Химическая кинетика и катализ кратко

Обновлено: 05.07.2024

Химическая термодинамика дает сведения о возможности протекания реакции, но важно знать и скорость того или иного процесса. Химическая кинетика – это учение о скорости химических реакций, их механизме и закономерностях протекания во времени. Для определения скорости химической реакции надо знать не только начальное и конечное состояние системы, но и путь по которому протекает реакция, поэтому получить кинетические закономерности намного сложнее, чем термодинамические.

Скорость химической реакции показывает число химических взаимодействий, приводящих к образованию продуктов реакции в единицу времени в единице объема (для жидкой среды) или на единице поверхности, если процесс идет с участием твердого вещества. Отношение изменения концентрации реагирующих веществ к конечному (измеренному) промежутку времени называют средней скоростью.

Истинная скорость - отношение изменения концентрации реагирующих веществ к бесконечно малому промежутку времени.

Vист = ± dС / dt, моль/(л∙c) – в системе СИ.

В медицине используются и другие единицы измерения скорости реакции, например, СОЭ – скорость оседания эритроцитов. Она измеряется высотой столбика эритроцитов, осевших в капилляре за час (норма ≈ 5 мм/час). Существует специальная дисциплина о кинетических закономерностях распределения лекарственных препаратов в организме – фармакокинетика. Она изучает распределение лекарств во времени, процессы всасывания, время метаболизма (вывода), связь между концентрацией и величиной терапевтического эффекта.

Влияние концентрации на скорость химической реакции.

Влияние концентрации на скорость химической реакции определяется законом действующих масс – при постоянной температуре скорость данной реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях равных их стехиометрических коэффициентов.

К – константа скорости реакции показывает число эффективных соударений (тех, что привели к реакции) в расчете на 1 моль реагирующих веществ. К зависит от температуры и природы вещества, но не зависит от концентрации.

В момент равновесия скорости прямой и обратной реакции равны.

Кпр ∙ [A] a ∙ [B] b = Кобр ∙ [С] с ∙ [D] d

Кпр / Кобр = ([С] с ∙[D] d ) / ([A] a ∙[B] b ) = Кс – константа равновесия

В уравнении закона действующих масс самой трудной для определения величиной является константа скорости. Для ее определения надо знать следующие понятия: порядок реакции и молекулярность.

Молекулярность определяется числом молекул, одновременным взаимодействием которых в момент столкновения осуществляется химическое превращение.

Мономолекулярная: J2 = 2J.

Тримолекулярная: Cl2 + 2NO = 2NOCl

Показатель степени называется порядком по данному компоненту или частный порядок. Сумма частных порядков по всем компонентам – общий порядок.

Молекулярность и порядок совпадают только в одностадийных процессах. Они не совпадают, когда одно из реагирующих веществ взято в избытке и поэтому не участвует в определении порядка. Например:

Если реакция проходит в несколько стадий, то порядок определяется по самой медленной – лимитирующей стадии.

Химическая кинетика - наука о изменении массы веществ (исходных или продуктов) в результате протекания химической реакции во времени. Скорость реакции в газовой фазе или жидких растворах определяется изменением количества какого-либо вещества (вступающего в реакцию или образующегося в результате реакции) в единице объема за единицу времени. Количество вещества может выражаться его массой; массой деленной на малекулярную массу, т.е. числом молей; числом молей в единице объема, т.е. молярной концентрацией. В химической кинетике чаще всего используют молярную концентрацию, которую выражают в моль/л. Итак, пусть в системе с постоянным объемом V протекает химическая реакция:

a A + b B = f F + g (4.3.1)

Скорость химической реакции может измеряться по изменению концентрации любого из веществ A, B, F, G. Иногда используют понятие средней скорости реакции:

w = (c2 - c1)/(t2 - t1),

где c2 и c1 - это концентрации одного из веществ в моменты времени t2 и t1 соответственно. Чаще используют понятие мгновенной скорости, т.е. производную от концентрации по времени. В химической кинетике принято так записывать выражение скорости химической реакции по любому веществу, чтобы численное значение скорости было положительной величиной. Поскольку концентрация исходных веществ убывает в результате реакции, а концентрация продуктов реакции увеличивается, то скорость химической реакции можно записать так:

Для реакции (4.3.1) эти скорости связаны между собой соотношениями:

На скорость химической реакции решающее влияние оказывают концентрации реагирующих веществ, температура и катализаторы. Рассмотрим влияние каждого из этих факторов.

Закон действующих масс

При постоянной температуре скорость химической реакции пропорциональна произведению концентрации реагирующих веществ, возведенных в некоторые степени. Для реакции (4.3.1):

где k - константа скорости реакции (не зависит от концентрации реагирующих веществ численно равна скорости реакции, когда концентрации реагирующих веществ равны 1), p и q - числа, характеризующие порядок реакции по веществу A и по веществу B. n = p + q называется порядком реакции или суммарным, общим порядком реакции. Зависимость (4.3.2) является математическим выражением Закона действующих масс для реакции (4.3.1).

Может возникнуть вопрос, почему в выражении (4.3.2) мы в степенях пишем p и q, а не a и b? Дело в том, что любое уравнение химической реакции, которое мы пишем, характеризуя превращение веществ, не отражает реальный молекулярный механизм реакции. Так, простая реакция взаимодействия водорода и кислорода с образованием воды сегодня требует написания 18 элементарных стадий, через которые проходит реальный процесс. p будет равно a, а q равно b, если реакция (4.3.1) выражает реальный элементарный акт взаимодействия молекул.

Влияние температуры

k - константа скорости реакции - не зависит от концентрации реагирующих веществ, а очень сильно зависит от температуры. Анализ экспериментальных данных по кинетике химических реакций показывает, что при повышении температуры на 10 градусов скорость большинства химических реакций увеличивается в 2-4 раза. Эта закономерность известна как Правило Вант-Гоффа. Введем понятие температурного коэффициента скорости реакции g и определим его так:

Если температура увеличится на 30 градусов, то скорость реакции возрастет в g ·g ·g = g 3 раз. Если температура увеличится на (T2-T1) градусов, то скорость реакции возрастет в

Более точно зависимость константы скорости реакции от температуры передает экспоненциальное Уравнение С.Аррениуса:

где EA - энергия активации в Дж/моль, R - универсальная газовая постоянная, T - абсолютная температура, A - предэкспоненциальный множитель. Прологарифмируем уравнение (4.3.3) и найдем из него выражение для энергии активации (предполагая, что нам удалось найти при двух температурах (T1 и T2) экспериментальные значения констант скоростей k(T1) и k(T2)):

В теории столкновений исходят из того, что реагируют только те молекулы, которые сталкиваются между собой, а предэкспоненциальный множитель A характеризует число сталкивающихся молекул в единице объема за единицу времени. Но не все столкновения приводят к реакции, а лишь ничтожная часть. Реагируют только такие молекулы, энергия которых больше некоторой величины EA, которую поэтому называют энергией активации. Таким образом, сам экспоненциальный множитель позволяет из всех столкновений отобрать только активные столкновения.

Влияние катализатора

Катализатором называют вещество, которое, участвуя в химической реакции, изменяет скорость реакции, но не входит в продукты реакции. Если взять за основу рассуждений уравнение Аррениуса и руководствоваться теорией столкновений, то будет сразу же ясно, что катализатор не влияет на общее число столкновений, но может увеличить число активных столкновений, если ему удастся понизить энергию активации. В химической кинетике создана специальная теория активированного комплекса (промежуточного образования из столкнувшихся молекул), которая наглядно объясняет роль катализатора в ускорении химических реакций. Для иллюстрации берут простейшую химическую реакцию:

и говорят, что при столкновении атома X с молекулой YZ сначала образуется активированный комплекс XЧ Ч Ч YЧ Ч Ч Z , энергия которого как раз на величину энергии активации больше, чем суммарная энергия X и YZ. После того как активированный комплекс образовался, он может развалиться на продукты реакции XY и Z. Далее изображают на графике потенциальную энергию системы как функцию координаты реакции. Катализатор образует с реагирующими молекулами другие промежуточные соединения с меньшей энергией. При их распаде катализатор вновь регенерируется и образуются продукты реакции. На этом графике пути реакции с катализатором соответствует пунктирная линия.

При гомогенном катализе и катализатор, и реагенты находятся в одной фазе (в растворе или в газовой фазе):

При гетерогенном катализе катализатор находятся в другой фазе, как правило, твердой, и реакция идет на поверхности катализатора:

Положительные катализаторы ускоряют химические превращения, а отрицательные (ингибиторы) - замедляют реакции. Так, глицерин замедляет реакцию разложения перекиси водорода.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:

υ = ΔC / Δt

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt)

1. Температура

Самый простой способ изменить скорость реакции – изменить температуру . Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетический барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается .

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что скорость большинства реакций примерно одинаково изменяется (примерно в 2-4 раза) при изменении температуры на 10 о С.

Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).

Точное значение температурного коэффициента определяется для каждой реакции.

здесь v2 — скорость реакции при температуре T2,

v1 — скорость реакции при температуре T1,

γ — температурный коэффициент скорости реакции, коэффициент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или растворители испаряются при повышенной температуре, т.е. нарушаются условия проведения процесса.

Также изменить число эффективных соударений можно, изменив концентрацию реагирующих веществ . Понятие концентрации, как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v — скорость химической реакции,

CA и CB — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например , для реакции образования аммиака:

закон действующих масс выглядит так:

Константа скорости реакции k показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция состоит из нескольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).

3. Давление

Концентрация газов напрямую зависит от давления . При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается .

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

4. Катализатор

Катализатор, энергия активации

Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно представить так:

A + K = AK

AK + B = AB + K

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Катализатор

Пример гетерогенного катализа – синтез аммиака:

В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют эффективно и избирательно, с избирательностью 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами.

Например , для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоборот. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ

Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности . Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

6. Природа реагирующих веществ

На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.

Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.

Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

Более стабильные вещества — это, например, те вещества, которые окружают нас в быту, либо существуют в природе.

Например , хлорид натрия NaCl (поваренная соль), или воды H2O, или металлическое железо Fe.

Более активные вещества мы можем встретить в быту и природе сравнительно редко.

Например , оксид натрия Na2O или сам натрий Na в быту и в природе не не встречаем, т.к. они активно реагируют с водой.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.

Химическая кинетика или кинетика химических реакций -- раздел химии, изучающий механизмы протекания химических реакций, порядок химической реакции, а также закономерности протекания химических реакций во времени.

Содержание

Скорость химической реакции

A+B \to C+D,

Скорость химической реакции определяется как изменение молярной концентрации одного из реагирующих веществ за единицу времени. Скорость химической реакции - величина всегда положительная, поэтому если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение домножается на -1.
Например для реакции скорость можно выразить так:

v = \frac<\partial C></p>
<p> <\partial t>= -\frac<\partial A><\partial t>.

В 1865 году Н.Н. Бекетовым и в 1867 году К.М. Гульдбергом и П. Вааге был сформулирован закон действующих масс , согласно которому скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведённым в некоторые степени. Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы: природа реагирующих веществ, наличие катализатора, температура (правило Вант-Гоффа) и площадь поверхности реагирующих веществ.

Порядок химической реакции

ПОРЯДОК РЕАКЦИИ по данному веществу - показатель степени при концентрации этого вещества в кинетическом уравнении реакции.

Переходное состояние

Катализ

Катализ - процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами.
Катализаторы - вещества, изменяющие скорость химической реакции, которые могут участвовать в реакции, входить в состав промежуточных продуктов, но не входят в состав конечных продуктов реакции и после окончания реакции остаются неизменными.
Каталитические реакции - реакции, протекающие в присутствии катализаторов.

Видные деятели химии о катализе

Мы будем рассматривать только положительный катализ, который принято подразделять на следующие типы:

а) гомогенный, когда реакционная смесь и катализатор находятся или в жидком или в газообразном состоянии; б) гетерогенный - катализатор находится в виде твердого вещества, а реагирующие соединения в виде раствора или газообразной смеси; (Это наиболее распространенный тип катализа, осуществляемого, таким образом, на границе раздела двух фаз.) в) ферментативный - катализатором служат сложные белковые образования, ускоряющие течение биологически важных реакций в организмах растительного и животного мира. (Ферментативный катализ может быть как гомогенным, так и гетерогенным, но из-за специфических особенностей действия ферментов целесообразно выделение этого вида катализа в самостоятельную область.) Гомогенный катализ

До сих пор мы рассматривали лишь неглубокие стадии процессов окисления; на более глубоких стадиях например в случае окисления углеводородов, образуются кислоты, спирты, кетоны, альдегиды, которые также могут реагировать с катализатором и служить дополнительным источником свободных радикалов в реакции, т. е. в этом случае будет налицо дополнительное вырожденное разветвление цепей.

Гетерогенный катализ

К сожалению, до сих пор, несмотря на достаточно большое число теорий и гипотез в области катализа, многие основополагающие открытия были сделаны случайно или в результате простого эмпирического подхода. Как известно, случайно был найден ртутный катализатор сульфирования ароматических углеводородов М. А. Ильинским, который нечаянно разбил ртутный термометр: ртуть попала в реактор, и реакция пошла. Аналогичным образом были обнаружены теперь всем хорошо известные, а в свое время открывшие новую эру в процессе полимеризации катализаторы стереоспецифической полимеризации Циглера. Естественно, что такой путь развития учения о катализе не соответствует современному уровню науки, и именно этим объясняется повышенный интерес к изучению элементарных стадий процессов в гетерогенно-каталитических реакциях. Эти исследования - прелюдия для создания строго научных основ подбора высокоэффективных катализаторов. Во многих случаях роль гетерогенных катализаторов в процессе окисления сводится к адсорбции органического соединения и кислорода с образованием на поверхности катализатора адсорбированного комплекса этих веществ. Такой комплекс разрыхляет связи компонентов и делает их более реакционноспособными. В некоторых случаях катализатор адсорбирует лишь один компонент, который диссоциирует на радикалы. Например, пропилен на закиси меди диссоциирует с образованием аллильного радикала , легко вступающего затем в реакцию с кислородом. Выяснилось, что каталитическая активность металлов переменной валентности в значительной мере зависит от заполнения d-орбиталей в катионах окислов металлов.

По каталитической активности в реакции разложения многих гидроперекисей соединения металлов располагаются следующим ря-

Мы рассмотрели один из возмжных путей инициирования процесса - взаимодействие гидроперекиси с катализатором. Однако в случае окисления реакция гетерогенного инциирования цепей может протекать как путем распада на радикалы гидроперекиси, так и путем взаимодействия углеводорода с кислородом, активированным поверхностью катализатора. Инициирование цепей может быть обусловлено участием заряженной формы органического соединения RH+, образующегося при взаимодействии RH с катализатором. Так обстоит дело с катализом в реакциях инициирования (зарождения и разветвления) цепей. Роль гетерогенных катализаторов в реакциях продолжения цепи особенно четко подчеркивается изменением скорости и направления изомеризации перекисных радикалов.

Катализ в биохимии

Это так называемая первичная структура фермента, где R - боковые остатки, или важнейшие функциональные группы белков, возможно, выступающие в качестве активных центров ферментов. На эти боковые группы и ложится основная нагрузка при работе фермента, пептидная же цепь играет роль опорного скелета. Согласно структурной модели Полинга - Кори, она свернута в спираль, которая в обычном состоянии стабилизирована водродными связями между кислотными и основными центрами:

Для некоторых ферментов установлены полный аминокислотный состав и последовательность расположения их в цепи, а также сложная пространственная структура. Но это все же очень часто не может помочь нам ответить на два главных вопроса: 1) почему ферменты так избирательны и ускоряют химические превращения молекул только вполне определеyyой структуры (которая нам тоже известна); 2) каким образом фермент снижает энергетический барьер, т. е. выбирает энергетически более выгодный путь, благодаря чему реакции могут протекать при обычной температуре.

Строгая избирательность и высокая скорость - два основных признака ферментативного катализа, отличающие его от лабораторного и производственного катализа. Ни один из созданных руками человека катализаторов (за исключением, пожалуй, 2-оксипиридина) не может сравниться с ферментами по силе и избирательности воздействия на органические молекулы. Активность фермента, как и любого другого катализатора, тоже зависит от температуры: с повышением температуры возрастает и скорость ферментативной реакции. При этом обращает на себя внимание резкое снижение энергии активации Е по сравнению к некаталитической реакцией. Правда, это происходит не всегда. Известно много случаев, когда скорость возрастает благодаря увеличению независящего от температуры предэкспоненциального множителя в уравнении Аррениуса.

Читайте также: