Протоколы локальных сетей кратко

Обновлено: 03.05.2024

В локальных сетях основная роль в организации взаимодействия узлов принадлежит протоколу канального уровня, который ориентирован на вполне определенную топологию ЛКС. Так, самый популярный протокол этого уровня - Ethernet - рассчитан на топологию " общая шина ", когда все узлы сети параллельно подключаются к общей для них шине, а протокол Token Ring - на топологию " звезда ". При этом применяются простые структуры кабельных соединений между РС сети, а для упрощения и удешевления аппаратных и программных решений реализовано совместное использование кабелей всеми РС в режиме разделения времени. Такие простые решения, характерные для разработчиков первых ЛКС во второй половине 70-х годов ХХ века, наряду с положительными имели и отрицательные последствия, главные из которых - ограничения по производительности и надежности.

Поскольку в ЛКС с простейшей топологией ( общая шина , кольцо, звезда ) имеется только один путь передачи информации - моноканал, производительность сети ограничивается пропускной способностью этого пути, а надежность сети - надежностью пути. Поэтому по мере развития и расширения сфер применения локальных сетей с помощью специ-альных коммуникационных устройств (мостов, коммутаторов, маршрутизаторов) эти ограничения постепенно снимались. Базовые конфигурации ЛКС ( шина , кольцо) превратились в элементарные звенья, из которых формируются более сложные структуры локальных сетей, имеющие параллельные и резервные пути между узлами.

Однако внутри базовых структур локальных сетей продолжают работать все те же протоколы Ethernet и Token Ring . Объединение этих структур (сегментов) в общую, более сложную локальную сеть осуществляется с помощью дополнительного оборудования, а взаимодействие РС такой сети - с помощью других протоколов.

В развитии локальных сетей, кроме отмеченных, наметились и другие тенденции:

  • отказ от разделяемых сред передачи данных и переход к использованию активных коммутаторов, к которым РС сети присоединяются индивидуальными линиями связи;
  • появление нового режима работы в ЛКС при использовании коммутаторов - полнодуплексного (хотя в базовых структурах локальных сетей РС работают в полудуплексном режиме, т. к. сетевой адаптер станции в каждый момент времени либо передает свои данные, либо принимает другие, но не делает это одновременно). Сегодня каждая технология ЛКС приспособлена для работы как в полудуплексном, так и в полнодуплексном режимах. Стандартизация протоколов ЛКС осуществлена комитетом 802, организованном в 1980 в институте IEEE. Стандарты семейства IEEE 802 .Х охватывают только два нижних уровня модели ВОС - физический и канальный. Именно эти уровни отражают специфику локальных сетей, старшие уровни, начиная с сетевого, имеют общие черты для сетей любого класса.

В локальных сетях канальный уровень разделен на два подуровня:

  • логической передачи данных ( LLC - Logical Link Control );
  • управления доступом к среде ( МАС - Media Access Control ).

Протоколы подуровней МАС и LLC взаимно независимы , т.е. каждый протокол подуровня МАС может работать с любым протоколом подуровня LLC , и наоборот.

Подуровень МАС обеспечивает совместное использование общей передающей среды, а подуровень LLC организует передачу кадров с различным уровнем качества транспортных услуг. В современных ЛКС используются несколько протоколов подуровня МАС , реализующих различные алгоритмы доступа к разделяемой среде и определяющих специфику технологий Ethernet, Fast Ethernet, Gigabit Ethernet , Token Ring, FDDI , 100VG-AnyLAN .

Протокол LLC. Для ЛКС этот протокол обеспечивает необходимое качество транспортной службы. Он занимает положение между сетевыми протоколами и протоколами подуровня МАС . По протоколу LLC кадры передаются либо дейтаграммным способом, либо с помощью процедур с установлением соединения между взаимодействующими станциями сети и восстановлением кадров путем их повторной передачи при наличии в них искажений.

Технология Ethernet (стандарт 802.3). Это самый распространенный стандарт локальных сетей. По этому протоколу в настоящее время работают большинство ЛКС. Имеется несколько вариантов и модификаций технологии Ethernet , составляющих целое семейство технологий. Из них наиболее известными являются 10-мегабитный вариант стандарта IEEE 802 .3, а также новые высокоскоростные технологии Fast Ethernet и Gigabit Ethernet . Все эти варианты и модификации отличаются типом физической среды передачи данных .

Все виды стандартов Ethernet используют один и тот же метод доступа к передающей среде - метод случайного доступа CSMA /CD . Он применяется исключительно в сетях с общей логической шиной, которая работает в режиме коллективного доступа и служит для передачи данных между любыми двумя узлами сети. Такой метод доступа носит вероятностный характер: вероятность получения среды передачи в свое распоряжение зависит от загруженности сети. При значительной загрузке сети интенсивность коллизий возрастает и ее полезная пропускная способ-ность резко падает.

Полезная пропускная способность сети - это скорость передачи пользовательских данных, переносимых полем данных кадров. Она всегда меньше номинальной битовой скорости протокола Ethernet за счет служебной информации кадра, межкадровых интервалов и ожидания доступа к среде. Коэффициент использования сети в случае отсутствия коллизий и ожидания доступа имеет максимальное значение 0,96.

Технологией Ethernet поддерживаются 4 разных типа кадров, имеющих общий формат адресов. Распознавание типа кадров осуществляется автоматически.

Для всех стандартов Ethernet имеют место следующие характеристики и ограничения:

  • номинальная пропускная способность - 10 Мбит/с;
  • максимальное число РС в сети - 1024;
  • максимальное расстояние между узлами в сети - 2500 м;
  • максимальное число коаксиальных сегментов сети - 5;
  • максимальная длина сегмента - от 100 м (для 10Base -T) до 2000 м (для 10Base -F);
  • максимальное число повторителей между любыми станциями сети - 4.

Технология Token Ring (стандарт 802.5). Здесь используется разделяемая среда передачи данных , которая состоит из отрезков кабеля, соединяющих все РС сети в кольцо. К кольцу (общему разделяемому ресурсу) применяется детерминированный доступ , основанный на передаче станциям права на использование кольца в определенном порядке. Это право предается с помощью маркера. Маркерный метод доступа гарантирует каждой РС получение доступа к кольцу в течение времени оборота маркера. Используется приоритетная система владения маркером - от 0 (низший приоритет) до 7 (высший). Приоритет для текущего кадра определяется самой станцией, которая может захватить кольцо, если в нем нет более приоритетных кадров.

Максимальный размер кадра в стандарте 802.5 не определен. Обычно он принимается равным 4 Кбайтам для сетей 4 Мбит/с и 16 Кбайтам для сетей 16 Мбит/с.

В сетях 16 Мбит/с используется также и более эффективный алгоритм доступа к кольцу. Это алгоритм раннего освобождения маркера ( ETR ): станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита своего кадра, не дожидаясь возвращения по кольцу этого кадра и занятого маркера. В этом случае по кольцу будут передаваться одновременно кадры нескольких станций, что существенно повышает эффективность использования пропускной способности кольца. Конечно, и в этом случае в каждый данный момент ге-нерировать кадр в кольцо может только та РС, которая в этот момент владеет маркером доступа, а остальные станции будут лишь ретранслировать чужие кадры.

Технология Token Ring (технология этих сетей была разработана еще в 1984 г. фирмой IBM ) существенно сложнее технологии Ethernet . В ней заложены возможности отказоустойчивости: за счет обратной связи кольца одна из станций ( активный монитор ) непрерывно контролирует наличие маркера, время оборота маркера и кадров данных, обнаруженные ошибки в сети устраняются автоматически, например, потерянный маркер может быть восстановлен. В случае выхода из строя активного монитора выбирается новый активный монитор и процедура инициализации кольца повторяется.

Стандарт Token Ring изначально предусматривал построение связей в сети с помощью концентраторов, называемых MAU , т.е. устройствами многостанционного доступа. Концентратор может быть пассивным (соединяет порты внутренними связями так, чтобы РС, подключенные к этим портам, образовали кольцо, а также обеспечивает обход какого-либо порта, если подключенный к этому порту компьютер выключается) или активным (выполняет функции регенерации сигналов и поэтому иногда называется повторителем).

Для сетей Token Ring характерна звездно-кольцевая топология : РС подключаются к концентраторам по топологии звезды, а сами концентраторы через специальные порты Ring In (RI) и Ring Out (RO) объединяются для образования магистрального физического кольца . Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующие кадры адресату (каждый кадр снабжается полем с маршрутом прохождения колец).

Недавно технология Token Ring стараниями компании IBM получила новое развитие: предложен новый вариант этой технологии ( HSTR ), поддерживающий битовые скорости в 100 и 155 Мбит/с. При этом сохранены основные особенности технологии Token Ring 16 Мбит/с.

Технология FDDI. Это первая технология ЛКС, в которой для передачи данных используется волоконно-оптический кабель . Она появилась в 1988 г. и ее официальное название - оптоволоконный интерфейс распределенных данных ( Fiber Distributed Data Interface, FDDI ). В настоящее время в качестве физической среды, кроме волоконно-оптического кабеля, применяется неэкранированная витая пара .

Технология FDDI предназначена для использования на магистральных соединениях между сетями, для подключения к сети высокопроизводительных серверов, в корпоративных и городских сетях. Поэтому в ней обеспечена высокая скорость передачи данных (100 Мбит/с), отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все это сказалось на стоимости подключения к сети: для подключения клиентских компьютеров эта технология оказалась слишком дорогой.

Существует значительная преемственность между технологиями Token Ring и FDDI . Основные идеи технологии Token Ring восприняты и получили совершенствование и развитие в технологии FDDI , в частности, кольцевая топология и маркерный метод доступа .

В сети FDDI для передачи данных используются два оптоволоконных кольца, образующих основной и резервный пути передачи между РС. Станции сети подключаются к обоим кольцам. В нормальном режиме задействовано только основное кольцо. В случае отказа какой-либо части основного кольца оно объединяется с резервным кольцом, вновь образуя единое кольцо (это режим "свертывания" колец) с помощью концентраторов и сетевых адаптеров. Наличие процедуры "свертывания" при отказах - основной способ повышения отказоустойчивости сети. Существуют и другие процедуры для определения отказов в сети и восстановления ее работоспособности.

Основное отличие маркерного метода доступа к передающей среде, используемого в сети FDDI , от этого метода в сети Token Ring заключается в том, что в сети FDDI время удержания маркера является постоянной величиной только для синхронного трафика, который критичен к задержкам передачи кадров. Для асинхронного трафика, не критичного к небольшим задержкам передачи кадров, это время зависит от загрузки кольца: при небольшой загрузке оно увеличивается, а при большой - может уменьшаться до нуля. Таким образом, для асинхронного трафика метод доступа является адаптивным, хорошо регулирующим временные перегрузки сети. Механизм приоритетов кадров отсутствует. Считается, что достаточно разделить трафик на два класса - синхронный , который обслуживается всегда (даже при перегрузках кольца), и асинхронный, обслуживаемый при малой загрузке кольца. Станции FDDI применяют алгоритм раннего освобождения маркера, как это сделано в сети Token Ring со скоростью 16 Мбит/с.

В сети FDDI выделенный активный монитор отсутствует, все станции и концентраторы равноправны, при обнаружении отклонений от нормы они осуществляют повторную инициализацию сети и, если это не-обходимо, ее реконфигурацию .

Результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring приведены в табл.5.1.

Технологии Fast Ethernet и 100VG-AnyLAN. Обе эти технологии не являются самостоятельными стандартами и рассматриваются как развитие и дополнение технологии Ethernet , реализованное соответственно в 1995 и 1998 годах. Новые технологии Fast Ethernet (стандарт 802.3и) и 100VG-AnyLAN (стандарт 802.3z) имеют производительность 100 Мбит/с и отличаются степенью преемственности с классическим Ethernet .

В стандарте 802.3и сохранен метод случайного доступа CSMA /CD и тем самым обеспечена преемственность и согласованность сетей 10 Мбит/с и 100 Мбит/с.

В технологии 100VG-AnyLAH используется совершенно новый метод доступа - Demand Priority (DP) , приоритетный доступ по требованию. Эта технология существенно отличается от технологии Ethernet . Она поддерживает различные типы трафика в довольно узкой области и не нашла широкого распространения.

Отметим особенности технологии Fast Ethernet и ее отличия от технологии Ethernet :

TCP/IP

В прошлых лекциях мы узнали, как компьютеры объединяются в сети, разобрали понятие сетевой топологии и архитектуры, соединение компьютеров с помощью коммутаторов (или других устройств связи).

В этой лекции мы изучим некоторые наиболее часто применяемые в сетях стеки протоколов, в том числе самый распространенный на сегодня набор протоколов — стек TCP/IP.

NetBEUI

Небольшой по объемам требуемого программного обеспечения протокол, реализующий поддержку сетевого, транспортного и сеансового уровней модели OSI. Наиболее прост в настройке (фактически ее не требует), работает эффективно и быстро в небольших и средних по размерам сетях (до 200 компьютеров). Серьезными, по современным меркам, недостатками протокола NetBEUI являются ограничения при работе в сетях с большим количеством компьютеров и, самое главное, отсутствие поддержки маршрутизации — возможности сетевой адресации и функции пересылки пакетов между сетями в нем просто не реализованы.

Соответственно, его нельзя использовать в крупных сетях, объединенных маршрутизаторами, и при работе с Интернетом. Протокол NetBEUI поставлялся в составе всех операционных систем Windows вплоть до Windows 2000, однако в последних версиях его поддержка прекращена .

IPS/SPX и NWLink

Стек протоколов IPX/SPX был разработан фирмой Novell в начале 80-х гг. для своей сетевой операционной системы NetWare. Основа стека — это протоколы IPX (Internetwork Packet eXchange) и SPX (Sequenced Packet eXchange), реализующие функции сетевого и транспортного уровней модели OSI соответственно. Как и NetBEUI, протокол IPX/SPX является небольшим (его программную поддержку легко уместить на обычной дискете 1,44 Мб вместе с DOS) и быстрым, что было особенно важно в эпоху первого поколения IBM-совместимых компьютеров с малым объемом оперативной памяти (640 Кбайт).

TCP/IP

История развития стека TCP/IP (как и история Интернета) началась еще в конце 60-х гг. прошло¬го, XX века с проекта ARPANet — сети Агентства перспективных исследовательских проектов (Advanced Research Project Agency Network) Министерства обороны США.

 Основные протоколы стека TCP/IP

Рис.1 Основные протоколы стека TCP/IP

Примерно также работает и протокол TCP:

  • устанавливает соединение между компьютерами по определенным портам;
  • на компьютере-отправителе разбивает информацию на пакеты, нумерует их и с помощью протокола IP передает получателю;
  • на компьютере-получателе проверяет, все ли пакеты получены, а если пакет пропущен или поврежден, запрашивает у отправителя повторную пересылку;
  • после получения всех пакетов закрывает соединение, собирает пакеты в нужном порядке и передает полученные данные приложению более высокого уровня.

При этом ни отправителя, ни получателя надежность доставки информации или ее целостность, во¬обще говоря, не особенно беспокоят.

Очевидно, почтовые отправления в обоих этих примерах являются аналогами IP-пакетов, а почтальоны выполняют функции протокола IP.

Наконец, самым богатым по набору протоколов является прикладной уровень стека TCP/IP. Ниже в табл. 1-3 приведены самые популярные протоколы, а также зарезервированные для них порты.

Заметим, что, хотя для протоколов обычно резервируются одинаковые номера портов и для TCP, и для UDP, в таблице приведены порты для наиболее часто применяемого протокола транспортного уровня (TCP или UDP).

Несмотря на существование большого количества наборов протоколов, основным сегодня является общедоступный стек TCP/IP. Он используется практически повсеместно, начиная с небольших домашних сетей и заканчивая крупнейшей сетью — Интернетом

Протоколы прикладного уровня стека TCP/IP

Табл. 1 Протоколы прикладного уровня стека TCP/IP

Протоколы прикладного уровня стека TCP/IP

Табл. 2 Протоколы прикладного уровня стека TCP/IP

Протоколы прикладного уровня стека TCP/IP

Табл 3. Протоколы прикладного уровня стека TCP/IP

Сетевым протоколом называется набор правил, позволяющий осуществлять соединение и обмен данными между двумя и более включёнными в сеть компьютерами.Фактически разные протоколы зачастую описывают лишь разные стороны одного типа связи; взятые вместе, они образуют так называемый стек протоколов. Названия и также указывают на программное обеспечение, которым реализуется протокол

Уровни протоколов

Наиболее распространённой системой классификации сетевых протоколов является так называемая модель OSI. В соответствии с ней протоколы делятся на 7 уровней по своему назначению - от физического (формирование и распознавание электрических или других сигналов) до прикладного (API для передачи информации приложениями):

В основном используются протокол TCP/IP

Transmission Control Protocol/Internet Protocol, TCP/IP (Протокол управления передачей/Протокол Интернета)

Большинство операционных систем сетевых серверов и рабочих станций поддерживает TCP/IP, в том числе серверы NetWare, все системы Windows, UNIX, последние версии Mac OS, системы OpenMVS и z/OS компании IBM, а также OpenVMS компании DEC. Кроме того, производители сетевого оборудования создают собственное системное программное обеспечение для TCP/IP, включая средства повышения производительности устройств. Стек TCP/IP изначально применялся на UNIX-системах, а затем быстро распространился на многие другие типы сетей.

Протоколы локальных сетей

Протоколы локальных сетей

Свойства протоколов локальной сети

В основном протоколы локальных сетей имеют такие же свойства, как и Другие коммуникационные протоколы, однако некоторые из них были разработаны давно, при создании первых сетей, которые работали медленно, были ненадежными и более подверженными электромагнитным и радиопомехам. Поэтому для современных коммуникаций некоторые протоколы не вполне пригодны. К недостаткам таких протоколов относится слабая защита от ошибок или избыточный сетевой трафик. Кроме того, определенные протоколы были созданы для небольших локальных сетей и задолго до появления современных корпоративных сетей с развитыми средствами маршрутизации.

Протоколы локальных сетей должны иметь следующие основные характеристики:

  • обеспечивать надежность сетевых каналов;
  • обладать высоким быстродействием;
  • обрабатывать исходные и целевые адреса узлов;
  • соответствовать сетевым стандартам, в особенности - стандарту IEEE 802.

В основном все протоколы, рассматриваемые в этой главе, соответствуют перечисленным требованиям, однако, как вы узнаете позднее, у одних протоколов возможностей больше, чем у других.

В таблице перечислены протоколы локальных сетей и операционные системы, с которыми эти протоколы могут работать. Далее в главе указаны протоколы и системы (в частности, операционные системы серверов и хост компьютеров) будут описаны подробнее.

Таблица Протоколы локальных сетей и сетевые операционные системы

Соответствующая операционная система

Первые версии операционных систем Microsoft Windows

UNIX, Novel NetWare, современные версии операционных систем Microsoft Windows, операционные системы мэйнфреймов IBM

Операционные системы мэйнфреймов и миникомпьютеров IBM

Клиентские системы, взаимодействующие с мэйнфреймами IBM, настроенными на работу с протоколом SNA

Понятие протокола Интернет

Очевидно, что рано или поздно компьютеры, расположенные в разных точках земного шара, по мере увеличения своего количества должны были обрести некие средства общения. Такими средствами стали компьютерные сети. Сети бывают локальными и глобальными. Локальная сеть - это сеть, объединяющая компьютеры, географически расположенные на небольшом расстоянии друг от друга - например, в одном здании. Глобальные сети служат для соединения сетей и компьютеров, которых разделяют большие расстояния - в сотни и тысячи километров. Интернет относится к классу глобальных сетей.

Простое подключение одного компьютера к другому - шаг, необходимый для создания сети, но не достаточный. Чтобы начать передавать информацию, нужно убедиться, что компьютеры "понимают" друг друга. Как же компьютеры "общаются" по сети? Чтобы обеспечить эту возможность, были разработаны специальные средства, получившие название "протоколы". Протокол - это совокупность правил, в соответствии с которыми происходит передача информации через сеть. Понятие протокола применимо не только к компьютерной индустрии. Даже те, кто никогда не имел дела с Интернетом, скорее всего работали в повседневной жизни с какими-либо устройствами, функционирование которых основано на использовании протоколов. Так, обычная телефонная сеть общего пользования тоже имеет свой протокол, который позволяет аппаратам, например, устанавливать факт снятия трубки на другом конце линии или распознавать сигнал о разъединении и даже номер звонящего.

Исходя из этой естественной необходимости, миру компьютеров потребовался единый язык (то есть протокол), который был бы понятен каждому из них.

Краткое описание протоколов Интернет

TCP/IP

Над созданием протоколов, необходимых для существования глобальной сети, трудились лучшие умы человечества. Одним из них был Винтон Серф (Vinton G. Cerf). Сейчас этого человека называют "отцом Интернета". В 1997 году Президент США Билл Клинтон наградил Винтона Серфа и его коллегу Роберта Кана (Robert E. Kahn) Национальной медалью за заслуги в области технологии, отметив их вклад в становление и развитие Интернета. Ныне Винтон Серф занимает пост старшего вице-президента по Интернет-архитектуре в корпорации MCI WorldCom Inc.

В 1972 году группа разработчиков под руководством Винтона Серфа разработала протокол TCP/IP - Transmission Control Protocol/Internet Protocol (Протокол управления передачей/Протокол Интернета).

Эксперимент по разработке этого протокола проводился по заказу Министерства обороны США. Данный проект получил название ARPANet (Advanced Research Projects Agency Network - Сеть агентства важных исследовательских проектов). Очевидно, что в обстановке войны, когда необходимость в обмене информацией встает как никогда остро, возникает проблема непредсказуемости состояния пути, по которому будет передана та или иная информация - любой из узлов передачи в любой момент может быть выведен из строя противником. Поэтому главной задачей при разработке сетевого протокола являлась его "неприхотливость" - он должен был работать с любым сетевым окружением и, кроме того, обладать гибкостью в выборе маршрута при доставке информации.

Позже TCP/IP перерос свое изначальное предназначение и стал основой стремительно развивавшейся глобальной сети, ныне известной как Интернет, а также небольших сетей, использующих технологии Интернета - интранет. Стандарты TCP/IP являются открытыми и непрерывно совершенствуются.

Схема функционирования протокола TCP/IP:

Чтобы текст, составляющий содержимое Web-страниц, отображался на них определенным образом - в соответствии с замыслом создателя страницы - он размечается с помощью особых текстовых меток - тегов языка разметки гипертекста (HyperText Markup Language, HTML).

TELNET

С помощью этого протокола вы можете подключиться к удаленному компьютеру как пользователь (если наделены соответствующими правами, то есть знаете имя пользователя и пароль) и производить действия над его файлами и приложениями точно так же, как если бы работали на своем компьютере.

Telnet является протоколом эмуляции терминала. Работа с ним ведется из командной строки. Если вам нужно воспользоваться услугами этого протокола, не стоит рыскать по дебрям Интернета в поисках подходящей программы. Telnet-клиент поставляется, например, в комплекте Windows 98.

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Понятие "мысленный эксперимент" придумано специально спекулянтами - релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

По прочтении этой главы и после выполнения практических заданий вы сможете:

Ø рассказать о следующих протоколах и об их использовании в различных сетевых операционных системах:

Ø обсуждать и внедрять методы повышения производительности локальных сетей.

В начале XX века социолог Георг Герберт Мид (George Herbert Mead), изучая влияние языка на людей, пришел к выводу о том, что человеческий интеллект в первую очередь развился благодаря языку. Язык помогает нам находить смысл в окружающей реальности и истолковывать ее детали. В сетях аналогичную роль выполняют сетевые протоколы, которые позволяют разнообразным системам находить общую среду для взаимодействия.

В этой главе описываются протоколы, чаще всего используемые в локальных сетях, а также сетевые операционные системы, в которых они применяются. Вы узнаете о преимуществах и недостатках каждого протокола, благодаря чему вам станут понятны области их использования. Самый популярный протокол локальных сетей – TCP/IP – рассматривается в этой главе лишь кратко, поскольку подробнее он будет описан в главе 6. В заключении текущей главы вы познакомитесь с методами повышения производительности локальных сетей и выбора тех протоколов, которые необходимы в конкретной ситуации.

Общие свойства протоколов локальной сети

В основном протоколы локальных сетей имеют такие же свойства, как и Другие коммуникационные протоколы, однако некоторые из них были разработаны давно, при создании первых сетей, которые работали медленно, были ненадежными и более подверженными электромагнитным и радиопомехам. Поэтому для современных коммуникаций некоторые протоколы не вполне пригодны. К недостаткам таких протоколов относится слабая защита от ошибок или избыточный сетевой трафик. Кроме того, определенные протоколы были созданы для небольших локальных сетей и задолго до появления современных корпоративных сетей с развитыми средствами маршрутизации.

Протоколы локальных сетей должны иметь следующие основные характеристики:

• обеспечивать надежность сетевых каналов;

• обладать высоким быстродействием;

• обрабатывать исходные и целевые адреса узлов;

• соответствовать сетевым стандартам, в особенности – стандарту IEEE 802.

В основном все протоколы, рассматриваемые в этой главе, соответствуют перечисленным требованиям, однако, как вы узнаете позднее, у одних протоколов возможностей больше, чем у других.

В табл. 5.1 перечислены протоколы локальных сетей и операционные системы, с которыми эти протоколы могут работать. Далее в главе указаны протоколы и системы (в частности, операционные системы серверов и хост компьютеров) будут описаны подробнее.

4 Таблица 5.1. Протоколы локальных сетей и сетевые операционные системы

Протокол Соответствующая операционная система
IPX/SPX Novell NetWare
NetBEUI Первые версии операционных систем Microsoft Windows
AppleTalk Apple Macintosh
TCP/IP UNIX, Novel NetWare, современные версии операционных систем Microsoft Windows, операционные системы мэйнфреймов IBM
SNA Операционные системы мэйнфреймов и миникомпьютеров IBM
DLC Клиентские системы, взаимодействующие с мэйнфреймами IBM, настроенными на работу с протоколом SNA

Достоинства и недостатки

Достоинством протокола IPX (несмотря на его солидный возраст) по сравнению с другими ранними протоколами является возможность его маршрутизации, т. е. то, что с его помощью можно передавать данные по многим подсетям внутри предприятия. Недостатком протокола является дополнительный трафик, возникающий из-за того, что активные рабочие станции используют часто генерируемые широковещательные пакеты для подтверждения своего присутствия в сети. При наличии множества серверов NetWare и нескольких сотен клиентов применяемые протоколом IPX широковещательные пакеты типа "я здесь" могут создавать значительный сетевой трафик (рис. 5.2).

Назначение протокола SPX

Протокол SPX, дополняющий IPX, обеспечивает передачу данных прикладных программ с большей надежностью, чем IPX. Протокол IPX работает несколько быстрее своего "компаньона", однако в нем используются службы без установления соединения, работающие на подуровне LLC Канального уровня. Это означает, что IPX гарантирует доставку фрейма в пункт назначения с меньшей вероятностью. В протоколе SPX применяются службы с установлением соединения, что повышает надежность передачи данных. Чаще всего при упоминаниях обоих протоколов (IPX и SPX) используют сокращение IPX/SPX.

Протокол SPX широко применяется для передачи по сети содержимого Я данных. Кроме того, на основе этого протокола работают утилита удаленной консоли и службы печати фирмы Novell. Удаленная консоль позволяет рабочей станции администратора видеть ту же информацию, которая отображается на консоли файл-сервера NetWare, благодаря чему пользователь может удаленно выполнять системные команды сервера, не находясь за его клавиатурой.

Область применения NetBEUI

Протокол NetBEUI разрабатывался в то время, когда компьютерные сети в первую очередь означали локальные сети для относительно небольшого количества компьютеров (от нескольких до двух сотен). В процессе проектирования не учитывались особенности корпоративных сетей с маршрутизацией пакетов. По этой причине протокол NetBEUI нельзя маршрутизировать и лучше всего его применять в небольших локальных сетях под управлением относительно старых операционных систем компаний Microsoft и IBM:

· Microsoft Windows 3.1 или 3.11;

· Microsoft Windows 95;

· Microsoft Windows 98;

· Microsoft LAN Manager;

· Microsoft LAN Manager for UNIX;

· Microsoft Windows NT 3.51 или 4.0

При переводе сети с Windows NT Server на Windows 2000 или Windows Server 2003 в первую очередь настройте серверы и рабочие станции, использующие NetBEUI, на работу с TCP/IP. Хотя системы Windows 2000 и поддерживают NetBEUI, компания Microsoft не рекомендует применять этот протокол более поздних операционных системах. Однако в том случае, если сеть небольшая (менее 50 клиентов) и не требуется доступ к Интернету, то протокол NetBEUI может оказаться более эффективным, чем TCP/IP.

Недостатки NetBEUI

Службы AppleTalk

В состав протокола AppleTalk входят три базовые службы:

· удаленный доступ к сетевым файлам с использованием программ средств AppleShare File Server (в сочетании с протоколом AppleTalk Filing Protocol);

· службы печати на основе программных средств AppleShare Print Server (которые используют протоколы Name Binding Protocol и Printer Access Protocol);

· файловые службы на базе программ AppleShare PC для DOS- и Windows систем.

Сетевая адресация AppleTalk

Адресация в сетях AppleTalk, использующих протокол ELAP и TLAP, осуществляется с помощью протокола AppleTalk Address Resolution Protocol, AARP, который позволяет распознавать физические или МАС-адреса сетевых адаптеров, благодаря чему эти адреса можно вставлять во фреймы AppleTalk. (Если компьютер Macintosh настроен на работу с AppleTalk и IP, протокол AARP используется для распознавания физических и IP-адресов.)

Достоинства TCP/IP

Среди многих достоинств стека TCP/IP можно упомянуть следующие:

· он применяется во многих сетях и в Интернете, что делает его международным языком сетевых коммуникаций;

· имеется множество сетевых устройств, предназначенных для работы с этим протоколом;

· многие современные компьютерные операционные системы используют TCP/IP в качестве основного протокола;

· для этого протокола существует много диагностических средств и анализаторов;

· многие специалисты по сетям знакомы с протоколом и умеют его использовать.

Проблема каналов связи

Наличие подключения к Интернету или веб-службам требует развертывания Протокола TCP/IP, при этом службы FTP могут использоваться для передачи файлов. Также протокол TCP/IP лучше всего применять для связи с со временными мэйнфреймами и компьютерами UNIX, поскольку для подключения к мэйнфрейму или к приложению, работающему на компьютере UNIX, может потребоваться эмуляция терминала по протоколу Telnet. Для подключения к мэйнфреймам IBM и мини-компьютерам (если они работа ют в среде SNA) можно также использовать протокол DLC. И, наконец, протокол DNA по-прежнему может понадобиться в сети, где имеются старые компьютеры DEC (например, DEC VAX).

Во многих случаях для разных сетевых приложений нужно использовать различные протоколы локальных сетей. Иногда в современных сетях в любых сочетаниях применяются протоколы TCP/IP, NetBEUI, IPX/SPX, SM и даже DNA. Как вы уже знаете, развернутые протоколы связаны с типом используемых операционных систем. Также на их выбор влияет наличие связи с глобальными сетями (например, для выхода в Интернет нужен протокол TCP/IP, который может также потребоваться для связи локальных сетей между собой через глобальную сеть). Если, скажем, TCP/IP используется серверами в одной локальной сети, а рабочие станции из другой сетидолжны обращаться к этим серверам, то обе локальные сети и связывающая их глобальная сеть должны обеспечивать передачу протокола TCP/IP.

Протоколы локальных сетей

По прочтении этой главы и после выполнения практических заданий вы сможете:

Ø рассказать о следующих протоколах и об их использовании в различных сетевых операционных системах:

Ø обсуждать и внедрять методы повышения производительности локальных сетей.

В начале XX века социолог Георг Герберт Мид (George Herbert Mead), изучая влияние языка на людей, пришел к выводу о том, что человеческий интеллект в первую очередь развился благодаря языку. Язык помогает нам находить смысл в окружающей реальности и истолковывать ее детали. В сетях аналогичную роль выполняют сетевые протоколы, которые позволяют разнообразным системам находить общую среду для взаимодействия.

В этой главе описываются протоколы, чаще всего используемые в локальных сетях, а также сетевые операционные системы, в которых они применяются. Вы узнаете о преимуществах и недостатках каждого протокола, благодаря чему вам станут понятны области их использования. Самый популярный протокол локальных сетей – TCP/IP – рассматривается в этой главе лишь кратко, поскольку подробнее он будет описан в главе 6. В заключении текущей главы вы познакомитесь с методами повышения производительности локальных сетей и выбора тех протоколов, которые необходимы в конкретной ситуации.

Протоколы локальных сетей и их применение в сетевых операционных системах

Сетевые протоколы напоминают местный язык или диалект: они обеспечивают в сетях беспрепятственный обмен информацией между подключенными устройствами. Эти протоколы имеют значение и для простых электрических сигналов, передаваемых по сетевому коммуникационному кабелю. Я протоколов сетевые коммуникации были бы просто невозможны. Для та чтобы два компьютера могли свободно общаться друг с другом, они должны использовать один и тот же протокол подобно тому, как два человека вынуждены общаться на одном языке.I

В локальной сети несколько протоколов могут работать индивидуально ив некоторых сочетаниях. Сетевые устройства (например, маршрутизаторы) часто настраиваются на автоматическое распознавание и конфигурирование различных протоколов (в зависимости от операционной системы, используемой в маршрутизаторе). Например, в одной локальной сети Ethernet одинпротокол может использоваться для подключения к мэйнфрейму, другой для работы с серверами Novell NetWare, а третий – для серверов Windows (например, под управлением системы Windows NT Server) (рис. 5.1).

Можно установить мост-маршрутизатор, который будет автоматически распознавать каждый протокол и конфигурироваться соответствующим образом, в результате чего для одних протоколов он будет выступать в роли маршрутизатора, а для других – в роли моста. Наличие нескольких протоколов в сети эффективно тем, что такая сеть сможет одновременно выполнять множество функций (например, обеспечивать доступ к Интернета также к мэйнфреймам и серверам). Недостатком такого подхода является что некоторые протоколы будут работать в режиме широковещания, то есть, будут периодически посылать пакеты для идентификации сетевых устройств, генерируя значительный избыточный трафик.

Некоторые сетевые протоколы получили широкое распространение благодаря тому, что они связаны с конкретными сетевыми операционными системами (например, с Windows-системами, мэйнфреймами IBM, сервера UNIX и Novell NetWare). Имеет смысл изучать протоколы применительно тем операционным системам, где они применяются. В этом случае становится понятным, для чего конкретный протокол нужен в сети определенного типа. Кроме того, в этом случае вам легче будет понять, как один протокол (например, NetBEUI) можно заменить другими протоколами (такими как TCP/IP). Однако перед тем как изучать протоколы и их взаимосвязь операционными системами, важно узнать об общих свойствах протокол локальных сетей.

Локальная сеть (локальная вычислительная сеть или ЛВС) представляет собой среду взаимодействия нескольких компьютеров между собой. Цель взаимодействия — передача данных. Локальные сети, как правило, покрывают небольшие пространства (дом, офис, предприятие) — чем и оправдывают своё название. ЛВС может иметь как один, так и несколько уровней. Для построения многоуровневой локальной сети применяют специальное сетевое оборудование: маршрутизаторы, коммутаторы. Существует несколько способов объединения компьютеров и сетевого оборудования в единую компьютерную сеть: проводное (витая пара), оптическое (оптоволоконный кабель) и беспроводное (Wi-Fi, Bluetooth) соединения.

Топология локальной сети

Первое к чему нужно приступать при изучении основ функционирования компьютерных сетей, это топология (структура) локальной сети. Существует три основных вида топологии: шина, кольцо и звезда.

Топология локальной сети – линейная шина

Линейная шина

Все компьютеры подключены к единому кабелю с заглушками по краям (терминаторами). Заглушки необходимы для предотвращения отражения сигнала. Принцип работы шины заключается в следующем: один из компьютеров посылает сигнал всем участникам локальной сети, а другие анализируют сигнал и если он предназначен им, то обрабатывают его. При таком взаимодействии, каждый из компьютеров проверяет наличие сигнала в шине перед отправкой данных, что исключает возникновения коллизий. Минус данной топологии — низкая производительность, к тому же, при повреждении шины нарушается нормальное функционирование локальной сети и часть компьютеров не в состоянии обрабатывать либо посылать сигналы.

Топология локальной сети – кольцо

Кольцо

В данной топологии каждый из компьютеров соединен только с двумя участниками сети. Принцип функционирования такой ЛВС заключается в том, что один из компьютеров принимает информацию от предыдущего и отправляет её следующему выступая в роли повторителя сигнала, либо обрабатывает данные если они предназначались ему. Локальная сеть, построенная по кольцевому принципу более производительна в сравнении с линейной шиной и может объединять до 1000 компьютеров, но, если где-то возникает обрыв сеть полностью перестает функционировать.

Топология локальной сети – звезда

Звезда

Топология звезда, является оптимальной структурой для построения ЛВС. Принцип работы такой сети заключается во взаимодействии нескольких компьютеров между собой по средствам центрального коммутирующего устройства (коммутатор или свитч). Топология звезда позволяет создавать высоконагруженные масштабируемые сети, в которых центральное устройство может выступать, как отдельная единица в составе многоуровневой ЛВС. Единственный минус в том, что при выходе из строя центрального коммутирующего устройства рушится вся сеть или её часть. Плюсом является то, что, если один из компьютеров перестаёт функционировать это никак не сказывается на работоспособности всей локальной сети.

Что такое MAC-адрес, IP-адрес и Маска подсети?

Прежде чем познакомиться с основными принципами взаимодействия сетевых устройств, необходимо подробно разобрать, что такое IP-адрес, MAC-адрес и Маска подсети.

MAC-адрес, IP-адрес и Маска подсети

MAC-адрес, IP-адрес и Маска подсети

MAC-адрес, IP-адрес и Маска подсети

Маска подсети – специальная запись, которая позволяет по IP-адресу вычислять адрес подсети и IP-адрес компьютера в данной сети. Пример записи маски подсети: 255.255.255.0. О том, как происходит вычисление IP-адресов мы рассмотрим чуть позже.

Что такое ARP протокол или как происходит взаимодействие устройств ЛВС?

ARP протокол или как происходит взаимодействие устройств ЛВС

Сетевой коммутатор и маршрутизатор (роутер)

Для согласования работы сетевых устройств используется специальное сетевое оборудование — коммутаторы и маршрутизаторы. Исходя из рассмотренного выше, важно понять простую истину — коммутаторы работают с MAC-адресами, а маршрутизаторы (или роутеры) с IP-адресами.


Коммутатор содержит таблицу MAC-адресов устройств локальной сети непосредственно подключенных к его портам. Изначально таблица пуста и начинает заполняться при старте работы коммутатора, происходит сопоставление MAC-адресов устройств и портов, к которым они подключены. Это необходимо для того, чтобы коммутатор напрямую пересылал информационные пакеты тем участникам локальной сени, которым они предназначены, а не опрашивал все устройства ЛВС.

Таблица маршрута IPv4

Маршрутизатор также имеет таблицу, в которую заносит IP-адреса устройств на основе анализа локальной сети. Роутер может самостоятельно раздавать IP-адреса устройствам ЛВС благодаря протоколу динамического конфигурирования узла сети (DHCP). Таблица маршрутизации позволяет роутеру вычислять наикратчайшие маршруты для отправки информационных пакетов между различными узлами ЛВС. Данные узлы (компьютеры) могут находиться в любом сегменте многоуровневой сети невзирая на архитектуру той или иной подсети. К примеру, маршрутизатор связывает локальную сеть с глобальной (интернет) через сеть провайдера.

Пример маршрутизации

Допустим, в таблице маршрутизации есть такая запись:

СетьМаскаИнтерфейс
192.168.1.0255.255.255.0192.168.1.96

Роутер получает пакет, предназначенный для хоста с IP-адресом 192.168.1.96, после чего начинает обход таблицы маршрутизации и обнаруживает, что при наложении маски подсети 255.255.255.0 на IP-адрес 192.168.1.96 вычисляется сеть с IP-адресом 192.168.1.0. Пройдя строку до конца роутер находит IP-адрес интерфейса 192.168.1.96, на который и отправляет полученный пакет.

Как происходит вычисление IP-адреса сети и компьютера?

Для вычисления IP-адреса сети используется маска подсети. Начнем с того, что привычная для наших глаз запись IP-адреса представлена в десятеричном формате (192.168.1.96). На самом деле, сетевое устройство данный IP-адрес видит, как набор нолей и единиц, то есть в двоичной системе исчисления (11000000.10101000.00000001.01100000). Так же выглядит и маска подсети (255.255.255.0 -> 11111111.11111111.11111111.00000000).

IP-адрес назначения192.168.1.9611000000 10101000 00000001 01100000
Маска подсети255.255.255.011111111 11111111 11111111 00000000
IP-адрес сети192.168.1.011000000 10101000 00000001 00000000

Что получается? Какой бы у нас не был IP-адрес назначения (к примеру 192.168.1.96 или 192.168.1.54) при наложении на него маски подсети (255.255.255.0) будет получаться один и тот же результат (192.168.1.0). Происходит это из-за поразрядного (побитного) сравнения записей (1х1 = 1, 1х0 = 0, 0х1 = 0). При этом IP-адрес компьютера берётся из последней группы цифр IP-адреса назначения. Также стоит учитывать, что из общего диапазона адресов, в рамках одной подсети, доступно будет на два адреса меньше, потому что 192.168.1.0 – является IP-адресом самой сети, а 192.168.1.255 – служебным широковещательным адресом для передачи общих пакетов запросов.

Что такое NAT?

NAT (Network Address Translation) — механизм преобразование сетевых адресов, является частью TCP/IP-протокола.

Принцип NAT заключается в следующем: при отправке пакета из ЛВС маршрутизатор подменяет IP-адрес локальной машины на свой собственный, а при получении производит обратную замену и отправляет данные на тот компьютер, которому они и предназначались.

Читайте также: