугуны
8. Высокопрочный чугун
9.Чугуны специального назначения
10.Литература.

Прикрепленные файлы: 1 файл

Чугуны.doc

университет им Д.И. Менделеева

Реферат на тему

Выполнил студент: группы О-36

2.Диаграмма состояния Fe-C

4.Структура и свойства чугуна

8. Высокопрочный чугун

9.Чугуны специального назначения

Чугун - сплав железа с углеродом (обычно более 2%) содержащий также постоянные примеси (Si, Mn, Р и S), а иногда и легирующие элементы, затвердевает с образованием эвтектики. Чугун — важнейший первичный продукт чёрной металлургии, используемый для передела при производстве стали и как компонент шихты при вторичной плавке в чугунолитейном производстве. Чугун вторичной плавки — один из основных конструкционных материалов; применяется как литейный сплав. Широкому использованию чугуна в машиностроении способствуют его хорошие литейные и прочностные свойства (по прочности некоторые чугуны лишь немногим уступают углеродистой стали). В современном машиностроении на долю деталей из чугуна приходится около 75% от общей массы отливок.

Первые сведения о чугуне относятся к 6 в. до нашей эры. В Китае из высокофосфористых железных руд получали чугун, содержащий до 7% Р, с низкой температурой плавления, из которого отливали различные изделия. Чугун был известен и античным металлургам 4—5 вв. до нашей эры. Производство чугуна в Западной Европе началось в 14 в. с появлением первых доменных печей (штюкофенов) для выплавки чугуна из руд (Металлургия). Полученный чугун использовали или для передела в сталь в кричном горне (Кричный передел), или для изготовления различных строительных деталей и оружия (пушки, ядра, колонны и др.). В России производство чугуна началось в 16 в.; в дальнейшем оно непрерывно расширялось, и при Петре I Россия по выпуску чугуна превзошла все страны, но через столетие отстала от западно-европейских стран. Появление во 2-й пол. 18 в. вагранок позволило литейным цехам отделиться от доменных, т. е. положило начало независимому существованию чугунолитейного производства (при машиностроительных заводах). В начале 19 в. возникает производство ковкого чугуна. Во 2-й четверти 20 в. начинают применять легирование чугуна (Легированный чугун), что дало возможность существенно повысить его свойства и получать специальный чугун (износостойкие, коррозионностойкие, жаростойкие и т.д.). К этому же периоду относится также разработка способов модифицирования чугуна. В конце 40-х гг. был получен модифицированный чугун с включениями графита шаровидной формы вместо обычной пластинчатой, что обусловливало значительно более высокую прочность металла (sь до 500 Мн/м2, или 50 кгс/мм2, в литом состоянии и 1200 Мн/м2, или 120 кгс/мм2 после термической обработки; такой чугун получил название высокопрочного). В 60-х гг. в электрических печах начали получать из стальных отходов с добавлением карбюризаторов т. н. синтетический чугун с высокими механическими свойствами при пластинчатой форме графита (Железоуглеродистые сплавы). [1]

2.Диаграмма состояния Fe-C

Равновесное состояние железоуглеродистых сплавов в зависимости от содержания углерода и температуры описывает диаграмма состояния железо - углерод. На диаграмме состояния железоуглеродистых сплавов (рис. 1) на оси ординат отложена температура, на оси абсцисс - содержание в сплавах углерода до 6,67%, то есть до такого количества, при котором образуется цементит Fе3С. По диаграмме состояния системы железо - углерод судят о структуре медленно охлажденных сплавов, а также о возможности изменения их микроструктуры в результате термической обработки, определяющей эксплуатационные свойства. На диаграмме состояния Fe - Fе3С приняты международные обозначения. Сплошными линиями показана диаграмма состояния железо - цементит (метастабильная, так как возможен распад цементита), а пунктирными - диаграмма состояния железо - графит (стабильная).

Рассматриваемую диаграмму правильнее считать не железоуглеродистой (Fe - С), а железоцементитной (Fe - Fе3С), так как свободного углерода в сплавах не содержится. Но так как содержание углерода пропорционально содержанию цементита, то практически удобнее все изменения структуры сплавов связывать с различным содержанием углерода.

Компоненты системы железо и углерод - элементы полиморфные. Основной компонент системы - железо.

Углерод растворим в железе в жидком и твердом состояниях, а также может образовать химическое соединение - цементит Fе3С или присутствовать в сплавах в виде графита.

В системе железо-цементит (Fe - Fе3С) имеются следующие фазы: жидкий раствор. твердые растворы - феррит и аустенит, а также химическое соединение - цементит.

Феррит может иметь две модификации - высоко- и низкотемпературную. Высокотемпературная модификация d-Fe и низкотемпературная - a-Fe представляют собой твердые растворы углерода, соответственно, в d- и a- железе.

Предельное содержание углерода в a-Fe при 723°С -0,02%, а при 20°С - 0,006%. Низкотемпературный феррит a-Fe по свойствам близок к чистому железу и имеет довольно низкие механические свойства, например, при 0,06% С:

твердость - 80. 90 НВ.

Аустенит g-Fe - твердый раствор углерода в g-железе. Предельная растворимость углерода в g-железе 2,14%. Он устойчив только при высоких температурах, а с некоторым примесями (Мn, Сг и др.) при обычных (даже низких) температурах. Аустенит обладает высокой пластичностью, низкими пределами текучести и прочности. Твердость аустенита 160. 200 НВ.

Цементит Fе3С - химическое соединение железа с углеродом, содержащее 6,67% vглерода. Между атомами железа и углерода в цементите действуют металлическая и ковалентная связи. Температура плавления ~1250°С. Цементит является метастабильной фазой; область его гомогенности очень узкая и на диаграмме состояния он изображается вертикалью. Время его устойчивости уменьшается с повышением температуры: при низких температурах он существует бесконечно долго, а при температурах, превышающих 950°С, за несколько часов распадается на железо и графит. Цементит имеет точку Кюри (210°С) и обладает сравнительно высокими твердостью (800 НВ и выше) и хрупкостью. Прочность его i растяжение очень мала (s =40 МПа).

В системе железо - цементит имеются две тонкие механические смеси фаз - эвтектическая (ледебурит) и эвтектоидная (перлит).

Ледебурит является смесью двух фаз g-Fe + Fе3С, образующихся при 1130°С в сплавах, содержащих от 2,0 до 6,67%С, и наблюдается визуально как структурная составляющая железоуглеродистых сплавов, главным образом, чугунов. Ледебурит обладает достаточно высокими прочностью (НВ>600) и хрупкостью.

Перлит (до 2,0%С) представляет собой смесь a-Fe + Fе3С (в легированных сталях -карбидов), образующуюся при 723°С и содержании углерода 0,83% в процессе распада аустенита, и наблюдается визуально как структурная составляющая железоуглеродистых сплавов. Механические свойства перлита зависят от формы и дисперсности частичек цементита (прочность пластинчатого перлита несколько выше, чем зернистого):

d точкам, то есть температурам, при которых происходят фазовые и структурные превращения в железоуглеродистых сплавах.

Линия ABCD - линия начала кристаллизации сплава (ликвидус), линия AHJECF - линия конца кристаллизации сплава (солидус).

В области диаграммы HJCE находится смесь двух фаз: жидкого раствора и аустенита, а в области CFD - жидкого раствора и цементита. В точке С при содержании 4,3%С и температуре 1130°С происходит одновременная кристаллизация аустенита и цементита и образуется их тонкая механическая смесь - ледебурит. Ледебурит присутствует во всех сплавах, содержащих от 2,0 до 6,67%С (чутуны).

Точка Е соответствует предельному насыщению железа углеродом (2,0%С).

В области диаграммы AGSF находится аустенит. При охлаждении сплавов аустенит распадается с выделением по линии GS феррита, а по линии SE - вторичного цементита. Линии GS и PS имеют большое практическое значение для установления режимов термической обработки сталей. Линию GS называют линией верхних критических точек, а линию PS -нижних критических точек.

В области диаграммы GSP находится смесь двух фаз - феррита и распадющегося аустенита, а в области диаграммы SEE' - смесь вторичного цементита и распадающегося аустенита.

В точке S при содержании 0,8%С и при температуре 723°С весь аустенит распадается и одновременно кристаллизуется тонкая механическая смесь феррита и цементита - перлит.

Линия PSK соответствует окончательному распаду аустенита и образованию перлита. В области ниже линии PSK никаких изменений структуры не происходит.

Структурные превращения в сплавах, находящихся в твердом состоянии, вызваны следующими причинами: изменением растворимости углерода в железе в зависимости от температуры сплава (QP и SE), полиморфизмом железа (PSK) и влиянием содержания растворенного углерода на температуру полиморфных превращений (растворение углерода в железе способствует расширению температурной области существования аустенита и сужению области феррита).

Диаграмма стабильного равновесия Fe - Fе3С, обозначенная на рис. 1 пунктиром, отображает возможность образования высокоуглеродистой фазы - графита - на всех этапах структурообразования в сплавах с повышенным содержанием углерода. Диаграмма состояния стабильной системы железо - графит отличается от метастабильной системы железо-цементит только в той части, где в фазовых равновесиях участвует высокоуглеродистая фаза (графит или цементит).

На диаграмме состояния различают две области: стали и чугуны. Условия принятого разграничения - возможность образования ледебурита (предельная растворимость углерода в аустените):

• стали - до 2,14% С, не содержат ледебурита;

• чугуны - более 2,14% С, содержат ледебурит.

В зависимости от содержания углерода (%) железоуглеродистые сплавы получили следующие названия:

• менее 0,83 - доэвтектоидные стали;

• 0,83 - эвтектоидные стали;

• 0,83. 2 - заэвтектоидные стали;

• 2. 4,3 - доэвтектические чугуны;

• 4,3. 6,67 -заэвтектические чугуны [3]

Характерной особенностью чугунов является то, что углерод в сплаве может находиться не только в растворенном и связанном состоянии (в виде химического соединения -- цементита Fe3C), но также в свободном состоянии -- в виде графита. При этом форма выделений графита и структура металлической основы (матрицы) определяют основные типы чугуна и их свойства.

Классификация чугуна с различной формой графита производится по ГОСТ 3443-77. По специально разработанным шкалам оценивают форму включений графита, их размеры, характер распределения и количество, а также тип металлической основы.

Классификация чугуна осуществляется по следующим признакам:

по состоянию углерода -- свободный или связанный;

по форме включений графита - пластинчатый, вермикулярный, шаровидный, хлопьевидный;

по типу структуры металлической основы (матрицы) - ферритный, перлитный; имеются также чугуны со смешанной структурой: например феррито-перлитные;

по химическому составу -- нелегированные чугуны (общего назначения) и легированные чугуны (специального назначения).

В зависимости от формы выделения углерода в чугуне различают:

белый чугун, в котором весь углерод находится в связанном состоянии в виде цементита Fe3C;

- половинчатый чугун, в котором основное количество углерода (более 0,8 %) находится в виде цементита;

серый чугун, в котором весь углерод или его большая часть находится в свободном состоянии в виде пластинчатого графита;

отбеленный чугун, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой - белого;

высокопрочный чугун, в котором графит имеет шаровидную форму;

ковкий чугун, получающийся из белого путем отжига, при котором углерод переходит в свободное состояние в виде хлопьевидного графита. [4]

4.Структура и свойства чугуна

Микроструктура чугуна состоит из металлической основы (матрицы) и графитных включений. Свойства чугуна определяются свойствами металлической основы и характера включений графита.

Формирование микроструктуры чугуна зависит от его химического состава и скорости охлаждения (толщины) отливки. Структура металлической основы определяет твердость чугуна.

Углерод в составе чугуна может присутствовать в виде химического соединения -- цементит Fe3C, графита или их смеси. По сравнению с металлической основой графит имеет низкую прочность. Места его залегания можно считать нарушениями сплошности металла. Чугун как бы пронизан включениями графита, ослабляющими его металлическую основу. По мере округления графитных включений (за счет модифицирования чугуна присадками SiCa, FeSi, Al, Mg) их отрицательная роль как надрезов металлической основы снижается и механические свойства чугуна растут.

Например, серый чугун (пластинчатая форма графита) имеет низкие характеристики механических свойств, так как пластинки включений графита играют роль концентратов напряжений в отливке. Однако серый чугун имеет ряд преимуществ: обладает высокой жидкотекучестью и малой литейной усадкой; включения графита делают стружку ломкой, позволяя легко обрабатывать чугун резанием; благодаря смазывающему действию графита чугун обладает хорошими антифрикционными свойствами; хорошо гасит вибрации и резонансные колебания. Из высокопрочных чугунов (шаровидная форма графита) изготавливают ответственные детали: зубчатые колеса, коленчатые валы.

Кремний способствует графитизации чугуна. [4] Графитизацией называется процесс выделения графита при кристаллизации или охлаждении чугунов. Графит может образовываться как из жидкой фазы при кристаллизации, так и из твердой фазы. В соответствии с диаграммой Fe—C ниже линии C'D' образуется первичный графит, по линии E'C'F' — эвтектический графит, по линии Е'S' — вторичный графит и по линии P'S'К'— эвтектоидный графит.

Графитизация чугуна и ее полнота зависит от скорости охлаждения, химического состава и наличия центров графитизации.

Что такое чугун

Чугун

В зависимости от содержания углерода относительно эвтектики выделяют разновидности металла. Эвтектика – состав сплава с минимальной температурой плавления.

доэвтектический — 2,14 — 4,3% углерода;

эвтектический — 4,3% углерода;

заэвтектический — от 4,3 до 6,67% углерода.

Виды чугуна

Типы чугуна

В общепринятой классификации разделяют по форме содержащегося углерода.

Белый

Белый чугун

Называется так из-за характерного окраса скола. Углерод C содержится в виде цементита (формула Fe3C), образующегося при остывании расплава. Твердый тугоплавкий материал.

В доэвтектических сплавах – в составе перлита и ледебурита. В эвтектических – в ледебурите. В заэвтектических – первичный цементит и ледебурит.

Применяется в качестве сырья для получения ковкого.

Серый

Также именуется по оттенку на сколе. Содержит фракции графита различной формы. Осаждению углерода способствует добавка кремния.

Строение серого чугуна

Свойства и структура сильно зависят от условий остывания после кристаллизации.

Щадящее остывание определяет рост содержания феррита. Сплава железа с оксидами, в основном с Fe2O3. Улучшится пластичность. Поэтому режимы подбирают исходя из требуемых параметров.

Отливки из серого чугуна

Серый чугун удобен для литых конструкций. Отличается невысокой температурой отвердения, хорошей жидкотекучестью. Не склонен к образованию раковин.

При всем этом, углеродные вкрапления обуславливают низкую трещиностойкость. Материал уверенно воспринимает сжимающие усилия, но совершенно непригоден при растяжении/изгибе.

В маркировке указываются символы СЧ и предельная прочность в кг/мм 2 : СЧ25. Наиболее распространены чугуны с содержанием C ниже 3,7%.

Ковкий

Изделия из ковкого чугуна

По форме включения углерода не похожи на аналогичные в сером чугуне. Этим объясняется появление некоторой стойкости к разрыву и ударной вязкости.

Высокопрочный

Вид серого чугуна, только графитовые образования по форме напоминают шарики. Округлость включений делает кристаллическую решетку не склонной к образованию трещин.

Труба ВЧШГ

В результате ценные изначально свойства чугунов (стойкость к сжатию, удобство литья и т. д.) дополняются сравнимым со сталями пределом текучести при растяжении, появляется трещиностойкость, пластичность.

Передельный

Используется как сырье для выплавки стали. Часто даже не покидает предприятия, где сделан.

Специальные

Специальные чугуны

Выпуск таких марок невелик, до 2% от общего объема. Могут содержать значительное количество легирующих элементов. Предназначены для ограниченных целей и специфических условий. Распространены коррозионно и химически стойкие ферросплавы.

Одна из разновидностей – антифрикционный чугун. Используется для изготовления трущихся деталей. Легируется в первую очередь хромом. Также добавляются никель, титан, медь и прочие.

Отличается высокой твердостью (до HB 300) и низким коэффициентом трения (до 0,8 при отсутствии смазывающих эмульсий).

Базовые материалы: серый, ковкий и высокопрочный чугуны. Маркировки соответственно – АЧС, АЧК, АЧВ. Цифровые составляющие описаны выше.

Достоинства и недостатки материала

Стоит обсуждать в сравнении со сталью, хотя низкокачественная углеродистая сталь – тот же чугун по сути.

Достоинства и недостатки чугуна

По некоторым параметрам (плотность, свойство магнититься, типичные химические реакции) ферросплавы практически идентичны. Существенны отличия в технологии использования.

Преимущества:

Умеренная стоимость. Насыщение углеродом – часть процесса выплавки из руды. Снижение его содержания неизбежно удорожает металл.

Превосходные литейные качества. Расплав текуч. С низкой усадкой при кристаллизации, что минимизирует дефекты. Относительно низкая температура плавления.

Изделия прочны, с твердой поверхностью, износостойки.

Используемые в машиностроении составы поддаются обработке резанием.

Долговечны. В том числе в сантехнических, канализационных деталях.

Ставшие ненужными элементы легко утилизировать. Любой пункт приема с руками оторвет.

Чугунное литье

Из-за высокого содержания углерода хрупок. Мало пригоден для обработки давлением. Из отдельных марок получают кованые изделия отменного качества. Но это скорее работа штучная и в индустриальных масштабах нерентабельная.

Сварка допускается только в крайних случаях. Технология довольно сложна, велик риск возникновения дефектов.

Изделия всегда массивны. Не получится тонкостенная конструкция, так как не выдержит собственного веса и изготовить не удастся.

Легко окисляется во влажной среде. Насквозь не проржавеет из-за неизбежной монументальности, но вид приобретет неопрятный. Детали, расположенные на открытом воздухе, нуждаются в коррозионно стойком покрытии.

Производство чугуна

Зачатки черной металлургии человек освоили уже во II-ом тысячелетии до н. э. Для получения стали. Но доменные печи появились в Европе только в XIV - XV веках. Чугун был получен как побочный ненужный продукт.

Оценили, когда обратили внимание на выдающиеся литейные качества. Удобен для изготовления пушек-ядер, да и сталь из него получать удобнее.

До России технология осмысленно дошла в XVII веке. Случилось это при Петре I, когда искали материал для оружия.

В качестве сырья обычно используются железняки. Наибольший выход получается из магнитного и красного, обильно содержащие Fe.

Производство чугуна

Для поддержания температуры используется кокс. Воздух для горения подается принудительно. Флюс (известняк) предназначен для снабжения углекислым газом. Основная реакция:

501

Восстановленное Fe опускается в горн, где насыщается углеродом. Цикл работы печи – непрерывный.

Получение стали

Порядка 85% чугуна уходит на дальнейшее изготовление стали. Для выплавки используется мартеновская печь.

Мартеновская печь

В процессе плавления загруженного сырья образуется значительная масса оксида FeO. По мере разогрева происходит реакция:

502

Лишний углерод удаляется.

Также используются электродуговые и индукционные печи.

Области применения

В связи с современной тенденцией максимального облегчения оборудования, чугун используют все меньше.

Применение чугуна

Но есть области, где он пока незаменим и рентабелен:

В машиностроении применяется для крупных корпусных деталей с незначительными нагрузками на растяжение. Станины для станкового оборудования, блоки цилиндров для двигателей внутреннего сгорания. Маховики, шкивы, шестерни, гидроцилиндры, корпуса редукторов, электродвигателей, поршни.

Читайте также: