Участие микроорганизмов в круговороте азота кратко

Обновлено: 04.07.2024

При самом активном, широком участии микроорганизмов в природе, главным образом в почве и гидросфере, постоянно осуществляется два противоположных процесса: синтез из минеральных веществ сложных органических соединений и, наоборот, разложение органических веществ до минеральных. Единство этих противоположных процессов лежит в основе биологической роли микроорганизмов в круговороте веществ в природе. Среди различных процессов превращения веществ в природе, в которых микроорганизмы принимают активное участие, важнейшее значение для осуществления жизни растений, животных и человека на Земле имеют круговорот азота, углерода, фосфора, серы, железа.

Важнейший элемент, входящий в состав белков, а следовательно, имеющий исключительное значение для жизни — это азот. В живых существах, населяющих планету, содержится примерно 15—20 млрд. т азота, в почвах (в 30-сантиметровом слое) на каждом гектаре имеется в среднем 5—15 т азота.

В круговороте азота в природе с участием микроорганизмов различают следующие этапы: усвоение атмосферного азота, аммонификацию, нитрификацию, денитрификацию.

Усвоение азота из атмосферного воздуха азотфиксирующими бактериями. Среди микробов, усваивающих атмосферный азот, различают две группы — свободноживущих и клубеньковых.

Свободноживущие азотфиксаторы живут и фиксируют азот в почве независимо от растений. Основные виды этих микробов: Azotobacter chroococcum, Cl. pasteurianum. Азотобактер на площади в 1 га в течение года фиксирует от 20 до 50 кг газообразного азота, повышая плодородие почвы. Наиболее интенсивно этот процесс идет при хорошей аэрации почвы.

Клубеньковые бактерии — активные фиксаторы атмосферного азота в симбиозе с бобовыми растениями. Наличие бактерий в клубеньках бобовых растений установлено М. Ворониным. В чистой культуре эти микробы выделены Бейеринком в 1888 г. и названы Bact. radicicola (современное— род Rhizobium).

Аммонификация - это минерализация азотсодержащих органических веществ, протекающая под воздействием аммонифицирующих микробов, выделяющих протеолитические ферменты. Благодаря аммонификации представителей растительного и животного мира и их продуктов жизнедеятельности (мочевины, испражнений) почва обогащается азотом и другими соединениями. Одновременно с этим аммонифицирующие микробы выполняют огромную санитарную роль, очищая почву и гидросферу от разлагающегося органического субстрата. Основными представителями широко распространенных в природе аммонифицирующих микробов являются следующие. Микроорганизмы, разлагающие мочевину: Вас. probatus и Sporosarcina ureae Спорообразующие аэробы — это Вас. mesentericus (картофельная бактерия), Вас. megatherium (капустная бактерия), Вас. subtilis (сенная палочка), Вас. mycoides (грибовидная бацилла). Не образующие спор аэробные аммонификаторы — это Е. coli, Proteus vulgaris, Ps. fluorescens.

К анаэробным спорообразующим аммонификаторам относятся Cl. putrificum (газообразующая клостридия), Cl. sporogenes.

Аммонификацию вызывают также актиномицеты, грибы, триходермы, живущие в почве.

Нитрификация — следующий за аммонификацией этап превращения азота микроорганизмами. Этот процесс представляет собой окисление аммиака, образующегося при разложении органических азотсодержащих соединений.

Денитрификация, протекающая под воздействием микробов, представляет собой восстановление нитратов с образованием в качестве конечного продукта — молекулярного азота, возвращающегося из почвы в атмосферу. Вызывается этот процесс денитрифицирующими бактериями. Наиболее распространенные из них в природе: Tiolacillus denitrifi-cans — палочка, не образующая спор, факультативный анаэроб; Ps. fluo-rescens

— подвижная палочка, выделяет зеленоватый пигмент, быстро разлагает нитраты; Ps. aeruginosa — бактерия сходна с предыдущей; Ps. Stutzeri — небольшая палочка, образующая цепочки, разлагает нитраты в

Азот – это второй из наиболее важных биогенных элементов. Прокариоты участвуют во всех этапах цикла азота.

I этап.Аммонификация

Белки составляют большую долю живой биомассы. На долю белков приходится не менее 50% сухой массы клетки. Животные ткани богаты белками (50-80 %), в том числе структурными (образующими хрящи, связки, шерсть, когти и т.д.), содержание липидов – 10-15 %, полисахариды – 5-10 %, НК – 5 %.

При разложении микроорганизмами белков и других азотсодержащих соединений азот освобождается в виде аммиака.
Этот процесс называется аммонификациейили минерализацией азота.Иначе процесс аммонификацииназываютгниением.

Значительная часть белков попадает в почву с остатками отмерших растений, животных и микроорганизмов, где активно идут процессы минерализации азота.

В водоемах процессы минерализации отмершего планктона начинаются в водной массе, а образование аммиака наблюдается преимущественно в поверхностном слое ила.

Микроорганизмы, способные использовать белки и аминокислоты в качестве энергетического субстрата, относят к группе аммонифицирующих микроорганизмов(аммонификаторов).

Группа аммонифицирующих микроорганизмов представлена прежде всего Грам(+) спорообразующими аэробными бактериями рода Bacillus: B. subtilis, B. megateriumи др.Неспоробразующиеаммонификаторы представлены бактериями родов Pseudomonas, Proteus, Micrococcus, Mycobacterium и др. В анаэробных условиях белки разлагают бактерии рода Clostridium. К разложению белков способны микроскопические грибы и актиномицеты.

Белки расщепляются вне клетки экзоферментами– протеазами. Протеазы катализируют разрыв пептидных связей. В результате образуются пептиды – отдельные фрагменты. Пептиды поглощаются клеткой и расщепляются внутриклеточными протеазами – пептидазами до отдельных аминокислот.

Аминокислоты могут использоваться в биосинтетических процессах для синтеза белка или в энергетическом обмене.

Аминокислоты подвергаются декарбоксилированию или дезаминированию.

1. Декарбоксилированиепротекает без участия молекулярного кислорода:

В результате декарбоксилирования выделяется СО2 и образуются первичные амины – трупные яды. Первичные амины образуются при анаэробном разложении белка – в трупах, а также при гнилостных процессах в кишечнике.

2. Дезаминирование – это отщепление аминогруппы от аминокислоты в виде аммиака. Наиболее распространенный тип распада аминокислот – окислительноедезаминирование:

R – CHNH2 – COOH + ½ O2 → R – CO – COOH + NH3

Органические кислоты (кетокислоты), образующиеся при дезаминировании, включаются в клеточный метаболизм.

II этап. Нитрификация

Нитрификация – это окисление аммиака до азотной кислоты. Процесс осуществляют хемолитотрофные бактерии, объединяемые в семейство Nitrobacteriaceae.

Нитрификация протекает в два этапа.

1. Окисление аммиака до нитрита:

Первуюфазунитрификацииосуществляютбактерииродов: Nitrosomonas, Nitrosococcus, Nitrosolobus, Nitrosospira, Nitrosovibrio.

Процесс нитрификации локализован на ЦПМ и внутрицитоплазматических мембранах. Аммоний поглощается клеткой, перенос через ЦПМ осуществляется при помощи медьсодержащей транслоказы. Окисление аммиака до нитрита происходит через ряд промежуточных продуктов: NH3 → NH2OH → NO2ֿ. Сначала аммиак окисляется до гидроксиламина (NH2OH), реакцию катализирует фермент монооксигеназа. Далее гидроксиламин окисляется до нитрата (NO2ֿ), реакцию катализирует фермент гидроксиламиноксидоредуктаза. Электроны, высвобождаемые при окислении гидроксиламина передаются в дыхательную цепь на уровне цитохромас.

2. Окисление нитрита до нитрата:

Процесс локализован на внутренней стороне мембраны, реакция катализируется ферментом нитритоксидазой. Электроны, высвобождаемые при окислении, поступают в дыхательную цепь на уровне цитохромаа1.

Вторую фазу нитрификации осуществляют бактерии родов: Nitrobacter, Nitrospira, Nitrococcus.

Значение нитрификации. Нитрифицирующие бактерии встречаются там, где идет минерализация органического вещества и выделяется аммоний.

В почвах длительное применение аммонийных удобрений привело к значительному обогащению обрабатываемых земель нитрифицирующими бактериями. В хорошо аэрируемых почвах нитрификация может приводить к подкислению почвы. Это ведет к растворению солей калия, магния, фосфора, которые необходимы для растений. Большинство растений предпочтительнее усваивает нитрат, чем аммоний. Однако нитрит и нитрат, как отрицательно заряженные ионы, легко вымываются из почвы, что ведет к обеднению почвы азотом.

В водоемах нитрифицирующие бактерии развиваются у поверхности донных отложений и в зоне термоклина.

Роль нитрификаторов в процессе очистки сточных вод. Нитрифицирующие бактерии окисляют аммоний – продукт разложения органических отходов – до нитрата, который на последующем этапе очистки денитрифицирующие бактерии превращают в молекулярный азот.

III этап. Денитрификация

Денитрификация–это процесс восстановления нитрата до молекулярного азота через ряд промежуточных продуктов:

Процесс окисления NO3 ֿ до NO2 ֿ называется нитратным дыханием. К денитрификации способны бактерии различных родов: Thiobacillus, Pseudomonas, Paracoccusи др.

Значение денитрификации. Денитрификация – это процесс, который осуществляют только прокариоты. Это единственный биологический процесс, благодаря которому связанный азот преобразуется в свободный азот N2. С другой стороны денитрификация ведет к обеднению почвы азотом.

Азот – это второй из наиболее важных биогенных элементов. Прокариоты участвуют во всех этапах цикла азота.

I этап.Аммонификация

Белки составляют большую долю живой биомассы. На долю белков приходится не менее 50% сухой массы клетки. Животные ткани богаты белками (50-80 %), в том числе структурными (образующими хрящи, связки, шерсть, когти и т.д.), содержание липидов – 10-15 %, полисахариды – 5-10 %, НК – 5 %.

При разложении микроорганизмами белков и других азотсодержащих соединений азот освобождается в виде аммиака.
Этот процесс называется аммонификациейили минерализацией азота.Иначе процесс аммонификацииназываютгниением.

Значительная часть белков попадает в почву с остатками отмерших растений, животных и микроорганизмов, где активно идут процессы минерализации азота.

В водоемах процессы минерализации отмершего планктона начинаются в водной массе, а образование аммиака наблюдается преимущественно в поверхностном слое ила.

Микроорганизмы, способные использовать белки и аминокислоты в качестве энергетического субстрата, относят к группе аммонифицирующих микроорганизмов(аммонификаторов).

Группа аммонифицирующих микроорганизмов представлена прежде всего Грам(+) спорообразующими аэробными бактериями рода Bacillus: B. subtilis, B. megateriumи др.Неспоробразующиеаммонификаторы представлены бактериями родов Pseudomonas, Proteus, Micrococcus, Mycobacterium и др. В анаэробных условиях белки разлагают бактерии рода Clostridium. К разложению белков способны микроскопические грибы и актиномицеты.

Белки расщепляются вне клетки экзоферментами– протеазами. Протеазы катализируют разрыв пептидных связей. В результате образуются пептиды – отдельные фрагменты. Пептиды поглощаются клеткой и расщепляются внутриклеточными протеазами – пептидазами до отдельных аминокислот.

Аминокислоты могут использоваться в биосинтетических процессах для синтеза белка или в энергетическом обмене.

Аминокислоты подвергаются декарбоксилированию или дезаминированию.

1. Декарбоксилированиепротекает без участия молекулярного кислорода:

В результате декарбоксилирования выделяется СО2 и образуются первичные амины – трупные яды. Первичные амины образуются при анаэробном разложении белка – в трупах, а также при гнилостных процессах в кишечнике.

2. Дезаминирование – это отщепление аминогруппы от аминокислоты в виде аммиака. Наиболее распространенный тип распада аминокислот – окислительноедезаминирование:

R – CHNH2 – COOH + ½ O2 → R – CO – COOH + NH3

Органические кислоты (кетокислоты), образующиеся при дезаминировании, включаются в клеточный метаболизм.

II этап. Нитрификация

Нитрификация – это окисление аммиака до азотной кислоты. Процесс осуществляют хемолитотрофные бактерии, объединяемые в семейство Nitrobacteriaceae.

Нитрификация протекает в два этапа.

1. Окисление аммиака до нитрита:

Первуюфазунитрификацииосуществляютбактерииродов: Nitrosomonas, Nitrosococcus, Nitrosolobus, Nitrosospira, Nitrosovibrio.

Процесс нитрификации локализован на ЦПМ и внутрицитоплазматических мембранах. Аммоний поглощается клеткой, перенос через ЦПМ осуществляется при помощи медьсодержащей транслоказы. Окисление аммиака до нитрита происходит через ряд промежуточных продуктов: NH3 → NH2OH → NO2ֿ. Сначала аммиак окисляется до гидроксиламина (NH2OH), реакцию катализирует фермент монооксигеназа. Далее гидроксиламин окисляется до нитрата (NO2ֿ), реакцию катализирует фермент гидроксиламиноксидоредуктаза. Электроны, высвобождаемые при окислении гидроксиламина передаются в дыхательную цепь на уровне цитохромас.

2. Окисление нитрита до нитрата:

Процесс локализован на внутренней стороне мембраны, реакция катализируется ферментом нитритоксидазой. Электроны, высвобождаемые при окислении, поступают в дыхательную цепь на уровне цитохромаа1.

Вторую фазу нитрификации осуществляют бактерии родов: Nitrobacter, Nitrospira, Nitrococcus.

Значение нитрификации. Нитрифицирующие бактерии встречаются там, где идет минерализация органического вещества и выделяется аммоний.

В почвах длительное применение аммонийных удобрений привело к значительному обогащению обрабатываемых земель нитрифицирующими бактериями. В хорошо аэрируемых почвах нитрификация может приводить к подкислению почвы. Это ведет к растворению солей калия, магния, фосфора, которые необходимы для растений. Большинство растений предпочтительнее усваивает нитрат, чем аммоний. Однако нитрит и нитрат, как отрицательно заряженные ионы, легко вымываются из почвы, что ведет к обеднению почвы азотом.

В водоемах нитрифицирующие бактерии развиваются у поверхности донных отложений и в зоне термоклина.

Роль нитрификаторов в процессе очистки сточных вод. Нитрифицирующие бактерии окисляют аммоний – продукт разложения органических отходов – до нитрата, который на последующем этапе очистки денитрифицирующие бактерии превращают в молекулярный азот.

III этап. Денитрификация

Денитрификация–это процесс восстановления нитрата до молекулярного азота через ряд промежуточных продуктов:

Процесс окисления NO3 ֿ до NO2 ֿ называется нитратным дыханием. К денитрификации способны бактерии различных родов: Thiobacillus, Pseudomonas, Paracoccusи др.

Значение денитрификации. Денитрификация – это процесс, который осуществляют только прокариоты. Это единственный биологический процесс, благодаря которому связанный азот преобразуется в свободный азот N2. С другой стороны денитрификация ведет к обеднению почвы азотом.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.



Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

ГЛАВА 11. УЧАСТИЕ МИКРООРГАНИЗМОВ В КРУГОВОРОТЕ ВЕЩЕСТВ

В зависимости от выполняемой в природе функции живые организмы разделяют на три группы.

1. Растения являются продуцентами, поскольку они синтезируют органические вещества, используя энергию солнца и углекислоту.

2. Животные являются потребителями (консументами), так как используют биомассу растений и животных для построения собственного тела.

3. Микроорганизмы служат деструкторами, осуществляя минерализацию — процесс разложения органических веществ животных и растений.

Образовавшиеся в результате этого процесса минеральные вещества растворяются в воде и используются растениями в качестве источника питания. Таким образом, круговорот веществ в природе объединяет два взаимно противоположных процесса: синтеза и распада органических веществ и обусловлен биологической ролью разных групп микроорганизмов.

Наиболее важными процессами превращения веществ являются круговороты азота и углерода в природе.

11.1. КРУГОВОРОТ АЗОТА

В цикл превращений азота входят реакции синтеза сложных азотсодержащих соединений и реакции минерализации органического азота до солей азотной и азотистой кислот или молекулярного азота (рис. 34).


Рис. 34. Схема круговорота азота в природе

Молекулярный азот в природе постоянно имеется в избытке (он составляет около 80 % земной атмосферы), но этот газ химически инертен, и поэтому большинство организмов не могут его использовать. Питание всех растений, животных и большей части микроорганизмов зависит от источников связанного или фиксированного азота, который относительно дефицитен в почве и воде. Поэтому недостаток соединений азота часто служит фактором, лимитирующим развитие живых организмов. В связи с этим циклическое превращение азотистых соединений играет первостепенную роль в снабжении необходимыми формами азота различных организмов.

Цикл азота состоит из четырех этапов:

1) азотфиксация — фиксация молекулярного азота;

2) аммонификация — минерализация органических азотсодержащих соединений;

3) нитрификация — окисление аммонийного азота до нитратов и нитритов;

4) денитрификация — восстановление нитратов до аммиака и молекулярного азота.

1. Азотфиксация — уникальный процесс связывания азота атмосферы, который осуществляют прокариотические микроорганизмы. Биологическая фиксация азота осуществляется в природе двумя группами микроорганизмов: свободноживущими бактериями родов Azotobacter и Clostridium и симбиотическими бактериями рода Rhizobium (клубеньковыми), существующими в симбиозе с растениями.

Бактерии рода Azotobacter представляют собой грамотрицательные аэробные палочки, расположенные одиночно или сцепленные попарно. С возрастом они постепенно укорачиваются и превращаются в кокки, окруженные толстой слизистой капсулой. Молодые клетки азотобактера имеют перитрихиально расположенные жгутики и обладают подвижностью. При старении клетки теряют подвижность. Azotobacter широко распространен в почвах и водоемах, имеющих нейтральное значение pH.

К свободноживущим азотфиксаторам относятся также бактерии видов Clostridium pasterianum, С. felsineum и др. Они представляют собой палочки, грамположительные, подвижные, образующие эндоспоры. При образовании спор палочки утолщаются и принимают форму веретена. Облигатные анаэробы могут размножаться в диапазоне pH 5,5-8,0.

Связывать молекулярный азот могут и другие микроорганизмы: Azotomonas fluorescens, цианобактерии, некоторые актиномицеты.

Биологическая фиксация азота идет восстановительным путем с участием специфического ферментного комплекса нитрогеназы. Донором электронов является железосодержащий белок ферредоксин, источником энергии — АТФ.


Клубеньковые бактерии представляют собой мелкие, грамотрицательные, подвижные палочки, не образующие спор. Между бактериями и растением устанавливаются симбиотические взаимоотношения: бактерии питаются углеродсодержащими веществами, вырабатываемыми растением, а растения усваивают азотистые соединения, образующиеся бактериями в результате фиксации молекулярного азота.

2. Аммонификация. Белки в виде остатков растений и животных попадают в почву и там разлагаются под действием микроорганизмов. При разложении белка выделяется аммиак, поэтому процесс распада белка получил название аммонификации (гниения).

Гниением называют ферментативный распад белков, обусловленный жизнедеятельностью микроорганизмов. На первом этапе белки расщепляются внеклеточными протеазами до полипептидов и олигопептидов и отчасти аминокислот. Пептиды поступают в клетку и там расщепляются внутриклеточными пептидазами до свободных аминокислот. Аминокислоты либо используются клеткой для биосинтетических целей, либо подвергаются дальнейшим превращениям (рис. 35).


Рис. 35. Схема распада белка

Глубина расщепления белков зависит от видов микроорганизмов и условий их жизнедеятельности: температуры, влажности, доступа кислорода воздуха.

В аэробных условиях происходит полная минерализация белков, при этом конечными продуктами становятся аммиак, диоксид углерода, сероводород, соли фосфорной кислоты и др. Такой процесс называют тлением.


Дезаминирование — процесс отщепления аммиака от аминокислоты. Различают окислительное, гидролитическое дезаминирование, а также дезаминирование, приводящее к образованию ненасыщенных жирных кислот.

Окислительное дезаминирование — наиболее распространенный тип распада аминокислот, приводящий к образованию кетокислот:


Гидролитическое дезаминирование происходит при участии гидролаз и приводит к образованию оксикислот:


Примером дезаминирования с образованием ненасыщенных кислот является превращение аспарагиновой кислоты в фумаровую:


Гнилостные бактерии широко распространены в природе, они встречаются в почве, воде, воздухе, на растениях, в кишечнике человека и животных, в пищевых продуктах.

Процесс гниения способны осуществлять разнообразные микроорганизмы: бактерии, актиномицеты, плесневые грибы. Среди аэробных гнилостных бактерий наиболее часто встречаются Bacillus mycoides (грибовидная палочка), Bacillus mesentericus (картофельная палочка), Bacillus subtilis (сенная палочка), Bacillus meghaterium, Pseudomonas fluorescens (флюоресцирующая палочка) и др. Наиболее типичными представителями факультативно анаэробных бактерий являются Proteus vulgaris (палочка протея), Escherichia coli (кишечная палочка), Serratia marcescens(чудесная палочка). Представителями анаэробных гнилостных бактерий являются Clostridium putrificum, Clostridium sporogenes.

В наибольшей степени подвержены гниению пищевые продукты с высоким содержанием белка: мясные, рыбные, молочные. Для предохранения продуктов от гнилостной порчи их консервируют, используя различные физические и химические способы: охлаждение, замораживание, пастеризацию, стерилизацию, посол, засахаривание, копчение, вяление, высушивание, добавление различных химических веществ, подавляющих развитие микроорганизмов, — консервантов.

3. Нитрификация. Аммиак, образующийся в процессе гниения, под действием микроорганизмов превращается в нитраты — соли азотной кислоты. Этот процесс окисления аммиака называют нитрификацией. Он состоит из двух этапов.

На первом этапе аммиак окисляется до азотистой кислоты:


Первый этап нитрификации осуществляют бактерии родов Nitrosomonas, Nitrosococcus, Nitrosospira. В последние годы выделены еще два рода бактерий, способных к нитрификации: Nitrosolobus и Nitrosovibrio.

На втором этапе азотистая кислота окисляется до азотной бактериями рода Nitrobacter.


Процесс нитрификации более интенсивно протекает в почве в присутствии кислорода. В результате жизнедеятельности нитрифицирующих бактерий за год в почве может накапливаться до 300 кг/га нитратов.

4. Денитрификация — процесс восстановления нитратов до нитритов и молекулярного азота, протекающий по схеме:


Денитрификацию осуществляют бактерии видов Pseudomonas fluorescens, P. aeruginosa, P. stutzeri, Paracoccus denitriflcans, Thiobacillus denitrificans и др. В результате денитрификации снижается плодородие почвы, так как образовавшийся азот удаляется в атмосферу.

Биологическая библиотека - материалы для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

Запасы азота в природе очень велики. Общее содержание этого элемента в организмах составляет более 25 млрд. тонн, большое количество азота находится также в почве. В воздухе азот присутствует в виде газа N2. Однако газ азот (N2), содержание которого в атмосфере достигает 78 % по объёму, эукариоты сами по себе ассимилировать не могут. А уникальной способностью превращать N2 в азотсодержащие соединения обладают некоторые бактерии, которые называют азотфиксирующими, или азотфиксаторами. Фиксация азота возможна многими бактериями и цианобактериями. Они живут или в почве, или в симбиозе с растениями, или с несколькими разновидностями животных. Например, семья бобовых растений(Fabaceae) содержит такие бактерии на своих корнях. Типичным представителем свободноживущих азотфиксирующих микроорганизмов является Azotobacter — грамотрицательная бактерия, связывающая азот воздуха. Продукты фиксации азота — аммиак (NH3), нитриты.Азотфикса́ция, или азотофиксация — фиксация молекулярного атмосферного азота, диазотрофия. Процесс восстановления молекулы азота и включения её в состав своей биомассы прокариотными микроорганизмами. Важнейший источник азота в биологическом круговороте. В наземных экосистемах азотфиксаторы локализуются в основном в почве. АЗОТФИКСАТОРЫ(от азот и фр. fixateur — закрепитель), бактерии и водоросли (преимущественно синезеленые), фиксирующие (связывающие) азот, необходимый для жизнедеятельности организмов. Число видов А. очень велико: среди анаэробов наиболее многочисленны обитающие в донных отложениях виды рода бактерий Clostridium, некоторые метаноообразующие, сульфатредуцирующие и фотосинтезирующие бактерии. Из аэробных наибольшее значение имеют бактерии сем. Azotobactericeae, Azotobacter и др.) и особенно сине-зеленые водоросли родов Anabaena, Amphanizomenon, Nostoc, Microcystes, Nodularia, Qlaecapsa). Способностью к азотфиксации (фиксации азота) обладают некоторые водо-родокислящие и фотосинтезирующие бактерии родов Chlorobium, Chromatium и др. Способность сине-зеленых водорослей фиксировать молекулярный азот усиливается присутствием симбиотических бактерий, особенно азотфиксирующих. В Балтийском море Nodularia spumigena фиксирует ок. 2000 т азота в год. Всего в гидросфере фиксируется ежегодно ок. 10 млн. т азота. Аммонификаторы аммонификаторы физиол. группа бактерий , использующих белки и аминокислоты в качестве энергетических субстратов, что сопровождается выделением в среду аммиака. Среди А. встречаются как спорообразующие формы (Bacillus), так и микроорганизмы, не образующие спор (Pseudomonas, Micrococcus, Arthrobacter, Mycobacterium, Proteus).Нитрификаторы— группа автотрофных (см. автотрофы ) микроорганизмов, способных получать энергию для жизнедеятельности за счет окисления неорганических соединений азота. Делятся на две группы. Н. первой группы окисляют аммиак до нитритов с образованием в качестве побочного продукта закиси азота. Н. второй группы окисляют нитриты в нитраты. Основным представителем первой группы Н. является нитрозомонас (Nitrosomonas Winogradsky). В настоящее время подтверждено мнение С. Н. Виноградского о существовании разнообразных представителей первой группы Н., напр. Nitrosococcus Winogradsky и др. Представителем второй группы Н. являются нитробактер (Nitrobacter Winogradsky). Денитрификация (восстановление нитрата) — сумма микробиологических процессов восстановления нитратов до нитритов и далее до газообразных оксидов и молекулярного азота. В результате их азот возвращается в атмосферу и становится недоступным большинству организмов. Осуществляется только прокариотами (причём как бактериям, так и археями) в анаэробных условиях и связана с получением ими энергии.Особо выделяют ассимиляционное восстановление нитрата, приводящее к синтезу азотсодержащих клеточных компонентов и свойственную всем растениям, многим грибам и прокариотам, способным расти на средах с нитратами, однако не сопровождающуюся получением энергии этими организмами. Аммонийный и нитратный азот, поглощенный микробными клетками, включается в органические азотсодержащие полимеры клеточных компонентов и временно выводятся из круговорота азота, то есть происходит их иммобилизация.

21.Превращение соединений серы микроорганизмами. Группы микроорганизмов цикла серы: сульфат-редукторы, серо-редукторы, серобактерии, тионовые бактерии, аноксигенные серные фотосинтезиркющие бактерии. Сера содержится в организме животных и растений, входит в состав серосодержащих аминокислот (цистеин, цистин, метионин), витаминов группы B (биотин, тиамин), много ее в волосах и перьях. Органические соединения серы в почве представлены остатками животных и растений. Минерализация серы осуществляется микроорганизмами, которые в аэробных условиях доводят ее до сульфатов, а в анаэробных – восстанавливают серосодержащие белки до сероводорода и частично до меркаптанов.

Восстановленные соединения серы окисляют автотрофные (фотолитотрофы, хемолитотрофы) микробы. Среди них различают нитчатые, тионовые и фотосинтезирующие. Нитчатые хемолитотрофные серобактерии – аэробы и относятся к родам Beggiatoa, Theatric, Thioploca и другим. Beggiatoa по форме представляет длинные нити, которые состоят из множества клеток, окисляют сульфиды до сульфатов. Промежуточным продуктом является элементарная сера, которая в виде шариков накапливается в клетках. Процесс происходит в два этапа по следующей схеме:

Виды рода Beggiatoa различают по толщине нитей. Они растут в тех водоемах, где происходит разложение органического вещества с выделением водорода.

Тионовые хемолитотрофные бактерии представляют собой грамотрицательные, неспорообразующие, подвижные палочки и относятся к роду Thiobaccilus. Они окисляют серу и ее соединения (сероводород, сульфиды и др.), которые накапливаются вне клетки.

Фотосинтезирующие зеленые и пурпурные серобактерии (фотолитотрофы) в анаэробных условиях окисляют сероводород до серы, которая затем может превращаться в сульфаты. Они имеют округлую, палочковидную или извитую форму. Имеются виды, длина клеток которых достигает 100 мкм. Окислять серу в присутствии органических веществ способны и некоторые гетеротрофные микробы – Bac. Subtilis, Bac. Mesentericus, актиномицеты, дрожжи. Сульфатредукция осуществляется микроорганизмами двух родов: Desulfovibrio и Desulfotomaculum. Их клетки не окрашиваются по Граму, но отличаются по форме и некоторым другим признакам. Представители рода Desulfovibrio – вибрионы, монотрихи – не образуют спор, растут при температуре около 30°C (мезофилы). Микробы рода Desulfotomaculum имеют палочковидную форму, образуют споры (бациллы), перитрихи и растут при температуре от 30 до 55°C. Один из видов этого рода – D. nigrificans – термофил (оптимальная температура роста 55°C), остальные: D. ruminis и D. orientis – мезофилы (оптимальная температура роста 30 – 37 °C).

22. Микроорганизмы и круговорот железа. Основные группы цикла железа: аэробные железобактерии, железоредукторы, магентитобразующие бактерии, магнитотактические бактерии.Химический элемент железо широко распространен в природе, встречается в виде органических и минеральных соединений, входит в состав животных и растительных организмов. Содержится в гемоглобине крови и дыхательных ферментах цитохромах, необходим для образования хлорофилла у растений, хотя и не входит в его состав. При недостатке железа у животных развивается анемия, растения теряют зеленую окраску. Железо бывает в форме нерастворимого окисного Fe 3+ и растворимого закисного Fe 2+ .

Способность осаждать окислы железа на поверхности клеток присуща многим эубактериям, различающимися морфологическими и физиологическими признаками и принадлежащим к разным таксонометрическим группам. Накопление окислов железа на поверхности бактериальных клеток – результат двух взаимосвязанных процессов: аккумуляции (поглощения) клетками этих металлов из раствора и окисления, сопровождающегося обильным отложением нерастворимых окислов па поверхности бактерий. Процесс аккумуляции тяжелых металлов из растворов в основе имеет физико-химическую природу и в значительной мере обусловлен химическим составом и свойствами поверхностных структур клетки. Он включает связывание металлов внеклеточными структурами (капсулы, чехлы, слизистые выделения), клеточной стенкой и цитоплазматической мембраной. Сорбционные свойства поверхностных клеточных структур определяются в большой степени суммарным отрицательным зарядом молекул, входящих в их состав. Поглощение металлов приводит к значительному концентрированию их вокруг клеток по отношению к среде. Коэффициент накопления железа может достигать величины 10 5 – 10 6 .

Железобактерии этой группы – облигатные аэробы, но могут удовлетворительно расти при низком содержании O2 в среде. Оптимальный pH для роста – 6 – 8. единственно возможный способ существования – хемоорганогетеротрофия, при этом представители рода Sphaerotilus предпочитают условия с относительно высоким содержанием органических веществ, а многие штаммы Leptothrix – среды с низким уровнем органики.

Читайте также: