Радиоактивное заражение это кратко

Обновлено: 02.07.2024

Понятие радиоактивного загрязнения местности вошло в мировой обиход после обнаружения последствий ядерного взрыва в Хиросиме и Нагасаки, а позднее — с появлением мирной ядерной энергетики — результатов аварий на АЭС в Чернобыле и Фукусиме-1. Итоги выхода из-под контроля атомных устройств оказались ужасающими как для поражённой территории, так и для проживающего там населения.

Радиация исходит из всех материалов, в состав которых входят радиоактивные изотопы различных химических элементов. Таких, например, как астат, ванадий, вольфрам, йод, кальций, осмий, цирконий. Самые известные элементы, широко применяемыми в военной промышленности, геохимии, медицине и энергетике, это изотопы или нуклиды урана и радия — уран 235, 237, 238, 239 и радий 226, 228.

Причинами радиоактивного загрязнения территории чаще всего являются сбои в функционировании систем, включающих в себя блоки с теми или иными радионуклидами. К сбоям может привести как технологический, так и человеческий фактор. Тогда на каком-то этапе эксплуатации системы количество изотопов достигает критической массы. Если произойдёт выброс избытков нуклидов во внешнюю среду, она подвергнется загрязнению.

Проблемы радиоактивного загрязнения

К основным проблемам радиационного загрязнения относится пагубное воздействие нейтронов, альфа-частиц, бета-частиц, гамма-лучей, образовавшихся при взрыве или ином выбросе продуктов распада радиоактивных веществ, а также разлитого топлива из атомного реактора на живые организмы, одежду, растения, почву, воду в водоёмах и окружающий воздух.

Особенностью радиоактивного загрязнения является большая продолжительность поражающего действия, которая напрямую зависит от времени распада радионуклида, ставшего источником заражения.

Характеристики основных радиоактивных элементов, чаще всего вызывающих загрязнение внешней среды и организма человека, показаны в таблице:

Радионуклид Время полураспада Преимущественная локализация
Америций-241 433 года биосфера
Йод-131 192 часа щитовидная железа
Кобальт-60 5 лет и 3 месяца биосфера
Стронций-90 28 лет и 8 месяцев скелет
Цезий-137 30 лет биосфера
  • концентрации имеющихся там радиоактивных веществ;
  • типу излучения, испускаемого ими;
  • мощности энергетического потока;
  • расстоянию от места заражения радиацией до человека.

Причины и источники радиационного загрязнения

Загрязнение местности радиоактивными продуктами может происходить по целому ряду причин. Наиболее известные из них — это последствия применения ядерного оружия и взрывов энергетических блоков на атомных электростанциях. Время радиоактивного загрязнения после ядерного взрыва чрезвычайно велико. Так период полураспада обеднённого урана-238, из которого созданы бомбы, сброшенные на Японию, составляет несколько миллиардов лет.

  • медицинское обследование (флюорография, УЗИ, МРТ, томограмма);
  • химиотерапия при лечении злокачественных опухолей;
  • работа на атомных электростанциях;
  • добыча урановых руд.
  • медицинская аппаратура;
  • научные приборы (дефектоскопы, рентгеновские микроскопы и лазеры);
  • рамки контроля за содержимым карманов и грузов в аэропортах;
  • все атомные реакторы;
  • корабли на ядерном топливе;
  • останки космических аппаратов, упавшие на Землю;
  • отходы атомных электростанций и ТЭЦ;
  • некоторые полезные ископаемые;
  • каменный уголь;
  • боеприпасы с ядерной начинкой;
  • топливо для отдельных видов ракет.

Атомная промышленность

В сферу атомной индустрии входит целый комплекс вспомогательных отраслей, которые обеспечивают нужды военного и гражданского направления деятельности России.

  • добыча ураносодержащих руд;
  • их переработка и обогащение до уровня, пригодного для использования;
  • производство ядерная оружия и топлива для электростанций;
  • захоронение промышленных отходов.

Часть радиоактивных частиц на каждом этапе данного промышленного цикла неизбежно оказывается во внешней среде, оседает в организме людей, загрязняет почву, водоёмы и атмосферу. Исходя из того, что за всё время существования атомной промышленности на планете выработано более тысячи тонн плутония (в том числе оружейного) и около 10% из этого количества оказалось в окружающей среде, примерно 10 тонн радиоактивного вещества до сих пор создают человечеству экологические проблемы.

Большой период полураспада плутония во всех его нуклидах пролонгирует опасность для биосферы и человека на многие тысячелетия . Вероятность онкологических и генетических заболеваний, сокращающих жизнь и превращающих её в мучение, возрастает многократно. Осознание этого заставляет неукоснительно соблюдать правила проживания на радиационно загрязнённой местности.

Атомная энергетика

СССР — родина атомных электростанций. Первая из них появилась в подмосковном Обнинске. Это был 1954 год. В дальнейшем АЭС стали возникать по всему миру. Их доля в производстве электроэнергии в настоящее время превышает 17% от общего энергетического баланса планеты.

Наша страна находится на 18 месте среди производителей атомного электричества и на 1 по надёжному хранению и переработке радиоактивных отходов. Последнее обстоятельство даёт России значительные экономические преференции, поскольку сюда стекаются отходы со многих атомных электростанций мира. В то же время это увеличивает риск загрязнения радиацией территорий в местах её захоронения.

Ядерные взрывы

Впервые взрывы атомных бомб ошеломили мир в августе 1945 года. Два больших японских города в одно мгновение были стёрты с лица страны со всеми своими строениями и почти всем населением. Оставшиеся жители Хиросимы и Нагасаки, а также окрестных мест получили сильнейшие ожоги, лучевую болезнь и различные генетические патологии. Последствия этих взрывов до сих пор сказываются на потомках жертв.

Испытания ядерного оружия продолжились и в дальнейшем. СССР это производил в Семипалатинске и на Новой Земле, США с Великобританией — в пустынях Невады, Франция — на атолле Муруроа в Тихом океане, Китай — на плато Лобнор, образовавшемся на месте высохшего озера. К концу 1992 года все эти страны вместе взятые взрывали свои бомбы свыше 2000 раз.

Самый большой вред людям и окружающей их биосфере наносили ядерные взрывы, производившиеся в атмосфере. Потоки воздуха при этом развеивали радиацию на огромные расстояния от эпицентра. Так атмосферный взрыв в Китае мощностью около трёх мегатонн, благодаря ветру, накрыл большие пространства на Дальнем Востоке и в Сибири, а также в Центральной и Средней Азии. До сих пор сказываются на жителях этих мест последствия китайского эксперимента.

Испытания в воздухе Китай прекратил в 1980 году. СССР и США соответственно — в 1962 и в 1963. В результате многолетнего использования атомного оружия в верхних слоях атмосферы частички пыли, образованные там взрывами, разнесли радиацию по всем уголкам земного шара. Вместе с осадками загрязнённая ядерная пыль проникала в почву, водоёмы, организмы людей и животных. Всего таким образом было внедрено в природу около пяти тонн оружейного плутония.

Медицина и наука

Применение радиации в медицине — широко распространённое явление. Это делается как в целях диагностики заболеваний, так и их лечения. Люди, прошедшие через них сами становятся источниками радиации. Во избежание радиоактивного заражения окружающих им необходимо соблюдать определённые правила поведения.

Наука также относится к тем отраслям человеческой деятельности, которые влияют на здоровье и общее состояние биосферы посредством радиоактивных воздействий своих обычных ядерных реакторов и специализированных синхрофазотронов. К началу 1992 года во всех экономически развитых странах планеты их насчитывалось примерно 500 штук. Все они представляют существенную угрозу внешнему миру.

Первое место занимали США, у них было 94 реактора. У СССР — 66. Затем шли ФРГ (25), Франция (19), Япония (19), Канада (14) и Китай (12). В 2008 году рядом с Женевой был построен БАК — большой адронный коллайдер. К его сооружению и обслуживанию были привлечены тысячи учёных, представляющих свыше сотни стран мира. В настоящее время Китай собирается превзойти это научное достижение.

Загрязняющие компоненты

Основными радиоактивными загрязнителями, представляющими опасность для живых существ и биосферы в целом, считаются нуклиды:

  • стронций-90 , избирательно поражающий костную ткань;
  • амерций-241, кобальт-60, цезий-137 — самые грозные загрязнители флоры и фауны;
  • торий — в больших дозах способный спровоцировать онкологические заболевания крови, лёгких и поджелудочной железы;
  • радий , в больших дозах вызывающий кожные ожоги, уничтожающий эритроциты и ослабляющий иммунную функцию лейкоцитов;
  • уран , воздействие которого пагубно влияют на нервную систему, почки, печень и селезёнку.

Другим не менее опасным фактором, поражающим как живую, так и неживую природу, является космическое излучение. Это рассеянная радиация, исходящая от солнца. В нормальных погодных условиях барьером от неё выступает атмосфера. Если она по тем или иным причинам становится разреженной, угроза от солнечных лучей увеличивается.

Степени радиоактивного загрязнения

Уровнем радиоактивного загрязнения в науке принято считать величину превышения естественного радиационного фона природных объектов, в том числе людей и животных. Цифровое выражение её пропорционально площади и глубине поражения поверхностей, попавших под воздействие радиации.

Для определения степени радиоактивного загрязнения, возникшего в результате ядерного взрыва или иного типа воздействия на окружающую среду, используются специальные дозиметры, самым известным из которых является счётчик Гейгера .

  • тип излучения (альфа, гамма, бета);
  • концентрацию нуклидов в атмосфере
  • энергию радиоактивных лучей;
  • приближённость источника к человеку.

Зоны радиоактивного загрязнения

Классификация районов радиоактивного загрязнения опирается на степень поражения местности радиацией и на удалённость рассматриваемой территории от источника заражения. Чем больше первый показатель и меньше второй, тем выше загрязнённость местности радионуклидами.

Среди зон радиоактивного загрязнения в классификации выделяются зоны А, Б, В и Г. Эти буквы обозначают следующие степени загрязнения:

Г — чрезвычайно опасное.

Локализация указанных зон указана на данной карте радиоактивного загрязнения:

Зоны радиоактивного заражения при ядерных взрывах и авариях на АЭС

С учётом степени опасности каждой зоны местным жителям необходимо соблюдать правовой режим территорий, подвергшихся радиоактивному загрязнению.

Последствия радиоактивного загрязнения

Основными последствиями радиоактивного загрязнения окружающей среды, наступающего вследствие использования ядерного оружия и мирного атома, является изменение природного фона на планете, существовавшего с момента зарождения жизни, и смертельная угроза самой жизни.

  • генетическое перерождение флоры и фауны, ведущее к уродствам в потомстве;
  • повышенная заболеваемость у жителей поражённой зоны.
  • резкое изменение их количества в сторону уменьшения или увеличения популяции;
  • необычные размеры живых существ.
  • снижается иммунитет;
  • увеличивается склонность к заболеваниям, особенно онкологического характера.
  • обязательное ношение защитной одежды и респиратора;
  • воздержанность от нахождения в заражённой местности;
  • влажная уборка территории с применением дезодораторов;
  • тщательная очистка одежды и обуви;
  • регулярное полоскание рта кипячёной водой с питьевой содой;
  • мытьё рук с мылом перед употреблением пищи;
  • употребление только проверенных продуктов и жидкостей.

На основании всего вышесказанного каждому следует осознать, что контакт с любым источником радиоактивного загрязнения опасен, и люди должны придерживаться определённых правил, которые выработало человечество в процессе общения с различными видами радиации.

Вывоз и утилизация твердых коммунальных отходов (ТКО)

Способы утилизация ТБО: захоронение, компостирование, пиролиз и плазменная переработка

Что входит в состав ТКО? Морфологический состав твердых бытовых отходов

Как рассчитать среднюю плотность ТКО?

Чем отличаются твердые бытовые отходы и твердые коммунальные отходы?

Правила сортировки твердых бытовых отходов

Появилась новая строка в квитанции – обращение с ТКО

Что такое твердые промышленные отходы, их классификация и способы утилизации

Утилизация жидких и твердых отходов

Вывоз ТБО из многоквартирных домов – это коммунальная или жилищная услуга?

Радиоактивное заражение — один из основных поражающих факторов ядерного взрыва. Оно воз­никает как результат выпадения радиоактивных веществ из об­лака взрыва или образования их вследствие распада возникаю­щих при взрыве радиоактивных элементов.

• большая площадь поражения (десятки тысяч квадратных километров);

• продолжительность сохраняющегося поражающего действия (до месяцев);

• необходимость применения специальной аппаратуры для обнаружения радиации;

• динамичный характер действия из-за постоянного распада радиоактивных веществ.

• Продукты деления вещества, составляющего ядерное горю­чее. Процесс радиоактивного распада сопровождается продолжи­тельным g- и β-излучением с высоким уровнем энергии.

• Наведенная радиоактивность, возникающая в результате воздействия нейтронного потока ядерного взрыва на химические элементы, входящие в грунт, сооружения и различные конструк­ции. В результате образуются радиоактивные изотопы кремния, натрия, марганца, алюминия, железа и других химических элементов. Эти изотопы, как правило, обладают β- и g-радиоактивностью.

• Разделившаяся часть атомов ядерного заряда (коэффициент использования ядерного заряда непосредственно для взрыва со­ставляет не более 10%). Эта часть заряда в основном излучает альфа частицы и незначительную часть гамма лучей с низкой энергией.

Масштабы и степень радиоактивного заражения местности зависят от мощности и вида ядерного взрыва, особенности кон­струкции заряда, характера местности, где он был произведен ме­теорологических условий и времени, прошедшего с момента взрыва.

При воздушном взрыве

При наземном взрыве

• Огненный шар касается поверхности земли. Окружающая среда сильно нагревается, часть грунта испаряется и захватывает­ся огненным шаром. Образуется радиоактивное облако, высота подъема которого и скорость перемещения зависят от мощности взрыва и метеорологических условий. В среднем за 7—10 мин облако достигает своей максимальной высоты и образует грибовидную форму. Затем облако перемещается.

Основная часть вредных радиоактивных осадков, загряз­няющих местность, выпадает из облака в течение 10—20 ч после взрыва. Форма следа от радиоактивного облака зависит от направле­ния и скорости ветра.

Виды радиоактивного воздействия источников заражения ме­стности

• α-излучение — поток положительно заряженных час­тиц (ядер атомов гелия), движущийся со скоростью 20 000 м/с. Имеет малую проникающую способность. В воздухе α- ас­тица пролетает 4—8 см, в живых тканях — 0,05 мм. Полностью поглощается индивидуальными средствами защиты. α-час­тицы опасны при проникновении внутрь организма.

• β-излучение — поток отрицательно заряженных частиц (электронов), движется со скоростью 200 000—300 000 км/с. Длина пробега в воздухе достигает 20 м. На теле человека могут вызвать β-ожог. От β-излучения люди защищаются в по­мещении. Индивидуальные средства защиты также резко ослаб­ляют их воздействие.

• g-излучение — коротковолновое электромагнитное из­лучение. По своим действиям подобно рентгеновским лучам, но обладает более мощной энергией. Распространяется со скоростью света. g-излучение пронизывает воздух на сотни метров и проникают через значительные толщи материалов. Индивидуаль­ные средства защиты от g-излучения не защищают, опасны при внешнем облучении.

Степень воздействия определяется до­зой облучения, т.е. количеством g-квантов, поглощенных единицей объема облучаемой среды. За единицу дозы g-излу­чения принят рентген. Рентген — это такая доза g-облучения, при которой в 1 см 3 воздуха (при t = 0°С и давлении 760 мм ртутного столба) образуется 2,08 · 10 9 пар ионов, Р = 2,58 · 10 -4 Кл/кг. На создание такого количества ионов необ­ходимо затратить количество энергии, равное 8,8 мДж/кг (88 эрг/г).

Энергетической характеристикой взрыва ядерного заряда является так называемый тротиловый эквивалент. Выделяемая в результате ядерного взрыва энергия условно измеряется в килотоннах (кт) или мегатоннах (Мт), что означает соответствующее количество тротила, которое при подрыве выделяет столько же энергии. Например, ядерный взрыв урана-235 при полном деле­нии всех ядер эквивалентен по количеству выделившейся энер­гии взрыву 20 000 т тротила (табл. 1).

По величине тротилового эквивалента ядерные боеприпасы подразделяются на пять групп:

1) сверхмалые — до 1 кт;

2) малые — от 1 до 10 кт;

3) средние — от 10 до 100 кт;

4) крупные — от 100 кт до 1 Мт;

5) сверхкрупные — свыше 1 Мт.

Таблица 1 – Тротиловый эквивалент 1 кг массы ядерного материала

Ядерный материал Тротиловый эквивалент, кт
235 U
235 U, 239 U, 239 Pu
Дейтерид лития
Дейтерий и тритий

Таблица 2 – Классификация ядерных взрывов

Вид взрыва и область применения Основные поражающие факторы
Высотный (выше границы тропо­сферы Земли) Применение: поражение воздушных целей и создание помех радиотехническим средствам Воздушная ударная волна (при высоте менее 3) км), проникающая радиация, световое излучение (на высоте 30 — 60 км), рентгеновское излучение, газо­вый поток (разлетающиеся продукты взрыва), электромагнитный импульс (ЭМИ), ионизация атмосферы (при вы­соте более 60 км). Распределение энергии ядерного взрыва зависит от высоты взрыва
Воздушный (ниже 10 км) Применение: поражение наземных и воздушных целей Воздушная ударная волна, проникающая радиация, световое излучение, электромагнитный импульс
Наземный (поверхности земли контактный или на высоте) Применение: поражение подземных и прочных наземных целей Воздушная ударная волна, проникающая радиация, световое излучение, ЭМИ, радиоактивное заражение местности, сейсмовзрывные волны в грунте. Область взрыва — образование воронки и облака радиоактивной пыли
Надводный (на поверхности воды — контактный или на высоте) Применение: поражение надводный целей и береговых сооружений Воздушная и подводная ударные волны, световое излучение, проникающая ра­диация, ЭМИ. Радиоактивное заражение акватории и береговой зоны
Подводный Применение: поражение подводных и надводных целей, гидротехнических сооружений Подводная и воздушная и ударные вол­ны, гравитационные волны и волны сейсмического происхождения в воде. Радиоактивное заражение акватории, участков побережья и береговых объектов
Подземный с выбросом или без выброса грунта (камуфлетный взрыв) Применение: поражение особо прочных заглубленных со­оружений и создание заграждений, а также в мирных целях при со­оружении шахт, каналов, подзем­ных емкостей Мощные сейсмовзрывные волны в грун­те. Взрыв с выбросом грунта сопровож­дается также образованием воздушной ударной волны и сильным радиоактив­ным заражением местности

Большая часть внутриядерной энергии выделяется в виде ки­нетической энергии продуктов ядерной реакции деления или син­теза, нейтронного и гамма излучения. Температура и давление в зоне реакции достигают десятков миллионов градусов и миллиар­да атмосфер.


Радиоактивное заражение — загрязнение местности и находящихся на ней объектов радиоактивными веществами.

Содержание

Причины

Радиоактивное заражение происходит при:

    в результате выпадения радиоактивных веществ из облака ядерного взрыва и наведённой радиации, обусловленной образованием радиоактивных изотопов в окружающей среде под воздействием мгновенного нейтронного и гамма-излучений ядерного взрыва; поражает людей и животных главным образом в результате внешнего гамма- и (в меньшей степени) бета-облучения, а также в результате внутреннего облучения (в основном альфа-активными нуклидами) при попадании радиоизотопов в организм с воздухом, водой и пищей.
  • техногенных авариях (утечках из ядерных реакторов, утечках при перевозке и хранении радиоактивных отходов, случайных утерях промышленных и медицинских радиоисточников и т. д.) в результате рассеяния радиоактивных веществ; характер заражения местности зависит от типа аварии.

Основные загрязняющие радиоактивные компоненты

  • Йод-131 — является бета- и гамма-радиоактивным, период полураспада — около 8 суток. В связи с бета-распадом, 131 I вызывает мутации и гибель клеток, в которые он проник, а также — окружающих тканей на глубину нескольких миллиметров. Концентрируется в основном в щитовидной железе. — период полураспада — примерно 28,8 лет. В окружающую среду 90 Sr попадает преимущественно при выбросах с АЭС и ядерных взрывах. Крайне опасен. Откладывается, в основном, в костных тканях (костях). — период полураспада — 33 года. Один из главных компонентов радиоактивного загрязнения биосферы. Выброс 137 Cs в окружающую среду происходит в основном в результате аварий на предприятиях атомной энергетики и испытаний ядерного оружия. — период полураспада примерно равен 5,3 года. — период полураспада примерно равен 433 года.

Вклад указанных радиоактивных компонентов при Чернобыльской аварии составил (приблизительно):

Суммарная активность веществ, выброшенных в окружающую среду, составила, по различным оценкам, до 14·10 18 Бк (примерно 380 млн кюри).

См. также

Примечания

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 8 июня 2012.

Ссылки

  • Радиационная безопасность
  • Радиационные аварии
  • Радиационная экология

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Радиоактивное заражение" в других словарях:

Радиоактивное заражение — один из поражающих факторов ядерного оружия, приводящий к заражению местности, воздуха, военной техники и т. п. Радиактивное заражение возникает в результате выпадания радиоактивных веществ из облака ядерного взрыва или вследствие наведенной… … Морской словарь

радиоактивное заражение — radioaktyvioji užtarša statusas T sritis fizika atitikmenys: angl. radioactive contamination; radiocontamination vok. radioaktive Kontamination, f; radioaktive Verseuchung, f rus. радиоактивное заражение, n pranc. contamination radioactive, f … Fizikos terminų žodynas

радиоактивное заражение — radioaktyvioji tarša statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Bet kurios medžiagos, paviršiaus ir aplinkos bei žmogaus užterštumas ↑ radioaktyviosiomis medžiagomis. Kalbant apie žmogaus kūno užteršimą, į šią sąvoką įeina ir… … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

радиоактивное заражение — radioaktyvioji tarša statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Dirbtinės kilmės radioaktyviųjų medžiagų kiekis žmogaus kūno ir aplinkos objektų išorėje ir viduje, ore arba bet kurioje kitoje vietoje, nuo kurio galima žmogaus… … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

Радиоактивное заражение — заражение воздуха, местности, источников воды, различных сооружений, имущества и техники радиоактивными веществами в результате атомного взрыва или вследствие применения боевых радиоактивных веществ. Особенностью радиоактивных веществ,… … Краткий словарь оперативно-тактических и общевоенных терминов

радиоактивное заражение — радиоактивное загрязнение … Cловарь химических синонимов I

РАДИОАКТИВНОЕ ЗАРАЖЕНИЕ — заражение местности, воды, воздуха и пр. продуктами радиоактивного распада, вредно действующими на организм человека (вызывают лучевую болезнь); один из поражающих факторов, возникающих при взрыве ядерного боеприпаса … Большой энциклопедический политехнический словарь

Радиоактивное заражение — возникает в результате выпадания радиоактивных веществ нз облака ядерного взрыва нлн образования нх вследствие наведённон радиоактивности. Может также возникнуть в результате применения противником радиологического оружия … Словарь военных терминов

Радиоактивное загрязнение

Радиоактивное загрязнение – это загрязнение окружающей среды, а также продовольствия, пищевого сырья, кормов и различных предметов радиоактивными веществами в количествах, превышающих уровни, установленные Нормами радиационной безопасности (НРБ-99/2009) и Основными санитарными правилами обеспечения радиационной безопасности (ОСПОРБ).

Радиоактивное загрязнение может быть обусловлено различными причинами и источниками (см. схему):

  • природной радиоактивностью, включая космические излучения;
  • глобальным радиационным фоном, сформировавшимся в результате проводившихся в предыдущие годы испытаний ядерного оружия;
  • ядерными взрывами, проводимыми в мирных целях;
  • эксплуатацией ядерно и радиационно опасных объектов;
  • наличием территорий, загрязнённых радиоактивными веществами вследствие деятельности объектов атомной энергетики и промышленности и имевших место аварий на них в предыдущие годы.

В зависимости от типа радионуклидов, обуславливающих радиоактивное загрязнение (характера их распада) различают α-, β- и γ-загрязнения, но чаще всего на практике встречаются загрязнения.

Наибольшую опасность радиоактивного загрязнения окружающей среды в мирное время представляют радиационные аварии. Последствия радиационных аварий и, прежде всего, радиоактивное загрязнение окружающей среды имеют сложную зависимость от исходных параметров радиационно опасных объектов (типа объекта; мощности ядерной или радиоизотопной установки; характера радиохимического процесса и т.д.) и метеоусловий. Так, например, на предприятиях по разделению изотопов урана (обогащению природного урана) и изготовлению ядерного топлива выход радионуклидов за пределы санитарно-защитной зоны возможен при авариях, связанных с возникновением самопроизвольной цепной реакции или взрывов и пожаров на участках технологических процессов. При разгоне мощности самопроизвольной цепной реакции может быть выброс короткоживущих радионуклидов 89 Кr, 137 Xe, 134 J, 105 Rh и 137 Cs, часть из которых может оказаться за пределами санитарно-защитной зоны. При взрывах и пожарах возможен выброс гексафторида урана и двуокиси урана, в том числе за пределы санитарно-защитной зоны с плотностью загрязнения на площади до 10 км 2 от 11 до 3″ 10 9 Бк/м 2 .

Источники и масштабы радиоактивных загрязнений

Источники и масштабы радиоактивных загрязнений

Основным источником радиоактивного загрязнения окружающей среды и облучения людей за пределами санитарно-защитной зоны при авариях ядерных реакторов являются выбрасываемые из реактора газоаэрозольные смеси, содержащие как коротко, так и долгоживущие радионуклиды, образующиеся при делении ядерного горючего. Поднимаясь на высоту до 1,5 км и более и распространяясь под воздействием ветра на значительные расстояния (на десятки, сотни и тысячи км), выпадая, радионуклиды приводят к радиоактивному загрязнению значительных территорий. В ниже приводимой таблица в качестве примера представлены данные по радиоактивному загрязнению территорий России, Белоруссии и Украины, в результате аварии на Чернобыльской АЭС (1986).

Площади (км 2 ) с различными степенями радиоактивного загрязнения в результате аварии на Чернобыльской АЭС

Государство > 40 Ки/км 2 15-40 Ки/км 2 5-15 Ки/км 2 1-5 Ки/км 2
Россия 310 2130 5450 48100
Белоруссия 2150 4210 10170 29920
Украина 640 820 1990 34000

При попадании радиоактивных веществ в глубь материала происходит глубинное (объемное для жидкой фазы) радиоактивное загрязнение. При этом радиоактивные вещества могут попасть в глубь материала объекта вследствие диффузии, затекания и других механизмов, проникновения в поры, капиллярные и трещинные системы поверхности объекта. Процессы поверхностного и глубинного загрязнений, как правило, исходят одновременно, при этом возможно сочетание различных механизмов загрязнения в определенной последовательности. В сухую погоду радиоактивные загрязнения бывают в основном поверхностными. В тоже время отдельные частицы могут проникать в выемки шероховатой поверхности, обуславливая глубинные загрязнения. При загрязнении поверхности каплями, содержащими радиоактивные вещества, первоначально происходит адгезия капель к твердой поверхности, которая в дальнейшем приводит к адсорбции радионуклидов на поверхности, ионному обмену, диффузии и капиллярному смачиванию.

Определенные особенности свойственны радиоактивному загрязнению продуктов растениеводства, уровни загрязнения которых определяются биологическими особенностями растений и фазой их развития в период загрязнения. Если на этапе распространения радионуклидов имеет место поверхностное (внекорневое) загрязнение продуктов растениеводства, то в последующем оно происходит через корневые системы растений. Причем, при внекорневом пути поступления радионуклидов наиболее подвижен 137 Cs, а при корневом – 90 Sr.

Характер радиоактивного загрязнения различных поверхностей, в том числе территорий и водоемов, зависит от агрегатного состояния загрязняющих веществ, их химической природы, вида и состояния загрязняемых поверхностей, длительности контакта радиоактивных веществ с этими поверхностями. Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению. Степень опасности поверхностей, загрязнённых радиоактивными веществами, определяется радионуклидным составом загрязнений, плотностью загрязнений, характером загрязнённых поверхностей, временем, прошедшим после загрязнения и некоторыми другими характерными для соответствующего загрязнения причинами. Допустимые уровни радиоактивного загрязнения применительно к профессиональной деятельности приведены в таблице.

Допустимые уровни радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды и средств индивидуальной зашиты, част/(см 2 · мин)

Объект загрязнения Альфа-активные нуклиды* Бета-активные
отдельные прочие нуклиды
Неповрежденная кожа, спецбелье, полотенца, внутренняя поверхность лицевых частей средств индивидуальной защиты. 2 2 200***
Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви. 5 20 2000
Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования. 5 20 2000
Поверхности помещений периодического пребывания персонала и находящегося в них оборудования. 50 200 10000
Наружная поверхность дополнительных средств индивидуальной защиты, снимаемой в саншлюзах. 50 200 10000

* Для поверхности рабочих помещений и оборудования, загрязненных альфа-активными радионуклидами, нормируется снимаемое (нефиксированное) загрязнение, для остальных поверхностей – суммарное (снимаемое и неснимаемое) загрязнение.

** К отдельным относятся альфа-активные нуклиды, среднегодовая допустимая объемная активность которых в воздухе рабочих помещений ДОА 3 .

*** Установлены следующие значения допустимых уровней загрязнения кожи, спецбелья и внутренней поверхности лицевых частей средств индивидуальной защиты для отдельных радионуклидов: для Sr-90 + Y-90 — 40 част/(см 2 · мин).

Источники: Нормы радиационной безопасности (НРБ-99/2009); Владимиров В.А., Измалков В.И., Измалков А.В. Радиационная и химическая безопасность населения. –М., 2005; Радиационные аспекты Чернобыльской аварии. Труды I Всесоюзной конференции. –СПб., 1993.

Радиоактивность — совсем не новое явление, как до сих пор считают некото­рые, связывая ее со строительством АЭС и появлением ядерных боеприпасов. И радиоактивность, и сопутствующие ей ионизирующие излучения существо­вали на Земле задолго до зарождения на ней жизни.

Однако радиацию, как явление, человечество открыло всего чуть более ста лет тому на­зад.

Чернобыльская катастрофа (26 апреля 1986 г.) представляет собой событие века, которое почувствовали не только в России, на Украине, в Белоруссии, но и в других странах. Одиннадцать областей, в которых проживало 17 млн. человек, из них 2,5 млн. детей до 5-летнего возраста, оказались в зоне заражения. В райо­нах жесткого радиационного контроля — 1 млн. человек Гомельской, Могилевской, частично Брянской, Житомирской, Киевской и Черниговской облас­тей. Пострадало много людей не только от того, что они начинали ощущать на себе пагубное воздействие радиации, но и оттого, что большому количеству жителей пришлось покинуть свои дома, свои населенные пункты. Нельзя за­бывать — через Чернобыль, участвуя в работах по ликвидации, прошло не­сколько сотен тысяч человек. Для значительного количества людей это не про­шло бесследно.

Радиоактивное загрязнение (заражение) местности происходит в двух случа­ях: при взрывах ядерных боеприпасов (см. тему 8) или при аварии на объектах с ядерными энергетическими установками.

На АЭС реактор является мощным источником накопления радиоактивных веществ. В качестве ядерного топлива применяются, главным образом, двуокись урана-238, обогащенная ураном-235. Топливо размещается в тепловыделяющих элементах— ТВЭЛАХ, а точнее в металлических трубках диаметром 6 — 15 мм, длиной до 4 м.

В активной зоне реактора, где находятся ТВЭЛЫ, происходит реакция деления ядер урана-235. В результате торможения осколков деления их кинетическая энергия разогревает реактор. Это тепло затем используется для получения пара, вращения турбин и выработки электрической энергии.

Во время реакции в ТВЭЛАХ накапливаются радиоактивные продукты деления. Если в бомбе процесс деления идет мгновенно, то в ТВЭЛАХ длится несколько месяцев и более. За этот срок короткоживущие изотопы распадаются. Поэтому идет накопление радионуклидов с большим периодом полураспада.

На фоне тугоплавкости большинства радионуклидов такие как теллур, йод, цезий обладают высокой летучестью. Вот почему аварийные выбросы реак­торов всегда обогащены этими радионуклидами, из которых йод и цезий име­ют наиболее важное воздействие на организм человека и животный мир. Как видим, состав аварийного выброса продуктов деления существенно отлича­ется от состава продуктов ядерного взрыва. При ядерном взрыве преобладают радионуклиды с коротким периодом полураспада. Поэтому на следе радиоак­тивного облака происходит быстрый спад мощности дозы излучения. При ава­риях на АЭС характерно, во-первых, радиоактивное заражение атмосферы и местности легколетучими радионуклидами (йод, цезий и стронций), а, во-вто­рых, цезий и стронций обладают длительными периодами полураспада — до 30 лет. Поэтому такого резкого уменьшения мощности дозы, как это имеет место на следе ядерного взрыва, не наблюдается.

И еще одна особенность. При ядерном взрыве и образовании следа для людей главную опасность представляет внешнее облучение (90-95% от общей дозы). При аварии на АЭС с выбросом активного материала картина иная. Значительная часть продуктов деления ядерного топлива находится в парообразном и аэро­зольном состоянии. Вот почему доза внешнего облучения здесь составляет 15%, а внутреннего — 85%.

Загрязнение местности от чернобыльской катастрофы происходило в бли­жайшей зоне (80 км) в течение 4-5 суток, а в дальней зоне примерно 15 дней. Наиболее сложная и опасная радиационная обстановка сложилась в 30-км зоне от АЭС, в Припяти и Чернобыле. Из-за этого оттуда было эвакуировано все население. К началу 1990 г. во многих районах мощность дозы уменьшилась и приблизилась к фоновым значениям 12—18 мкР/ч. Припять и Чернобыль и на сегодня представляют опасность для жизни.



Дозы облучения. Лучевая болезнь

При радиоактивном загрязнении местности от ядерных взрывов или при ава­риях на ядерных энергетических установках трудно создать условия, которые бы полностью исключали облучение. Поэтому при действии на местности, заг­рязненной радиоактивными веществами, устанавливаются определенные допу­стимые дозы облучения на тот или иной промежуток времени. Все это направ­лено на то, чтобы исключить радиационные поражения людей. Давно известно, что степень лучевых (радиационных) поражений зависит от полученной дозы и времени, в течение которого человек подвергался облуче­нию. Надо понимать: не всякая доза облучения опасна для человека. Вам дела­ют флюорографию, рентген зуба, желудка, сломанной руки, вы смотрите теле­визор, летите на самолете, проводите радиоизотопное исследование — во всех этих случаях подвергаетесь дополнительному облучению. Но дозы эти малы, а потому и не опасны. Если она не превышает 50 Р, то лучевая болезнь исключает­ся. Доза в 200-300 Р, полученная за короткий промежуток времени, может вызвать тяжелые радиационные поражения. Но если эту дозу получить в тече­ние нескольких месяцев — это не приведет к заболеванию. Организм человека способен вырабатывать новые клетки, и взамен погибших при облучении появ­ляются свежие. Идет процесс восстановления. Доза облучения может быть однократной и многократной. Однократным счи­тается облучение, полученное за первые четверо суток. Если оно превышает четверо суток — считается многократным. Однократное облучение человека дозой 100 Р и более называют острым облучением. Соблюдение правил поведения и пределов допустимых доз облучения позволит исключить массовые поражения в зонах радиоактивного заражения местности. Ниже в таблице приводятся возможные последствия острого, однократного и многократного облучения человека в зависимости от дозы.

Читайте также: