Откуда взялись атомы кратко

Обновлено: 02.07.2024

Давным давно, немногом более 13 млрд лет назад, в совсем юной Вселенной, что-то около 400000 лет после рождения, охлаждающаяся (из-за расширения пространства) ранняя Вселенная достигла температур (немногим более тысячи градусов), при которых стали возможны процессы захвата отрицательно заряженных электронов массивными протонами, вовлекая электроны в "орбитальное" движение (по квантовым орбиталям) в электростатическом поле положительно заряженного протона. Это была эпоха формирования первых нейтральных атомов Водорода во Вселенной.

Структура Вселенной - пустоты и стены. Плюс постоянное движение, сгущение водородных облаков, звёздообразование. Читать дальше

Очевидно, что для всего нужна причина, или иными словами какое-то начало. Так же очевидно, что до "самого первого начала", не было - ничего. И вот теперь вопрос к материалистам: ПО КАКИМ ФИЗИЧЕСКИМ ЗАКОНАМ, В АБСОЛЮТНОЙ ПУСТОТЕ - МОЖЕТ ВОЗНИКНУТЬ ЧАСТИЦА ИЛИ ВОЛНА??))) Возможно ли, возникновение и существование - энергии или материи - из абсолютного ничего - без восприн. Читать далее

Например, всего один элемент (кислород) составляет половину земной коры. Три элемента (кислород, кремний и алюминий) в сумме составляют уже 85 %, а если к ним добавить железо, кальний, натрий, калий, магний и титан, то получим уже 99,5 % земной коры. На долю же нескольких десятков остальных элементов приходится всего 0,5 %. Самый редкий на Земле металл — рений, да и золота с платиной не так уж много, не зря они такие дорогие. А вот другой пример: атомов железа в земной коре примерно в тысячу раз больше, чем атомов меди, атомов меди в тысячу раз больше, чем атомов серебра, а серебра в сто раз больше, чем рения.

Первичная Вселенная состояла из водорода (примерно 75 %) и гелия с примесью небольшого количества следующего по массе элемента — лития (в его ядре три протона). Этот состав не изменялся примерно 500 тысяч лет. Вселенная продолжала расширяться, остывать и становилась все более разреженной. Когда температура снизилась до +3000 'С. электроны получили возможность соединяться с ядрами, что привело к образованию устойчивых атомов водорода и гелия.

Когда запас водородного горючего подходит к концу, постепенно прекращается и синтез гелия, а вместе с ним затухает мощное излучение. Силы гравитации вновь сжимают звезду, температура повышается и становится возможным слияние лруг с другом уже ядер гелия с образованием ядер углерода (6 протонов) и кислорода (8 протонов в ядре).

К счастью (для нас, а не для синтеза новых элементов), такие звезды вспыхивали пока лишь в далеких галактиках.

Это привычное вещество собирательно называется барионной материей, а это всего-навсего научное название всего, что состоит из протонов и нейтронов. Если мы составим список элементов, составляющих большую часть массы, то сразу увидим старых приятелей:

• Водород (75 %) — 1 протон.

• Гелий (23 %) — 2 протона, 2 нейтрона.

• Кислород (1 %) — 8 протонов, 8 нейтронов.

• Углерод (0,5 %) — 6 протонов, 6 нейтронов.

• Неон (0,13 %) — 10 протонов, 10 нейтронов. Учить этот список наизусть вам не нужно, но в нем прослеживается очевидная закономерность. У всех самых популярных элементов, за исключением водорода, количество нейтронов равно количеству протонов. Существует даже разновидность водорода под названием дейтерий, у которого один протон и один нейтрон, и хотя его распространенность составляет всего около одной стотысячной обычного водорода, он все равно сыграет в нашей истории очень важную роль.

Если мы чего-то стоим как профессионалы, то способны не просто учинить краткий обзор содержимого Вселенной, но и объяснить, откуда берутся эти цифры, и сделать все необходимое, чтобы перевести часы на одну секунду после Большого взрыва. До сих пор мы делали скачки, достаточно длинные по сравнению, скажем, с тем временем, которое мы способны удерживать внимание читателей, но чем дальше мы углубляемся, тем короче становятся наши прыжки (как и положено). Представьте себе, что с первой до десятой секунды жизни Вселенной произошло столько же важных физических событий, сколько с миллиарда до десяти миллиардов лет ее биографии.

В возрасте одной секунды Вселенная была раскалена до 15 миллиардов градусов по Цельсию, примерно в тысячу раз выше, чем температура в центре Солнца. И все равно в это время фотоны уже остыли настолько, что не могли создать протон или нейтрон, даже если бы захотели. Но между протоном и нейтроном не такая уж большая разница, как принято думать, — примерно как между капитаном Кровавая Борода и бестрепетным морским офицером, с которым он сражается. Превратить протон в нейтрон проще простого — достаточно пульнуть по нему антинейтрино. Если хотите, можно сделать и наоборот. Возьмите нейтрон и нейтрино — вуаля, получаются протон и электрон, главное — чтобы заряд сохранялся.

Легко сказать, трудно сделать: при нормальных обстоятельствах, стоит нам запустить нейтрино в протон, нейтрон, капитана Кровавая Борода или даже в свинцовую проволоку длиной в один световой год, в результате, скорее всего, не получится ровным счетом ничего. На самом деле нейтрино не любят взаимодействовать с другими частицами, если их не заставить, а когда они это делают, то при помощи слабого взаимодействия. Как скажет вам любой лингвист, слабое взаимодействие — оно и есть слабое.

Однако до одной секунды после Большого взрыва (п. Б. в.) все было такое плотное, а нейтрино — такие энергичные, что нейтрино и антинейтрино постоянно бомбардировали протоны и нейтроны соответственно и превращали их один в другой, отчего соблюдалось приблизительное равновесие. Условно приблизительное, так как протоны легче, нейтронов, а поскольку природа предпочитает держать энергию на самом низком уровне, протонов было намного больше, чем нейтронов.

После одной секунды п. Б. в. расстояния между частицами стали слишком велики, и энергии нейтрино стали слишком низки, уже не было никакой речи ни о каких протонах и нейтронах, и нейтрино просто жили себе припеваючи, и больше о них никто ничего не слышал. Но не попадайтесь на эту удочку — подобно фотонам после комбинации, они по-прежнему среди нас. Просто мы о них как-то забываем. А зря, поскольку они сделали на ранних этапах одну очень важную вещь — обеспечили приблизительный баланс протонов и нейтронов. Когда нейтрино ушли на покой, протоны, нейтроны и фотоны затеяли сложный танец слияния и разделения, в ходе которого:

1) нейтроны, протоны и дейтерий налетали друг на друга, создавая таким образом все более и более тяжелые элементы;

2) с другой стороны, высокоэнергичные фотоны разбивали атомные ядра.

Оставшиеся холостыми, нейтроны в конце концов махали рукой на свои холостяцкие принципы[116] и распадались на протоны.

Все это время Вселенная становилась все более и более диффузной и остывала, отчего вышеописанный процесс приходилось завершать в крайней спешке. Когда танец начался, нейтронов было почти столько же, сколько и протонов, так что если бы атомы формировались очень быстро, то все нейтроны нашли бы себе пару, и самым распространенным элементом был бы гелий. Гелий — самый простой атом, в котором есть нейтроны, у него равное количество нейтронов и протонов, и он очень и очень стабилен. Не правда ли, вы догадывались, что все эти разговоры о «балансе>> — отнюдь не праздная болтовня?

Нам повезло: протоны и нейтроны не стали сохранять баланс, поскольку иначе Вселенная была бы очень скучной. Почему? А вы попробуйте сделать из гелия что-нибудь стоящее. А мы вам пальто подержим.

Так вот, после большого взрыва у нас в распоряжении оказался не только гелий. Главная причина, по которой это произошло, заключалась в том, что весь процесс занял несколько минут, за которые многие нейтроны решили из карьерных соображений превратиться в протоны. Они распались и ни о чем не жалели. Поэтому нейтронов для танцев оказалось маловато, и оставшимся протонам пришлось танцевать шерочка с машерочкой. Вот почему у нас так много водорода.

Мы вас со всей определенностью заверили, что на каждый миллиард фотонов приходится только один барион. Измерить количество фотонов мы можем очень точно, поскольку просто подсчитываем всю энергию, которая исходит из фонового космического излучения. Подсчитать количество барионов, с другой стороны, труднее. Для начала рассмотрим гелий. Элементы нельзя создать разом, надо делать это по частям. Это значит, что, для того чтобы сделать гелий, надо сначала добавить протон к нейтрону и получить дейтерий — это крепыш-братец водорода. Получившиеся атомы дейтерия (так называемые дейтероны — ведь у них нет электронов) можно сливать с протонами, нейтронами, а также с другими единомышленниками-дейтерионами. Процесс идет некоторое время, а затем все остывает, и все протоны и нейтроны оказываются скованы в стабильные элементы.

А что если мы решим взять да и сделать вселенную, которая была бы почти совсем идентична нашей, но поместим в нее изначально вдвое больше барионов? В первые несколько минут наша вселенная в пробирке будет заселена даже гуще, чем наша. Будет очень быстро создаваться дейтерий, а он, в свою очередь, начнет врезаться в протоны и другие дейтероны, выводя их из строя. Если проследить развитие событий до конца, окажется, что чем больше в искусственной вселенной барионов, тем меньше дейтерия (незначительно) и тем больше гелия (немного).

Если немного поиграть с начальными условиями, вся химия окажется совсем другой, а мы, измерив, сколько у нас дейтерия, сможем подсчитать все барионы во вселенной и к тому же сделать точные оценки количества остальных элементов. Так что все, что нам нужно, — это узнать, насколько распространен дейтерий, а тогда мы сможем вычислить, сколько у нас всего бариониой материи. Если рассмотреть самые старые звезды и измерить отношение количества дейтерия к количеству обычного водорода, окажется, что на каждую сотню тысяч атомов водорода приходится примерно один атом дейтерия.

Если мы достанем тот листок бумаги, на котором проделывали все вычисления, то увидим, что ?вобычного вещества (то есть не темной материи) составляет около 5 %. Если это число смутно вам знакомо, то дело в том, что оно совпадает с той массой, которую мы получаем, когда суммируем массу, наблюдаемую в звездах и газе.

Вот это да! Мы одним махом показали, что наша модель возникновения элементов если и не правильная, то по крайней мере невероятно аккуратная и подтверждает те данные, которые Мы получили непосредственно от галактик. Мы точно знаем, что происходило через одну секунду п. Б. в. и сколько во Вселенной обычной материи. Эта модель даже немного (но ощутимо) зависит от удивительных вещей — например, от того, сколько существует разных типов нейтрино. Их три, и наши вычисления это подтверждают. Благодаря той же модели мы можем точно предсказать количество микроэлементов вроде лития или гелия-3, каждый из которых наблюдается именно в том количестве, которое соответствует нашей модели.

Но не надо стараться прыгнуть выше головы. Если после большого взрыва были созданы только водород, гелий, дейтерий и несколько других очень легких элементов, откуда взялось все остальное? Откуда взялась основа всего живого — углерод с кислородом? Ведь крошку Билли уж точно нельзя было бы сделать из вещества, получившегося в результате Большого взрыва. Все более тяжелые элементы — углерод, кислород, золото и все прочее — создается в звездах. Когда самые массивные звезды вспыхивают и превращаются в сверхновые (о чем мы говорили в главе 6), эти тяжелые элементы так и выстреливают во Вселенную — и в конце концов составляют всякую всячину вроде нас с вами, пиратов и крошки Билли.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Глава III. Атомы и частицы

Глава III. Атомы и частицы 1. Атомная структура материи Хорошо известно, что древние мыслители неоднократно высказывали предположение о дискретной природе материи. Они пришли к этому, исходя из философской идеи о том, что невозможно осознать бесконечную делимость материи

Глава 1 АТОМЫ В ДВИЖЕНИИ

Глава 1 АТОМЫ В ДВИЖЕНИИ § 1. Введение§ 2. Вещество состоит из атомов§ 3. Атомные процессы§ 4. Химические реакции§ 1. ВведениеЭтот двухгодичный курс физики рассчитан на то, что вы, читатель, собираетесь стать физиком. Положим, это не так уж обязательно, но какой преподаватель

IV. Откуда же берутся эти силы?

IV. Откуда же берутся эти силы? Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис — не более чем конвульсивное размахивание

Свет и атомы

Свет и атомы Почему атомы светятся? Свет рождается в веществе. Таково происхождение и видимого света, и инфракрасного, и ультрафиолетового, и рентгеновских излучений, и гамма-излучений. Естественно, что, изучая свойства света, можно в конечном счете узнать, при каких

Почему атомы светятся?

Почему атомы светятся? Свет рождается в веществе. Таково происхождение и видимого света, и инфракрасного, и ультрафиолетового, и рентгеновских излучений, и гамма-излучений. Естественно, что, изучая свойства света, можно в конечном счете узнать, при каких условиях атомы

Почему атомы устойчивы?

Почему атомы устойчивы? По законам механики электрон в атоме необходимо должен обращаться вокруг ядра. Иначе он упадет на ядро, с атомом произойдет какая-то катастрофа. В самом деле, массивное положительно заряженное ядро притягивает отрицательно заряженный электрон,

Как атомы обмениваются энергией?

Как атомы обмениваются энергией? В первом опыте были взяты пары ртути. Энергия снарядов-электронов увеличивалась постепенно. Оказалось, что при малых энергиях электронов никакого возбуждения атомов ртути не наступало. Электроны ударяли в них, но отскакивали с той же

Атомы, физика и этика

Атомы, физика и этика Самая первая перестройка фундамента физики произошла после двух веков царствования порядка, открытого Ньютоном. Главную роль в той перестройке сыграл Джеймс Максвелл, и эту роль трудно переоценить именно потому, что он ввел первое новое

Глава вторая. Атомы

Глава вторая. Атомы Физические явления, происходящие в окружающем нас мире, представляют бесконечную цепь загадок. Вода, охлаждаясь, превращается в твердый, бесцветный лед, нагреваясь же, становится невидимым водяным паром. Если ее слегка подкислить серной кислотой и

Атомы

Одни и те же атомы, но разные кристаллы

Одни и те же атомы, но разные кристаллы Черный матовый мягкий графит, которым мы пишем, и блестящий прозрачный, твердый, режущий стекло алмаз построены из одних и тех же атомов – атомов углерода. Почему же так различны свойства этих двух одинаковых по составу

Атомы

Атомы Уже Демокрит и Лесипс в V в. до н.э. говорили об атомах. Римский поэт Лукреций (98—55 до н.э.) в De rerum natura, объясняя теорию Демокрита, говорил, что воздух, земля и все другие вещи мира сделаны из набора частиц или корпускул — атомов, находящихся в безостановочном и очень

IV. Откуда же берутся эти силы?

IV. Откуда же берутся эти силы? Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис – не более чем конвульсивное размахивание

III. Откуда берутся атомы?


Ядра атомов химических элементов состоят из протонов и нейтронов. Самый легкий элемент — водород с ядром всего из одного протона, а во Вселенной есть больше сотни других элементов, и их ядра состоят из большего числа протонов и нейтронов. Нуклеосинтез — это образование ядер элементов, более тяжелых, чем водород. Как это происходило в самом начале Вселенной и где это происходит сейчас?

Как образовались атомные ядра?

Атомное ядро состоит из заряженных протонов (p+) и нейтронов (n0). Самое простое ядро — водород — это один протон (p+). Ядро гелия, или альфа-частица, включает два протона и два нейтрона (2p+ + 2n0). Ядро углерода, из которого состоим мы (12С), содержит по шесть протонов и нейтронов (6p+ + 6n0). Но есть и другие изотопы углерода, например 14С — в нем шесть протонов и восемь нейтронов (6p+ + 8n0).

Химические свойства элемента определяются его зарядом, числом протонов. Если один из нейтронов в ядре разваливается на протон и электрон (этот процесс называется бета-распадом), происходит трансмутация, и один элемент превращается в другой, хотя масса ядра не меняется.

В 1940-е годы многие ученые уже были убеждены, что Вселенная расширяется. Это означало, что когда-то, в первые минуты своего существования, она была гораздо меньше, чем сейчас, а вещество было очень плотным и горячим и состояло только из свободных протонов и нейтронов, то есть не содержало атомных ядер тяжелее водорода (p+). Но в нынешней Вселенной известно больше сотни элементов, включая и те, из которых сделаны мы. В какой-то момент должен был происходить нуклеосинтез — образование более тяжелых ядер из нейтронов и протонов.

Первая модель нуклеосинтеза была опубликована в 1948 году. Ее авторами были Георгий Гамов, задолго до этого эмигрировавший из СССР, и его аспирант Ральф Альфер. Их статья знаменита еще и тем, что Гамов ради шутки вписал в соавторы космолога Ханса Бете — получился список авторов, похожий на αβγ. Они предположили, что ядра всех элементов образуются путем нейтронного захвата. Протоны и нейтроны в молодой Вселенной объединялись между собой, присоединяли новые нейтроны и таким образом создали сразу всю таблицу Менделеева: теоретически из любого ядра можно получить следующее при помощи захвата одного или нескольких нейтронов и последующего бета-распада.

Довольно скоро стало понятно, что схема Альфера и Гамова не работает. Модели Большого взрыва позволяют легко рассчитать скорость реакций в зависимости от времени, температуры и плотности вещества. И оказалось, что первичный нуклеосинтез должен был закончиться очень быстро, в течение первых пятнадцати минут. Это происходит потому, что чем ниже плотность, тем меньше реакций. Чтобы произошла реакция, две частицы должны столкнуться между собой. Темп столкновений падает с уменьшением плотности и температуры, потому что температура — это скорость частиц. Кроме того, свободные нейтроны долго не живут. Если нейтрон не успел войти в состав ядра, он становится протоном. Практически все расчеты показывают, что первичный нуклеосинтез не мог зайти дальше лития-7 (3p+ + 4n0).

В 1957 году, всего через девять лет после теории αβγ, была опубликована фундаментальная работа Бербидж, Бербиджа, Фаулера и Хойла (который, кстати, не верил в теорию Большого взрыва). В ней была сформулирована уже практически современная теория нуклеосинтеза, несравненно более сложная. Сейчас, благодаря новым моделям и многочисленным наблюдениям, мы хорошо представляем себе, откуда во Вселенной взялись тяжелые химические элементы.

Как проходит нуклеосинтез?

Первичный нуклеосинтез закончился через несколько минут после образования Вселенной. К этому моменту 75% массы видимого вещества приходилось на водород и примерно 25% — на гелий. Еще во Вселенной было совсем крошечное — меньше сотой доли процента — количество дейтерия (2H), гелия-3 (3He) и лития (7Li). Практически все более тяжелые элементы образовались в результате ядерных реакций в звездах. И хотя из этих элементов построено все, что мы видим глазами, во вселенских масштабах их даже сейчас, через 13,8 миллиарда лет, не очень много — около 2% атомного вещества.

Другой путь нуклеосинтеза требует большей температуры и давления, поэтому он идет в более массивных звездах, хотя бы в два раза массивнее Солнца. Он называется CNO-циклом, и суть его в том, что ядро гелия получается из четырех протонов при их последовательных захватах ядрами различных изотопов углерода, азота и кислорода. Для нас существенно, что для запуска CNO-цикла в среде уже должен присутствовать углерод.

Углерод образуется в звездах в результате тройного альфа-процесса. Сперва две альфа-частицы (ядра гелия) сливаются, образуя ядро бериллия-8, а затем присоединяют еще одну альфа-частицу и превращаются в углерод. Интересно, что ядро бериллия-8 очень неустойчиво. Поскольку первоначальное усложнение ядерного состава происходит путем добавления альфа-частиц, невозможность накопить много ядер бериллия-8 могла бы стать причиной того, что элементы тяжелее гелия просто не образовывались бы.

Но они образуются. Происходит это потому, что у ядер бериллия-8 и углерода-12 очень близкий ядерный резонанс, который позволяет тройному альфа-процессу осуществляться с довольно большой вероятностью. Этот резонанс, близкое совпадение двух чисел, не продиктован никакими физическими законами. Просто наша Вселенная так устроена, что они близки между собой.

Захват альфа-частиц, присоединение ядер гелия, позволяет возникнуть и элементам тяжелее углерода, в первую очередь кислороду, неону, магнию, кремнию, вплоть до никеля-56 (28p+ + 28n0), который далее распадается, образуя железо. Ядра тяжелее железа и никеля в термоядерных реакциях не образуются.

Важный источник тяжелых элементов — сверхновые типа Iа, которые предположительно связаны с термоядерными взрывами на белых карликах в двойных системах. Дело в том, что у белого карлика есть критическая масса — 1,4 массы Солнца. Карлик докритической массы удерживается от коллапса давлением вырожденного газа. Но если каким-то образом превысить эту массу, белый карлик теряет устойчивость, начинает сжиматься, разогреваться — получается очень большая термоядерная бомба. Происходит взрыв сверхновой, который сопровождается очень быстрым термоядерным синтезом. Основным его продуктом становится железо — финальная точка в термоядерном синтезе. Сверхновые этого типа считаются одним из главных источников железа в нашей Вселенной.

В термоядерных реакциях не образуются ядра тяжелее железа. Кроме того, в результате термоядерного синтеза не возникают нечетные элементы: в альфа-частице содержатся два протона, и она увеличивает атомный номер сразу на два. Откуда в таком случае берутся нечетные элементы?

Где происходит синтез тяжелых ядер?

Чтобы увеличить атомный номер на одну единицу, с ядром должно произойти то, что предполагали Альфер и Гамов: оно должно захватить один нейтрон и испустить электрон. Это происходит в два этапа. Сперва ядро захватывает нейтрон, масса увеличивается на единицу, но заряд не увеличивается — химически элемент остается прежним. Затем, если образовавшееся ядро неустойчиво, оно испытывает бета-распад, нейтрон превращается в протон, а заряд вырастает.

Чем больше заряд ядра, тем больше нейтронов требуется, чтобы компенсировать кулоновское отталкивание положительно заряженных протонов. Легкие ядра могут быть стабильными при равном количестве протонов и нейтронов, а тяжелые требуют уже существенно большего числа нейтронов. Например, более или менее устойчивый изотоп урана, уран-238, содержит 92 протона и целых 146 нейтронов. Чтобы синтезировать такие ядра, нейтронов должно быть много. До сих пор нет четко установившегося консенсуса, где это может происходить. Где происходит термоядерный синтез, хорошо известно — в звездах. S-процесс — в больших звездах. А вот где может идти r-процесс, мы наверняка не знаем, хотя возможных объяснений немного.

Первый вариант — это вспышки сверхновых. Когда в конце эволюции массивной звезды начинается сжатие железного ядра, происходит нейтронизация вещества: электроны вдавливаются в протоны, и образуется много нейтронов.

Второй вариант — слияние нейтронных звезд. Представьте, что две нейтронные звезды крутятся друг вокруг друга, излучают гравитационные волны и сближаются. При их слиянии мы снова получим шар, содержащий большое количество нейтронов. Расчеты показывают, что там возможно образование элементов r-процесса, то есть финала Периодической таблицы.

Еще недавно многие сказали бы, что слияние нейтронных звезд — это экзотика. Но в 2017 году впервые зафиксировали импульс всплеска гравитационных волн, совпавший с коротким гамма-всплеском. Мы и раньше предполагали, что короткие гамма-всплески сопровождают слияние нейтронных звезд, но теперь у нас появились убедительные наблюдательные данные. Поскольку по гравитационным волнам можно оценить массы слившихся объектов, мы уверены, что это были именно две нейтронные звезды. Гамма-всплесков наблюдается множество, и теперь, когда два нетривиальных наблюдательных результата совпали в одной точке пространства и времени, у нас появилось мощное указание на то, что слияния нейтронных звезд — это не гипотетический процесс. Они реально происходят и, значит, могут создавать условия для запуска r-процесса.

Где образуются литий, бериллий и бор?

Еще один источник нуклеосинтеза — космические лучи, поток атомных ядер, разогнанных до околосветовых скоростей. Энергии этих частиц огромны, до 1020 электронвольт, и даже больше. Когда ядра сталкиваются между собой на больших скоростях, происходят так называемые реакции скалывания: атомы просто разваливаются на мелкие кусочки. Самое важное последствие реакций скалывания с точки зрения глобального нуклеосинтеза — образование лития, бериллия и бора.

Кривая распространенности химических элементов во Вселенной выглядит так: сверху водород с гелием, а затем, далеко внизу, все остальные элементы. Четных элементов больше, чем нечетных, элементов железного пика некоторый избыток, но чем меньше атомный номер, тем больше таких атомов. Самая заметная аномалия этой кривой — глубокая яма на месте лития, бериллия и бора. Их существенно меньше, чем можно было бы ожидать, исходя из атомной массы.

Дело в том, что в первичном нуклеосинтезе они не образовывались. Разве что литий в мизерных количествах — порядка 10-10 относительно водорода. Бериллия и бора было еще меньше. В звездах эти элементы не образуются, а сгорают в протон-протонном цикле.

Долгое время астрофизики плохо представляли, откуда они берутся. Сейчас предполагается, что они продукт реакций в космических лучах, реакций скалывания. И это подтверждается наблюдениями. В целом состав ядер в космических лучах не отличается от обычной космической пропорции, за единственным исключением: лития, бериллия и бора в них существенно больше, чем где-либо еще. Литий в наших аккумуляторах, бор в борной кислоте, бериллий в изумрудах, — скорее всего, они возникли в межзвездном и околозвездном пространстве.

Из чего состояли древние звезды?

Самые первые звезды состояли, конечно, только из водорода и гелия. Но непонятно, как их можно было бы наблюдать. Теоретически мы видим объекты на больших красных смещениях, то есть можем узнать, какой была наша Вселенная в первые миллиарды лет своего существования. Но на таком расстоянии даже галактики различимы с большим трудом, не то что отдельные звезды. Есть надежда, что это удастся сделать при помощи телескопа Джеймса Уэбба, но пока таких инструментов нет.

Что нам понятно? Такие звезды из водорода и гелия существовали, и у нас есть веские основания полагать, что они были очень массивными, может быть, в тысячи раз более массивными, чем Солнце. В силу большой массы время их жизни было очень небольшим. Они давно взорвались, как сверхновые, и загрязнили Вселенную первыми тяжелыми элементами, и это загрязнение происходило очень эффективно.

У большинства даже самых старых звезд в нашей Галактике, в частности у звезд шаровых скоплений, содержание тяжелых элементов уступает солнечному всего в сто раз.

В нашей Галактике есть несколько звезд с более низким содержанием тяжелых элементов, но это уникальные экземпляры. Рекордные звезды содержат в сто тысяч раз меньше тяжелых элементов, но это две-три звезды на нашу довольно большую галактическую окрестность.

Звезд, состоящих из водорода и гелия, в Млечном Пути нет: они не дожили до нашей эпохи. Благодаря им впоследствии могли появиться и небольшие звезды вроде нашего Солнца, и Земля, и все атомы, из которых мы состоим.

Что еще неизвестно о нуклеосинтезе?

По большому счету, теория нуклеосинтеза уже сложилась. Во всей картине остался один большой вопрос, а именно локализация r-процесса. Ключевое открытие — открытие гравитационных волн — уже сделано, но дьявол кроется в деталях. Теория хорошо описывает внешний облик очень большого числа звезд, но не всех. Существуют звезды с довольно неожиданным поверхностным составом, например звезда Пшибыльского. Сообщалось о наблюдениях в ее спектре очень тяжелых элементов, включая трансурановый америций, который больше нигде не видели. Есть большая группа так называемых химически пекулярных звезд, обладающих повышенным поверхностным содержанием элементов типа бария, ртути, марганца, редких земель. Их существование указывает, что нам недостаточно понять образование элементов — важно разобраться, как они перераспределяются внутри звезд.

Если у какой-то звезды аномальный состав поверхности, это можно объяснить тем, что на нее что-то упало. Например, есть звезды с повышенным содержанием лития. Это странно: литий должен сгорать в термоядерных реакциях. Как это объяснить? На звезду могла упасть планета! Мы знаем, что существуют горячие юпитеры — планеты, вплотную приблизившиеся к своим звездам. Такая планета может оказаться слишком близко, упасть и обогатить атмосферу звезды литием, который не сгорел, потому что в атмосфере не идут термоядерные реакции. Вопросы еще есть, но на них, скорее всего, можно ответить без привлечения нуклеосинтеза.

Дмитрий Вибе.Доктор физико-математических наук, заведующий отделом физики и эволюции звезд Института астрономии РАН


Дорогие друзья! Желаете всегда быть в курсе последних событий во Вселенной? Подпишитесь на рассылку оповещений о новых статьях, нажав на кнопку с колокольчиком в правом нижнем углу экрана ➤ ➤ ➤

Читайте также: