Гигантское столкновение луны кратко

Обновлено: 07.07.2024

Астрономы еще в январе рассчитали место и время падения ракеты-носителя, которую сначала приписали Илону Маску и его проекту SpaceX, а затем китайскому космическому агентству. Обе стороны отказываются признавать космический мусор своим.

Обломок длиной примерно 12 метров и весом в 4,5 тонны упал в районе гигантского лунного кратера Герцшпрунг на скорости почти 10 тысяч километров в час. Это обратная сторона Луны, поэтому взрыв не был виден с Земли. Эксперты надеются получить максимум данных из снимков тлеющей воронки, выброшенной пыли и камней.

Ученые смогут определить по форме кратера, как ракета была ориентирована во время падения, перпендикулярно или параллельно поверхности. Ценную информацию для оценки изменений ландшафта Луны даст выброс тепла при ударе и количество расплавленных пород в воронке.

По словам ученых, удачно подвернувшийся эксперимент с ракетой позволит смоделировать удар и узнать, как такие происшествия влияют на планеты.

Полученную информацию о лунной поверхности используют для подготовки миссий на Луну, запланированных в ближайшем будущем.

Ранее ученые предположили, что к появлению у Земли спутника причастен Челябинский метеорит.

Безымянный лунный кратер, снятый камерой Lunar Reconnaissance Orbiter 3 ноября 2018 года.

Безымянный лунный кратер, снятый камерой Lunar Reconnaissance Orbiter 3 ноября 2018 года.
Фото NASA/GSFC/Arizona State University.

4 марта 2022 года в 15:26 по московскому времени одинокая отработавшая часть ракеты-носителя врезалась в поверхность Луны на скорости почти 9656 километров в час.

Как только пыль уляжется, орбитальный аппарат НАСА Lunar Reconnaissance Orbiter (LRO) займёт позицию, чтобы получить представление о получившемся кратере с близкого расстояния.

Планетологи рассматривают это незапланированное столкновение как захватывающую возможность узнать больше о загадочной физике планетарных столкновений.

Луна пережила многие бурные моменты истории Солнечной системы. За последние четыре миллиарда лет её поверхность пережила бесчисленное количество столкновений и образовала "шрамы" в виде кратеров.

Однако учёным редко удаётся увидеть небесные тела — обычно это астероиды или кометы — которые при столкновении с Селеной образуют эти кратеры. Не имея представлений о том, что образовало кратер, учёные мало что могут узнать, изучая его.

Столкновение отработанной ступени ракеты с Луной станет удачным неожиданным экспериментом, который сможет многое рассказать о том, как подобные события изменяют поверхности небесных тел.


По поводу точной идентификации объекта, столкнувшегося с Луной, всё ещё ведутся споры. Астрономы знают, что объект представляет собой верхнюю ступень ракеты-носителя, сброшенную при запуске спутника на большой высоте.

Объект составляет примерно 12 метров в длину и весит почти 4 500 килограммов.

Имеющиеся данные свидетельствуют о том, что это, вероятно, либо ракета SpaceX, запущенная в 2015 году, либо китайская ракета, запущенная в 2014 году. Но обе стороны отрицают право собственности.

Поскольку удар пришёлся на обратную сторону Луны, он оказался вне поля зрения наземных телескопов. Но примерно через две недели после столкновения зонд LRO начнёт получать изображения новоиспечённого кратера, поскольку орбита этого искусственного спутника Луны проходит над зоной удара.

Форма воронки и подброшенные пыль и камни должны будут подсказать, как ракета была расположена в момент удара. Вертикальная ориентация создаст более круглую форму кратера, в то время как "прилунение" плоской стороной создаст асимметричный рисунок обломков.

Кратер может иметь диаметр от 10 до 30 метров и глубину два-три метра.

Количество тепла, выделенного при ударе, также будет ценной информацией. Если наблюдения будут проведены достаточно быстро, есть вероятность, что инфракрасный прибор Lunar Reconnaissance Orbiter сможет обнаружить раскалённый материал внутри кратера (своего рода тление).

Эти данные можно использовать для расчёта общего количества тепла от удара. Если орбитальный аппарат не сможет получить изображение достаточно быстро, для оценки количества расплавленного материала в кратере и рассеивания обломков можно будет использовать изображения с высоким разрешением.


Сравнивая изображения до и после, учёные будут искать любые другие малейшие изменения на поверхности Луны. Некоторые из этих эффектов могут наблюдаться в значительном отдалении от кратера.

Учитывая, что в ближайшие годы планируется целый ряд лунных миссий, знания о свойствах лунной поверхности, особенно о количестве и глубине залегания под ней льда, могут оказаться очень полезны.

Теперь уже не так важно, кому принадлежит ракета (все эти дни различные ресурсы гадали, чей же обломок комического мусора летит к Луне). Важно только то, что это редкое событие даст новую информацию, которая может оказаться очень важной для успеха будущих миссий на Луну и к более далёким мирам.

Ранее мы рассказывали о том, что НАСА уже выбрало место для посадки лунохода VIPER, а также о планах по добыче полезных ископаемых из лунного грунта.

Писали мы и о попадании в Луну крупнейшего за восемь лет метеорита. Также мы сообщали о том, что в составе лунного грунта были обнаружены странные вкрапления.

Больше новостей из мира науки вы найдёте в разделе "Наука" на медиаплатформе "Смотрим".

Пояснение причин и обсуждение — на странице Википедия:К переименованию/26 апреля 2012.
Возможно, её текущее название не соответствует нормам современного русского языка и/или правилам именования статей Википедии.

Не снимайте пометку о выставлении на переименование до окончания обсуждения.
Дата постановки — 26 апреля 2012.

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 15 мая 2011.


Доказательствами справедливости этой гипотезы считаются: образцы лунного грунта, указывающие на то, что поверхность Луны когда-то была расплавленной, и то, что Луна, по-видимому, имеет относительно малое ядро из сернистого железа, а также свидетельства подобных столкновений в других звездных системах.

Однако, осталось несколько вопросов, связанных с этой гипотезой, которые так и не получили объяснения. К их числу можно отнести: отсутствие в лунных образцах ожидаемого процентного содержания летучих элементов, окисей железа или сидерофильных элементов, а также отсутствие доказательств того, что Земля когда-то имела океаны магмы, подразумеваемые этой гипотезой.

Содержание

Сценарий столкновения

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.


4,533 миллиарда лет назад, вскоре после формирования, Земля столкнулась с протопланетой Тейя — близкой по размеру к Марсу [источник не указан 638 дней] (примерно 1/10 массы Земли). Удар пришёлся не по центру, а под углом (почти по касательной). В результате большая часть вещества ударившегося объекта и часть вещества земной мантии были выброшены на околоземную орбиту. Из этих обломков собралась прото-Луна и начала обращаться по орбите с радиусом около 60 000 км. Земля в результате удара получила резкий прирост скорости вращения (один оборот за 5 часов) и заметный наклон оси вращения.

Из компьютерной модели этого события был сделан вывод, что Луна приобрела свою сферическую форму в период от одного года до ста лет после столкновения [источник не указан 638 дней] .

Также предполагается, что наклон земной оси и само вращение Земли — результат именно этого столкновения.

Однако в вышедшей в 2004 году статье Эдвард Белбруно и Ричард Готт предположили, что столкнувшаяся с Землёй гипотетическая протопланета Тейя могла сформироваться в одной из точек Лагранжа системы Земля-Солнце — L4 или L5, а затем перейти на беспорядочную орбиту, например в результате гравитационных возмущений со стороны других планет, и ударить Землю на более-менее низкой скорости.

Такой механизм существенно повышает вероятность встречи небесного тела с Землёй при требуемых параметрах столкновения. Моделирование, проведённое в 2005 году д-ром Робин Кэнап, показало, что спутник Плутона Харон мог также образоваться около 4,5 миллиардов лет назад от столкновения Плутона с другим телом из пояса Койпера, диаметром от 1600 до 2000 км, которое ударило планету на скорости 1 км/с. Кэнап предполагает, что такой процесс формирования спутников планет мог быть обычным делом в молодой Солнечной системе. Такие планеты на нестабильных орбитах пропадают очень быстро после возникновения планетной системы, и вращение нынешних планет может объясняться этим механизмом.

См. также

Происхождение Луны — сравнительный обзор выдвигавшихся гипотез происхождения Луны.


Астрофизики из Института SETI, Гарвардского университета, а также университетов Калифорнии и Мэриленда уточнили модель возникновения Луны, объяснив наклонение ее орбиты к земному экватору. Ученые предположили, что первичное столкновение могло быть в разы сильнее, чем считалось ранее — оно привело к тому, что земная ось оказалась почти направленной в сторону Солнца, а сутки сократились до двух часов. По словам авторов, работа позволяет лучше описать наблюдаемые аномалии изотопного и химического состава Луны. Исследование опубликовано в журнале Nature, кратко о нем сообщает пресс-релиз Университета Калифорнии в Дэвисе.

Основная гипотеза происхождения Луны — гигантское столкновение. Согласно этой гипотезе, прото-Земля столкнулась с небесным телом с размерами, сопоставимыми с Марсом (его называют Тейей). Это привело к выбросу значительного количества материала на околоземную орбиту и увеличило скорость вращения будущей Земли до одного оборота в пять часов. Со временем в обломочном диске произошла аккреция — слипание материала. Это привело к формированию Луны, которая за счет приливного воздействия замедлила Землю до нынешней скорости вращения.

У этой гипотезы, тем не менее, есть ряд пробелов — так, она не объясняет наклонение орбиты Луны к плоскости земного экватора. Согласно многим сценариям обломочный диск должен был сформироваться в экваториальной плоскости, а современное наклонение составляет около 5 градусов. Кроме того, большая доля материала Луны должна соответствовать материалу небесного тела, врезавшегося в Землю. Это противоречит экспериментальным данным, показывающим схожий изотопный и химический состав Луны и Земли. В то же время ученые отмечают, что химический состав разных небесных тел Солнечной системы, как правило, сильно отличается.


Различие моделей гигантского столкновения

В новой работе авторы предположили, что сила удара в гипотезе гигантского столкновения была выше, чем считалось раньше. Физики допустили, что после удара ось вращения Земли оказалась направлена к Солнцу, а обломочный диск при этом находился в экваториальной плоскости. Скорость вращения будущей Земли при этом достигала одного оборота за два часа. По мнению ученых, это позволило сильнее перемешать материал небесного тела и прото-Земли, что объясняет сходство химических составов.

Приливные силы между возникшей Луной и Землей привели к тому, что спутник начал отдаляться от планеты. При этом его орбита и ее наклонение претерпели серьезные изменения, связанные с изменением положения плоскости Лапласа системы. Это специальная плоскость, в которой прецессирует орбита спутника планеты (точнее, ее нормаль). Известно, что для спутника, расположенного близко к планете, плоскость Лапласа совпадает с экваториальной плоскостью планеты — последняя оказывает наибольшее влияние на динамику небесного тела. Для удаленных спутников плоскость Лапласа приближается к плоскости орбиты планеты — наибольшее влияние тогда оказывает гравитация Солнца.


Ученые подчеркивают, что новая модель эволюции лунной орбиты не требует дополнительных внешних воздействий от других небесных тел. Это делает ее единственной существующей моделью, способной объяснить большое наклонение лунной орбиты в ее прошлом, которое привело к современной орбите. Кроме того, ось вращения Земли, лежащая близко к плоскости эклиптики, объясняет быструю потерю углового момента планетой из-за действия солнечной гравитации.

Ранее ученые уже пытались объяснить сходство химических составов Земли и Луны с помощью компьютерного моделирования высокого разрешения. Оказалось, вероятность случайного сходства составов достигает 20-40 процентов при учете возможных химических составов Луны. Существуют и другие теории происхождения нашего спутника — например, она могла возникнуть как независимое небесное тело при гравитационном сжатии газо-пылевого облака (модель Галимова-Кривцова). Однако такая теория хуже описывает угловой момент системы Земля-Луна.

Читайте также: