История создания гидравлического двигателя кратко

Обновлено: 04.07.2024

машина, преобразующая энергию потока жидкости в механическую энергию ведомого звена (вала, штока). По принципу действия различают Г. д., в которых ведомое звено перемещается вследствие изменения момента количества движения потока жидкости (Гидротурбина, Водяное колесо), и объёмные Г. д., действующие от гидростатического напора в результате наполнения жидкостью рабочих камер и перемещения вытеснителей (под вытеснителем понимается рабочий орган, непосредственно совершающий работу в результате действия на него давления жидкости, выполненный в виде поршня, пластины, зуба шестерни и т.п.). В Г. д. первого типа ведомое звено совершает только вращательное движение. В объёмных Г. д. ведомое звено может совершать как ограниченное возвратно-поступательное или возвратно-поворотное движение (гидроцилиндры), так и неограниченное вращательное движение (гидромоторы). Гидроцилиндры подразделяются на силовые и моментные; в силовом гидроцилиндре (рис. 1) шток, связанный с поршнем, совершает прямолинейное возвратно-поступательное движение относительно цилиндра: в моментном гидроцилиндре, называемом также квадрантом (рис. 2), вал совершает возвратно-поворотное движение относительно корпуса на угол, меньший 360°.

Гидромоторы разделяются на поршневые, в которых рабочие камеры неподвижны, а вытеснители совершают только возвратно-поступательное движение, и роторные. В роторных гидромоторах рабочие камеры перемещаются, а вытеснители совершают вращательное движение, которое может сочетаться с возвратно-поступательное (кулисные гидромоторы). В зависимости от формы вытеснителей кулисные гидромоторы подразделяют на пластинчатые и роторно-поршневые (радиальные и аксиальные). Наиболее распространены аксиальные роторно-поршневые (рис. 3), в которых давление рабочей жидкости на поршень создаёт на наклонной шайбе реактивное усилие, приводящее во вращение вал. Объёмные Г. д. применяют в гидроприводе машин. Давление рабочей жидкости достигает 35 Мн/м 2 (350 кгс/см 2 ). Гидромоторы изготовляют мощностью до 3000 квт.

Рис. 3. Аксиальный роторно-поршневой гидромотор: 1 — корпус; 2 — вал; 3 — ротор; 4 — поршень; 5 — распределительный диск; 6 — наклонная шайба; 7 — толкатель.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Содержание

1. Введение
2. История развития гидромеханики
3. Гидравлический двигатель
4. Гидромотор
5. Гидроцилиндр
6. Поворотный гидродвигатель
7. Гидравлический привод
8. Заключение
9. Вопросы
10. Источники

Прикрепленные файлы: 1 файл

реферат (2).docx

Содержание

    1. Введение
    2. История развития гидромеханики
    3. Гидравлический двигатель
    4. Гидромотор
    5. Гидроцилиндр
    6. Поворотный гидродвигатель
    7. Гидравлический привод
    8. Заключение
    9. Вопросы
    10. Источники

Введение

Техническим приложением гидромеханики является наука гидравлика.

Слово гидравлика произошло от греческого hydro (вода) и aulos (трубка). В настоящее время это понятие значительно расширилось: гидравлика занимается изучением любой жидкости, движущейся не только в трубах.

В начале своего развития гидравлика представляла собой теоретическую науку — математическую механику жидкости или гидромеханику. Используя сложный математический аппарат и принимая некоторые допущения в отношении физических свойств жидкости, эта наука рассматривает движение жидкости по упрощенным схемам. Но методы математической гидромеханики не дали возможности решить целый ряд практических задач. В связи с этим стала развиваться практическая наука — техническая механика жидкости, решающая инженерные задачи методом упрощения гидравлических явлений, но с введением в теоретические уравнения поправочных коэффициентов, полученных в результате эксперимента.

В настоящее время приходится сталкиваться с задачами, при решении которых одновременно используются методы теоретической и технической гидромеханики. Поэтому различие в методах этих двух ветвей одной и той же науки постепенно исчезает. Современная гидравлика представляет собой самостоятельную, сформировавшуюся отрасль знаний, находящую применение в различных областях техники.

История развития гидромеханики

Дальнейшее развитие гидравлика получила в XIV—XVII веках. Широко известны труды гениального итальянского ученого Леонардо да Винчи (1452—1519). Он изучал механизм движения жидкости в реках и каналах, процесс истечения жидкости, занимался постройкой гидротехнических сооружений, установил принцип работы гидравлического пресса, изобрел центробежный насос и многое другое. К этому же периоду относятся работы голландского инженера С. Стевина (1548— 1620); он определил давление жидкости на плоскость и описал гидравлический парадокс.

Итальянский ученый Г. Галилей (1564—1642) систематизировал основные положения гидростатики и впервые указал на зависимость гидравлических сопротивлений от скорости потока жидкости и его плотности, а его соотечественник Э. Торричелли (1608—1647) вывел формулу для расчета скорости истечения жидкости. Важное значение для гидравлики имели работы французского физика и математика Б. Паскаля (1623—1662), открывшего закон о передаче внешнего давления, носящий его имя.

Особо следует отметить работы выдающегося английского физика, математика, механика и астронома И. Ньютона (1643—1727), который впервые ввел понятие вязкости жидкости и установил зависимость между напряжением трения, градиентом скорости и свойствами жидкости; он же заложил основы теории гидродинамического подобия.

Исследования в этот период носили в основном теоретический характер и не были связаны друг с другом. Лишь во второй половине XVIII века труды крупнейших ученых-механиков и математиков, и прежде всего Д. Бернулли и Л. Эйлера, послужили теоретической основой гидромеханики и гидравлики.

Великий русский ученый М. В. Ломоносов (1711—1765), занимаясь общими проблемами физики, уделял большое внимание вопросам движения жидкостей и газов и практическому применению гидравлики, а открытый им закон сохранения массы и энергии лежит в основе современной гидравлики. М. В. Ломоносов поддерживал научные контакты с Л. Эйлером в период работы швейцарского ученого в Петербургской Академии наук.

Вторая половина XVIII и начало XIX века характеризуются ростом промышленного производства и бурным развитием техники. Для решения различного рода инженерных задач в области гидравлики требуются новые научные методы, учитывающие свойства реальной жидкости. Примерно в это время начинается второй период развития гидравлики — превращение ее в прикладную науку.

Л. Прандтль (1875—1953), разработавший теорию турбулентных потоков.

В начале XX века в гидравлике стали формироваться различные направления специальных исследований. Характерной особенностью этого периода является проведение коллективных исследований и создание научных школ.

Талантливый . инженер и ученый В. Г. Шухов (1853—1939) разработал методы расчета нефтепроводов и изобрел оригинальное устройство для подъема нефти — эрлифт. Ведущую роль в разработке теории и расчета гидравлических сооружений сыграли работы Н. Н. Павловского (1884—1937).

С первых дней создания Советского государства наступил новый этап в развитии гидравлики в нашей стране. Разработка и осуществление плана ГОЭЛРО, проектирование и строительство крупных гидроэлектростанций потребовали решения целого ряда прикладных задач в области гидравлики, динамики русловых процессов и др. Были созданы специализированные научно-исследовательские и проектные институты, лаборатории при кафедрах некоторых ведущих высших учебных заведений. Ученые проводили исследования и изыскательские работы, необходимые для осуществления проектов строительства каналов им. Москвы, Беломоро-Балтийского, Волго-Донского им. В. И. Ленина, а также сооружения мощных гидроэлектростанций на Волге, Днепре, крупнейших реках Сибири.

Базой развития гидроэнергетики явилось создание в стране крупного энергетического гидромашиностроения, что позволило планомерно увеличивать единичную мощность гидроагрегатов на строящихся ГЭС. Так, на Волжской ГЭС им. XXII съезда КПСС мощность одной турбины составляет 115 МВт, на Братской— 250 МВт, на Красноярской — 500 МВт, на Саяно-Шушенской — 640 МВт. Не менее значительны достижения гидромашиностроения по разработке насосов высокого давления с большой подачей, объемного гидропривода и гидродинамических передач.

Гидравлический двигатель

Гидравлический двигатель, машина, преобразующая энергию потока жидкости в механическую энергию ведомого звена (вала, штока). По принципу действия различают гидравлические двигатели, в которых ведомое звено перемещается вследствие изменения момента количества движения потока жидкости (гидротурбина, водяное колесо), и объёмные гидравлические двигатели, действующие от гидростатического напора в результате наполнения жидкостью рабочих камер и перемещения вытеснителей (под вытеснителем понимается рабочий орган, непосредственно совершающий работу в результате действия на него давления жидкости, выполненный в виде поршня, пластины, зуба шестерни и т.п.). В гидравлических двигателях первого типа ведомое звено совершает только вращательное движение. В объёмных гидравлических двигателях ведомое звено может совершать как ограниченное возвратно-поступательное или возвратно-поворотное движение (гидроцилиндры), так и неограниченное вращательное движение (гидромоторы). Гидроцилиндры подразделяются на силовые и моментные; в силовом гидроцилиндре шток, связанный с поршнем, совершает прямолинейное возвратно-поступательное движение относительно цилиндра: в моментном гидроцилиндре, называемом также квадрантом, вал совершает возвратно-поворотное движение относительно корпуса на угол, меньший 360°.

Гидромоторы разделяются на поршневые, в которых рабочие камеры неподвижны, а вытеснители совершают только возвратно-поступательное движение, и роторные. В роторных гидромоторах рабочие камеры перемещаются, а вытеснители совершают вращательное движение, которое может сочетаться с возвратно-поступательное (кулисные гидромоторы). В зависимости от формы вытеснителей кулисные гидромоторы подразделяют на пластинчатые и роторно-поршневые (радиальные и аксиальные). Наиболее распространены аксиальные роторно-поршневые, в которых давление рабочей жидкости на поршень создаёт на наклонной шайбе реактивное усилие, приводящее во вращение вал. Объёмные гидравлические двигатели применяют в гидроприводе машин. Давление рабочей жидкости достигает 35 Мн/м2 (350 кгс/см2). Гидромоторы изготовляют мощностью до 3000 квт.

Гидравлические двигатели преобразуют гидравлическое давление в силу, способную генерировать большую мощность. Это тип привода, который преобразует давление движущейся гидравлической жидкости в крутящий момент и энергию вращения.

Гидравлические двигатели являются важным компонентом в области гидравлики, специальной формы передачи энергии, которая использует энергию, передаваемую при перемещении жидкостей под давлением, и преобразует ее в механическую энергию.

Передача энергии — это общий термин, обозначающий область преобразования энергии в полезные повседневные формы. Тремя основными ветвями передачи энергии являются электрическая энергия, механическая мощность и гидравлическая энергия.

Гидравлическую энергию можно далее разделить на область гидравлики и область пневматики (перевод энергии сжатого газа в механическую энергию).

Поскольку их часто путают в повседневном языке, важно различать гидравлические двигатели и гидроагрегаты.

С технической точки зрения замкнутая механическая система, которая использует жидкость для производства гидравлической энергии, известна как гидравлический силовой агрегат или гидравлический силовой агрегат.

Эти блоки или блоки обычно включают резервуар, насос, систему трубопроводов / трубопроводов, клапаны и приводы (включая как цилиндры, так и двигатели).

Гидравлические двигатели

Однако нередко можно услышать, что гидравлический двигатель описывается как состоящий из этих компонентов — резервуара, насоса и т. д. Однако более точнее описывать гидравлический двигатель как часть общей гидравлической системы питания, которая работает в синхронизировать с этими другими компонентами.

Гидравлические двигатели — это тип исполнительного компонента в общей гидравлической энергетической системе — компонент, ответственный за фактическое преобразование гидравлической энергии в механическую.

История гидравлических двигателей

С точки зрения разработки гидравлических двигателей середина промышленной революции стала заметным поворотным моментом. В том же году английский промышленник Уильям Армстронг начал разработку более эффективных приложений гидравлической энергии после того, как заметил неэффективность использования водяного колеса во время рыбалки.

Одним из его первых изобретений был роторный двигатель с водяной тягой. К сожалению, это изобретение не привлекло большого внимания, но оно предоставило раннюю модель поворотного привода, основанного на гидравлической энергии.

Как работает гидравлическая энергия

Одним из следствий этого является то, что сила, приложенная к одной точке в ограниченной жидкости, может довольно эффективно передаваться в другую точку той же жидкости.

Эта реальность составляет основу механической энергии, которую могут производить гидравлические системы. Для более полного объяснения того, как работает гидравлическая мощность, обратитесь к нашей статье о гидравлических насосах.

Как работают гидравлические двигатели

Схема работы гидравлического двигателя

Поскольку гидравлические двигатели представляют собой довольно простые машины, состоящие из вращающихся механизмов, они специально преобразуют гидравлическую энергию в механическую энергию вращения.

В целом, гидравлический силовой агрегат перекачивает жидкость (обычно это масло) через небольшой пневматический двигатель из резервуара и отправляет ее в двигатель, регулируя температуру жидкости. Масло перекачивается из резервуара через впускной клапан к выпускному клапану через ряд шестерен, поворотные лопатки или цилиндры, в зависимости от типа гидравлического двигателя.

Жидкость под давлением создает механическую энергию и движение, физически толкая двигатель, заставляя вращающиеся компоненты вращаться очень быстро и передавая энергию механизму, к которому подключен двигатель.

Как правило, не каждый компонент вращения напрямую связан с производством механической энергии; например, в типичном мотор-редукторе только одна из двух шестерен связана с валом двигателя и отвечает за его вращение.

Этот тип работы прямо контрастирует с электрическими двигателями, в которых электромагнитные силы, создаваемые протекающим электрическим током, являются ответом на вращение вала двигателя.

Типы гидравлических двигателей

Существует три основных типа гидравлических двигателей: шестеренчатые, лопастные и поршневые. Каждый идентифицируется по конструкции вращающегося внутри компонента. В совокупности различные типы гидравлических двигателей оптимальны для широкого диапазона конкретных применений, условий или использования.

Как устроен гидравлический двигатель

Гидравлические двигатели и их различные применения все еще совершенствуются. Одним из примеров является разработка гибридных гидравлических автомобилей, которые разрабатываются как альтернатива гибридным газовым / электрическим автомобилям. Транспортные средства с гибридной гидравликой особенно эффективны при рекуперации энергии при торможении или замедлении.

Преимущества гидравлических систем и двигателей

Использование гидравлических систем в целом дает несколько преимуществ в общей области передачи энергии. Некоторые из этих преимуществ включают эффективность, простоту, универсальность, относительную безопасность и т. Д. Эти и другие преимущества более подробно рассматриваются в нашей статье о гидравлических насосах.

В частности, гидравлические двигатели имеют два очевидных преимущества:

  • Мощность. Гидравлические двигатели могут производить гораздо большую мощность, чем другие двигатели того же размера, и по этой причине используются для больших нагрузок, чем электродвигатели.
  • Компактность. Когда ограниченное пространство является проблемой, используются небольшие гидравлические двигатели. Небольшие гидравлические двигатели имеют малую длину хода; они могут быть меньше дюйма.

Основным недостатком использования гидравлических двигателей является неэффективное использование фактического источника энергии. Энергетические системы с гидравлическими двигателями могут потреблять большое количество гидравлической жидкости.

Что нужно знать о гидравлических двигателях

Например, машинам с гидравлическим приводом на строительных площадках нередко требуется 100 или более галлонов гидравлического масла для работы.

Применение гидравлических двигателей

Гидравлические системы и их использование широко используются в самых разных областях, включая строительство, сельскохозяйственные поля, промышленные поля, области транспорта (например, автомобилестроение, авиакосмическая промышленность), различные морские рабочие среды и т. д.

Гидравлические двигатели обычно используются в машинах, требующих высокого давления такие действия, как воздушные суда для подъема закрылков, тяжелые строительные машины, такие как экскаваторы-погрузчики или промышленные подъемные краны, или для питания автоматизированных производственных систем.

Гидравлические двигатели также используются в траншеекопателях, автомобилях, строительном оборудовании, приводах для морских лебедок , процессах утилизации и утилизации отходов, колесных двигателях для военной техники, самоходных кранах, экскаваторах, лесном хозяйстве, сельском хозяйстве,конвейерные и шнековые системы, дноуглубительные работы и промышленная обработка.

Уход за гидравлическими двигателями

Несмотря на кажущуюся простоту гидравлических систем, инженеры и производители должны учитывать определенные переменные, чтобы создать эффективное и безопасное устройство. Жидкость, используемая в двигателе или системе, должна, прежде всего, быть хорошей смазкой.

Он также должен быть химически стабильным и совместимым с металлами внутри двигателя. Насос, резервуар для жидкости и предохранительные клапаны должны иметь соответствующую мощность, производительность или прочность, чтобы двигатель работал на оптимальном уровне.

Проблемы с гидравлическими двигателями часто могут быть связаны с плохим обслуживанием, использованием неподходящей жидкости в двигателе или неправильным использованием самого двигателя. Некоторые нередкие причины отказа мотора:

  • внутренняя утечка (из трубопроводов, питающих двигатель и т. д.)
  • плохая центровка двигателя (например, несоосность вала двигателя во время установки)
  • использование грязной гидравлической жидкости.

Никогда не следует откладывать диагностику и устранение первопричины отказа двигателя, когда бы он ни происходил.

Важно помнить, что гидравлические двигатели предназначены для работы в определенных пределах, которые нельзя превышать. Эти ограничения в основном включают крутящий момент, давление, скорость, температуру и нагрузку.

В качестве одного примера, работа гидравлического двигателя при чрезмерных температурах приводит к разжижению гидравлической жидкости, отрицательно влияет на внутреннюю смазку и снижает общий КПД двигателя. Пребывание в рабочих пределах двигателя предотвратит ненужные и ненужные неисправности.

С точки зрения безопасности относительная простота гидравлических систем и компонентов (по сравнению с электрическими или механическими аналогами) не означает, что с ними не следует обращаться осторожно.

Основная мера безопасности при взаимодействии с гидравлическими системами — по возможности избегать физического контакта. Активное давление жидкости в гидравлической системе может представлять опасность, даже если гидравлическая машина не работает активно.

Виды и типы гидравлических двигателей

  • Двигатели с гидроприводом используются в системах с цилиндрами, насосами, клапанами и другими компонентами.
  • Гидравлические барабанные двигатели представляют собой передовую и высокоэффективную систему привода конвейера, в которой двигатель, трансмиссия и подшипники полностью заключены в корпус барабана.
  • Двигатели гидравлических насосов используются в системах с цилиндрами, насосами, клапанами и другими компонентами.
  • Роликовые гидравлические двигатели , разновидность орбитальных гидравлических двигателей, имеют ролики, которые имеют гидродинамическую опору для минимизации трения, что обеспечивает максимальную долговечность и высокую производительность при высоком давлении.
  • Роторные гидравлические двигатели , разновидность орбитальных гидравлических двигателей, особенно подходят для длительных рабочих циклов при среднем давлении. Роторные двигатели приводятся в действие лопастями, которые закреплены и установлены непосредственно на статоре.

Гидравлический мотор термины

Аэрация — воздух в гидравлической жидкости.

Аккумулятор — емкость, в которой хранится жидкость под давлением. Аккумуляторы, обычно поршневые, баллонные и диафрагменные, используются в качестве источника энергии или для поглощения гидравлических ударов.

Цилиндр — устройство, преобразующее гидравлическую энергию в линейное механическое движение и силу.

Смещение — количество жидкости, которое проходит через насос, двигатель или цилиндр за период времени или во время одного события срабатывания, такого как оборот или ход.

Коэффициент сухого трения — степень трения, возникающего в результате контакта между движущимися поверхностями вала двигателя.

Фильтр — Устройство в гидравлической системе, которое используется для удаления загрязнений из масла.

Гидравлическая система питания — система, которая использует давление жидкости для передачи и управления мощностью.

Шестерня — зубчатое колесо, используемое для передачи механической энергии.

Гидравлика — наука о передаче силы через среду содержащейся жидкости.

Гидравлический тестер — устройство, которое используется для поиска и устранения неисправностей и проверки компонентов гидравлической системы.

Линия — трубка, труба или шланг, который действует как проводник гидравлической жидкости.

Масло — скользкая и вязкая жидкость, не смешиваемая с водой. Масло часто используется в гидравлических системах, потому что его нельзя сжимать.

Поршень — цилиндрический кусок металла, который движется вверх и вниз внутри цилиндра гидравлического двигателя.

Нажимная пластина — пластина на стороне шестеренчатого или лопастного насоса или картриджа двигателя, которая используется для сведения к минимуму зазора и проскальзывания.

Насос — механическое устройство, которое перекачивает жидкости и газы всасыванием или давлением.

Сопротивление — в гидравлике состояние, вызванное препятствием или ограничением на пути потока.

Вал — Устройство, которое механически прикреплено к рабочей нагрузке и обеспечивает вращательное движение в двигателях.

Ход — движение элемента золотника клапана, штока цилиндра или насоса или смещение двигателя по прямой линии, которая устанавливает пределы движения.

Дроссель — ограничение нормального потока жидкости.

Крутящий момент — мера силы, прилагаемой к вращательному движению, обычно измеряется в фут-фунтах.

Клапан — устройство, контролирующее расход, направление или давление жидкости.

Лопасть — в гидравлическом двигателе плоская поверхность, которая вращается и отталкивается от жидкости.

Предметом настоящего курса являются гидравлические машины (насосы, вентиляторы, компрессоры), т.е.устройства (нагнетатели), применяемые для перемещения жидкостей и газов.

Устройства для перемещения воды и воздуха были известны задолго до нашей эры. В глубокой древности для подачи воды использовались колеса с черпаками, для подачи воздуха и для поддержания огня – мехи. Древние греки применяли теплый воздух для проветривания помещений, использовали ветер для провеивания зерновых злаков с целью очистки их от легких примесей, а воздуховные устройства в виде опахал – для проветривания помещений. Эти простейшие устройства приводились в движение мускульной силой человека или животного.

Насосы примитивных конструкций применялись еще во времена Аристотеля (IV в. До н.э.). Водоподъемные машины, приводимые в действие силой людей и животных, использовались в Египте за несколько тысячелетий до н.э. Из сочинений итальянского зодчего Витрувия следует, что поршневые насосы поршневые насосы применялись в Римской империи еще в царствование цезаря Августа (I в. До н.э.). Насосы с бесконечной цепью действовали в Каире для подъема воды с глубины 91,5 м в V-VIв.в. до н.э. В Александрии в V-VI вв. до н.э. был построен поршневой пожарный насос, отлитый из бронзы.

Примерно в 1805 г. Ньюкомен (Англия) создал поршневой насос для подъема воды в руднике, применив для привода его паровой цилиндр с конденсацией пара, использующий для создания необходимой силы на штоке атмосферное давление.

В 1840-1850г.г. американец Вортингтон предложил конструкцию парового насоса, в котором поршни насоса и парового двигателя располагались на общем штоке; движением поршней управляла специальная парораспределительная система.

Широкое использование насосов в России началось с горнорудной промышленности. В XVIII в. горный мастер К.Д.Фролов построил на Змеиногорском руднике Алтая несколько установок с поршневыми насосами для водоотлива из шахт и промывания россыпей. Привод насосов осуществлялся от водяных колес мельничного типа.

К.Д.Фролов был выдающимся изобретателем. Он дал оригинальные образцы конструкций насосов и гидродвигателей, широко применявшихся им и его учениками в горной промышленности Алтая и Урала.

Со второй половины XIX в. Началось развитие центробежных насосов. Установить достоверно изобретателя центробежного насоса невозможно. Известны рисунки Леонардо да Винчи, относящиеся к XV., в которых великий ученый разъяснял возможность использования центробежной силы воды, вращающейся в криволинейном канале, для подачи ее на некоторую высоту. Возможно, что центробежный насос был изобретен итальянцем Жорданом, выполнившим в конце XVII в. Рисунок такого насоса. В начале XVIII в. Французский физик Папен изготовил центробежный насос примитивной конструкции.

Первой примененной в практике машиной для подачи жидкости действием центробежной силы был насос Ледемура (Франция, 1732 г.).В этой конструкции вода, находящаяся в наклонной трубе, вращающейся вокруг вертикальной оси, перемещалась с нижнего уровня на верхний действием центробежной силы самой уводы. Таким образом, достигалась подача воды на некоторую высоту.

Классическая схема и конструкция одноколесного центробежного насоса, применяющегося в различных модификациях, была осуществлена Андревсом (США) в 1818г. и существенно улучшена им в 1846г. Исследования Андревса привели к созданию многоступенчатого центробежного насоса, однако весьма несовершенной конструкции, запатентованной в 1851 г.

Знаменитый ученый Рейнольдс (Англия), исследуя конструкцию многоступенчатого насоса, ввел в нее прямой и обратный направляющие лопаточные аппараты и в 1875 г. запатентовал насос, в общих чертах аналогичный современным многоступенчатым насосам.




Изобретение поршневого воздушного насоса, прототипа современных компрессоров с одной ступенью сжатия, связано с именем физика Герике (Германия), 1640г.). Совершенствованию компрессоров в XVIII-XIX вв. способствовало развитие горнорудной промышленности и металлургии. Во второй половине XVIII в. В Англии Вилькинсон запатентован двухцилиндровый поршневой компрессор и в то же время Уатт изготовил воздуходувную машину с паровым приводом.

Компрессоры со ступенями сжатия, но без промежуточных охладителей появились во Франции в 30-х годах прошлого столетия. Многоступенчатый компрессор с межступенными охладителями был предложен в 1849г. Ратеном (Германия).

Производство центробежных компрессоров было начато фирмами Рато (Франция) и Парсон (Англия) в начале XX в.

В Росси в 1832г. инженер А.А.Саблуков предложил конструкцию центробежного вентилятора для проветривания шахт и заводских помещений и указал простой способ его расчета.

Исключительно большое значение для развития рассматриваемой области машиностроения имела деятельность Центрального аэрогидродинамического института (ЦАГИ), организованного Н.Е.Жуковским в 1918г. В этом институте в течение многих лет проводились исследования воздушных и гидравлических машин.

В настоящее время научно-исследовательская работа по насосам, вентиляторам и компрессорам ведется многими организациями, такими как ВНИИгидромаш, ВНИИхиммаш, ЦАГИ им.Н.Е.Жуковского, ВНИИАЭН, ВНИИкомпрессормаш.

Большие работы ведутся на специальных кафедрах вузов – Ленинградского и Харьковского политехнических, МВТУ им.Н.Э.Баумана, Сумского филиала ХПИ и др.

Пользуются широкой известностью исследования и конструкторские разработки в области насосо - и компрессоростроения, выполненные на специальных кафедрах и в лабораториях политехнических институтов на континентах Европы, Америки и Японии. Среди деятелей этой области техники, известных своими фундаментальными исследованиями, могут быть названы: И.И.Куколевский, Г.Ф.Проскура, А.А.Ломакин, С.С.Руднев (насосостроение), В.И.Поляковский, М.И.Невельсон, К.А.Ушаков (вентиляторостроение), В.Ф.Рис, М.Н.Френкель, К.П.Селезнев (компрессоростроение).

Из зарубежных ученых следует отметить О.Рейнольдса (Англия), проф.А.Стодола (Чехословакия), Л.Прандтля, А.И.Степанова (США).

Количество насосов, компрессоров и вентиляторов различного назначения, выпускаемых промышленностью технически развитых стран, исчисляется миллионами штук в год; электрическая энергия, используемая для привода их, составляет существенную часть в энергетическом балансе стран. Поэтому теоретические и экспериментальные исследования, направленные на усовершенствование рабочих процессов и повышение КПД машин этого вида, имеют очень большое значение.

Для современной промышленности характерно соединение заводов в крупные специализированные комплексы – производственные объединения. В составе таких объединений, располагающих мощной финансовой базой, возможна организация специальных конструкторских бюро, крупномасштабных испытательных стендов, исследовательских лабораторий для разработки важнейших проблем отрасли. Это относится непосредственно и к области насосного и компрессорного машиностроения.

В настоящее время работы по дальнейшему усовершенствованию конструкции гидравлических машин идут по дальнейшему усовершенствованию их конструкций, повышение КПД, уменьшение габаритов, увеличения надежности и бесшумности в работе, глубины регулирования с применением автоматики. Немаловажное значение имеет снижение себестоимости гидравлических машин.

Введение.

Предметом настоящего курса являются гидравлические машины (насосы, вентиляторы, компрессоры), т.е.устройства (нагнетатели), применяемые для перемещения жидкостей и газов.

Устройства для перемещения воды и воздуха были известны задолго до нашей эры. В глубокой древности для подачи воды использовались колеса с черпаками, для подачи воздуха и для поддержания огня – мехи. Древние греки применяли теплый воздух для проветривания помещений, использовали ветер для провеивания зерновых злаков с целью очистки их от легких примесей, а воздуховные устройства в виде опахал – для проветривания помещений. Эти простейшие устройства приводились в движение мускульной силой человека или животного.

Насосы примитивных конструкций применялись еще во времена Аристотеля (IV в. До н.э.). Водоподъемные машины, приводимые в действие силой людей и животных, использовались в Египте за несколько тысячелетий до н.э. Из сочинений итальянского зодчего Витрувия следует, что поршневые насосы поршневые насосы применялись в Римской империи еще в царствование цезаря Августа (I в. До н.э.). Насосы с бесконечной цепью действовали в Каире для подъема воды с глубины 91,5 м в V-VIв.в. до н.э. В Александрии в V-VI вв. до н.э. был построен поршневой пожарный насос, отлитый из бронзы.

Примерно в 1805 г. Ньюкомен (Англия) создал поршневой насос для подъема воды в руднике, применив для привода его паровой цилиндр с конденсацией пара, использующий для создания необходимой силы на штоке атмосферное давление.

В 1840-1850г.г. американец Вортингтон предложил конструкцию парового насоса, в котором поршни насоса и парового двигателя располагались на общем штоке; движением поршней управляла специальная парораспределительная система.

Широкое использование насосов в России началось с горнорудной промышленности. В XVIII в. горный мастер К.Д.Фролов построил на Змеиногорском руднике Алтая несколько установок с поршневыми насосами для водоотлива из шахт и промывания россыпей. Привод насосов осуществлялся от водяных колес мельничного типа.

К.Д.Фролов был выдающимся изобретателем. Он дал оригинальные образцы конструкций насосов и гидродвигателей, широко применявшихся им и его учениками в горной промышленности Алтая и Урала.

Со второй половины XIX в. Началось развитие центробежных насосов. Установить достоверно изобретателя центробежного насоса невозможно. Известны рисунки Леонардо да Винчи, относящиеся к XV., в которых великий ученый разъяснял возможность использования центробежной силы воды, вращающейся в криволинейном канале, для подачи ее на некоторую высоту. Возможно, что центробежный насос был изобретен итальянцем Жорданом, выполнившим в конце XVII в. Рисунок такого насоса. В начале XVIII в. Французский физик Папен изготовил центробежный насос примитивной конструкции.

Первой примененной в практике машиной для подачи жидкости действием центробежной силы был насос Ледемура (Франция, 1732 г.).В этой конструкции вода, находящаяся в наклонной трубе, вращающейся вокруг вертикальной оси, перемещалась с нижнего уровня на верхний действием центробежной силы самой уводы. Таким образом, достигалась подача воды на некоторую высоту.

Классическая схема и конструкция одноколесного центробежного насоса, применяющегося в различных модификациях, была осуществлена Андревсом (США) в 1818г. и существенно улучшена им в 1846г. Исследования Андревса привели к созданию многоступенчатого центробежного насоса, однако весьма несовершенной конструкции, запатентованной в 1851 г.

Знаменитый ученый Рейнольдс (Англия), исследуя конструкцию многоступенчатого насоса, ввел в нее прямой и обратный направляющие лопаточные аппараты и в 1875 г. запатентовал насос, в общих чертах аналогичный современным многоступенчатым насосам.

Изобретение поршневого воздушного насоса, прототипа современных компрессоров с одной ступенью сжатия, связано с именем физика Герике (Германия), 1640г.). Совершенствованию компрессоров в XVIII-XIX вв. способствовало развитие горнорудной промышленности и металлургии. Во второй половине XVIII в. В Англии Вилькинсон запатентован двухцилиндровый поршневой компрессор и в то же время Уатт изготовил воздуходувную машину с паровым приводом.

Компрессоры со ступенями сжатия, но без промежуточных охладителей появились во Франции в 30-х годах прошлого столетия. Многоступенчатый компрессор с межступенными охладителями был предложен в 1849г. Ратеном (Германия).

Производство центробежных компрессоров было начато фирмами Рато (Франция) и Парсон (Англия) в начале XX в.

В Росси в 1832г. инженер А.А.Саблуков предложил конструкцию центробежного вентилятора для проветривания шахт и заводских помещений и указал простой способ его расчета.

Исключительно большое значение для развития рассматриваемой области машиностроения имела деятельность Центрального аэрогидродинамического института (ЦАГИ), организованного Н.Е.Жуковским в 1918г. В этом институте в течение многих лет проводились исследования воздушных и гидравлических машин.

В настоящее время научно-исследовательская работа по насосам, вентиляторам и компрессорам ведется многими организациями, такими как ВНИИгидромаш, ВНИИхиммаш, ЦАГИ им.Н.Е.Жуковского, ВНИИАЭН, ВНИИкомпрессормаш.

Большие работы ведутся на специальных кафедрах вузов – Ленинградского и Харьковского политехнических, МВТУ им.Н.Э.Баумана, Сумского филиала ХПИ и др.

Пользуются широкой известностью исследования и конструкторские разработки в области насосо - и компрессоростроения, выполненные на специальных кафедрах и в лабораториях политехнических институтов на континентах Европы, Америки и Японии. Среди деятелей этой области техники, известных своими фундаментальными исследованиями, могут быть названы: И.И.Куколевский, Г.Ф.Проскура, А.А.Ломакин, С.С.Руднев (насосостроение), В.И.Поляковский, М.И.Невельсон, К.А.Ушаков (вентиляторостроение), В.Ф.Рис, М.Н.Френкель, К.П.Селезнев (компрессоростроение).

Из зарубежных ученых следует отметить О.Рейнольдса (Англия), проф.А.Стодола (Чехословакия), Л.Прандтля, А.И.Степанова (США).

Количество насосов, компрессоров и вентиляторов различного назначения, выпускаемых промышленностью технически развитых стран, исчисляется миллионами штук в год; электрическая энергия, используемая для привода их, составляет существенную часть в энергетическом балансе стран. Поэтому теоретические и экспериментальные исследования, направленные на усовершенствование рабочих процессов и повышение КПД машин этого вида, имеют очень большое значение.

Для современной промышленности характерно соединение заводов в крупные специализированные комплексы – производственные объединения. В составе таких объединений, располагающих мощной финансовой базой, возможна организация специальных конструкторских бюро, крупномасштабных испытательных стендов, исследовательских лабораторий для разработки важнейших проблем отрасли. Это относится непосредственно и к области насосного и компрессорного машиностроения.

В настоящее время работы по дальнейшему усовершенствованию конструкции гидравлических машин идут по дальнейшему усовершенствованию их конструкций, повышение КПД, уменьшение габаритов, увеличения надежности и бесшумности в работе, глубины регулирования с применением автоматики. Немаловажное значение имеет снижение себестоимости гидравлических машин.

Читайте также: