Второй закон термодинамики конспект урока 10 класс

Обновлено: 30.06.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Предмет: физика. Класс: 10 Урок № 42. Дата проведения:12.02.2019 г.

Тема: Необратимость тепловых процессов. Второй закон термодинамики.

Цель: показать необратимость процессов в природе. Побуждать учащихся к преодолению трудностей в процессе умственной деятельности, воспитать интерес к физике. Задачи урока: Обеспечить усвоение учащимися основных понятий по теме, понимания сущности и значения второго закона термодинамики. Содействовать формированию знаний физических закономерностей и влияния различных условий на характер протекания физических процессов. Создать условия для развития интеллектуальных способностей и общеучебных умений через организацию самостоятельной работы учащихся и работы в группах.

I. Организационный момент (1 мин)

II. Актуализация знаний ( 7 мин)

Учащимся предлагается ответить на вопросы.

1. Как определить изменение внутренней энергии системы согласно первому закону термодинамики?

2. На что расходуется, согласно I закону термодинамики, количество теплоты, подведенное к системе?

3. Какой процесс называется адиабатическим?

4. Сформулируйте I закон термодинамики для адиабатного процесса.

5. За счет какой энергии совершается работа при адиабатичном расширении газа?

6. Почему при адиабатном расширении температура газа падает, а при сжатии возрастает?

( Важно: Разные виды энергии не равноценны в отношении способности превращаться в другие виды. Механическую энергию можно целиком превратить во внутреннюю, например, электрическая энергия – внутренняя. Запасы внутренней энергии ни при каких условиях не может превратиться целиком в другие виды энергии.)

Выделенные особенности подтверждаются при разборе примера.

Если система состоит из двух тел с различной температурой, то теплообмен происходит так, что температуры тел выравниваются и вся система приходит к состоянию теплового равновесия.

I закон термодинамики не был бы нарушен, если бы передача тепла происходила от тела с низкой температурой к телу с более высокой температурой при условии, что полный запас энергии оставался бы неизменным.

III. Изучение нового материала (19 минут)

Необратимость тепловых процессов. Второй закон термодинамики.

Необратимость тепловых процессов :

Обратимый процесс

1. Его можно провести в двух противоположных направлениях;

2. В каждом из этих случаев система и окружающие ее тела проходят через одни и те же промежуточные состояния;

3. После проведения прямого и обратного процессов система и окружающие ее тела возвращаются к исходному состоянию.

Необратимый процесс

Всякий процесс, не удовлетворяющий хотя бы одному из этих условий

Так, можно доказать, что абсолютно упругий шарик, падая в вакууме на абсолютно упругую плиту, вернется после отражения в исходную точку, пройдя в обратном направлении все те промежуточные состояния, которые он проходил при падении.

Но в природе нет строго консервативных систем, в любой реальной системе действуют силы трения. Поэтому все реальные процессы в природе необратимы.

Реальные тепловые процессы также необратимы .

Направленность реальных тепловых процессов определяется вторым законом термодинамики, который был установлен непосредственным обобщением опытных фактов. Это постулат. Немецкий ученый Р. Клаузиус дал такую формулировку второго закона термодинамики : невозможно перевести тепло от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или окружающих телах .

Из второго закона термодинамики вытекает невозможность создания вечного двигателя второго рода, т.е. двигателя, который бы совершал работу за счет охлаждения какого-либо одного тела.

Второй закон термодинамики накладывает ограничения на превращение внутренней энергии в механическую. Это означает, что невозможно построить машину, которая совершила бы работу только лишь за счет получения теплоты из окружающей среды, т.е только за счет охлаждения одного тела. Поэтому второй закон термодинамики часто формулируют так: Вечный двигатель второго рода невозможен.

IV. Закрепление (14 минут)

Решение задач:

1. При адиабатном процессе газом была совершена работа 150 Дж. На сколько и как изменилась его внутренняя энергия? Ответ . При адиабатном процессе нет обмена с окружающей средой его внутренняя энергия уменьшилась на 150 Дж ( величину совершенной работы) 2.Какое количество теплоты потребуется для плавления меди массой 5 кг, начальная температура которой 85 о С? ( t плавления меди 1085 о С, с = 400 Дж/кгК, λ = 21*10 4 Дж/кг ) 3.На сколько градусов нагреется 70 кг воды за счет количества теплоты, полученного от сжигания 5 кг сухих дров? 4. При полном сгорании сухих дров выделилось 50000 кДж энергии. Какая масса дров сгорела?

V . Итог урока (3 мин )

1. Каков физический смысл первого начала термодинамики?

2.Каков физический смысл второго начала термодинамики?

3.Какой процесс называется обратимым? Каковы необходимые условия протекания обратимых процессов?

4.Какой процесс называется необратимым?

Цель: изучить сущность второго закона термодинамики. Обратимые и необратимые процессы.

Проверка домашнего задания (опрос по §80)

Повторение пройденного. Вспомнить формулировку первого начала термодинамики, все изопроцессы.

Новый материал.

Закон сохранения энергии утверждает, что количество энергии при любых ее превращениях остается неизменным. Между тем многие процессы, вполне допустимые с точки зрения закона сохранения энергии, никогда не протекают в действительности.
Примеры необратимых процессов. Нагретые тела постепенно остывают, передавая свою энергию более холодным окружающим телам. Обратный процесс передачи теплоты от холодного тела к горячему не противоречит закону сохранения энергии, если количество теплоты, отданное холодным телом, равно количеству теплоты, полученному горячим, но такой процесс самопроизвольно никогда не происходит.
Другой пример. Колебания маятника, выведенного из положения равновесия, затухают (рис.13.9; 1, 2, 3, 4 - последовательные положения маятника при максимальных отклонениях от положения равновесия). За счет работы сил трения механическая энергия маятника убывает, а температура маятника и окружающего воздуха (а значит, и их внутренняя энергия) слегка повышается. Энергетически допустим и обратный процесс, когда амплитуда колебаний маятника увеличивается за счет охлаждения самого маятника и окружающей среды. Но такой процесс никогда не наблюдается. Механическая энергия самопроизвольно переходит во внутреннюю, но не наоборот. При этом энергия упорядоченного движения тела как целого превращается в энергию неупорядоченного теплового движения слагающих его молекул.

ВложениеРазмер
neobr.docx 38.73 КБ

Предварительный просмотр:

Необратимость процессов в природе. Второй закон термодинамики.

Цель: изучить сущность второго закона термодинамики. Обратимые и необратимые процессы.

Проверка домашнего задания (опрос по §80)

Повторение пройденного. Вспомнить формулировку первого начала термодинамики, все изопроцессы.

Закон сохранения энергии утверждает, что количество энергии при любых ее превращениях остается неизменным. Между тем многие процессы, вполне допустимые с точки зрения закона сохранения энергии , никогда не протекают в действительности.
Примеры необратимых процессов . Нагретые тела постепенно остывают, передавая свою энергию более холодным окружающим телам. Обратный процесс передачи теплоты от холодного тела к горячему не противоречит закону сохранения энергии, если количество теплоты, отданное холодным телом, равно количеству теплоты, полученному горячим, но такой процесс самопроизвольно никогда не происходит.
Другой пример. Колебания маятника , выведенного из положения равновесия, затухают ( рис.13.9; 1, 2, 3, 4 - последовательные положения маятника при максимальных отклонениях от положения равновесия). За счет работы сил трения механическая энергия маятника убывает, а температура маятника и окружающего воздуха (а значит, и их внутренняя энергия) слегка повышается. Энергетически допустим и обратный процесс, когда амплитуда колебаний маятника увеличивается за счет охлаждения самого маятника и окружающей среды. Но такой процесс никогда не наблюдается. Механическая энергия самопроизвольно переходит во внутреннюю, но не наоборот. При этом энергия упорядоченного движения тела как целого превращается в энергию неупорядоченного теплового движения слагающих его молекул.

1. Какие процессы называются необратимыми? Назовите наиболее типичные необратимые процессы.
2. Как формулируется второй закон термодинамики?

3. Если бы реки потекли вспять, означало бы это, что нарушается закон сохранения энергии?

Применение знаний и умений (демонстрация маятника).

Обобщение и систематизация. Все процессы самопроизвольно протекают в одном определенном направлении. Они необратимы. Тепло всегда переходит от горячего тела к холодному, а механическая энергия макроскопических тел - во внутреннюю.
Направление процессов в природе указывается вторым законом термодинамики.

Оборудование: калориметр, металлический цилиндр, стальной шарик, коробка с мокрым песком, математический маятник, схема работы двигателя второго рода, карточки-задания для групп.

Ход урока

1.Организационный момент.

2.Актуализация знаний. Подготовка к основному этапу занятий.

Продолжительность до 7-8 минут.

Учащимся предлагается ответить на вопросы.

- Что представляет собой I-й закон термодинамики?

- Как читается закон?

- Каковы границы применимости данного закона? (Важно: закон справедлив для замкнутых систем).

- В чем состоят недостатки закона? (Важно: в законе не дается никаких указаний на то, в каком направлении протекают процессы, удовлетворяющие принципу сохранения энергии).

- В чем заключается неравноценность одинаковых количеств энергии различных видов?

(Важно: Разные виды энергии не равноценны в отношении способности превращаться в другие виды. Механическую энергию можно целиком превратить во внутреннюю, например, электрическая энергия – внутренняя. Запасы внутренней энергии ни при каких условиях не может превратиться целиком в другие виды энергии.)

Выделенные особенности подтверждаются при разборе примеров.

Если система состоит из двух тел с различной температурой, то теплообмен происходит так, что температуры тел выравниваются и вся система приходит к состоянию теплового равновесия.

I закон термодинамики не был бы нарушен, если бы передача тепла происходила от тела с низкой температурой к телу с более высокой температурой при условии, что полный запас энергии оставался бы неизменным.

Повседневный опыт показывает, что сама по себе передача тепла от более холодного тела к более горячему никогда не происходит.

Камень падает с некоторой высоты. При этом потенциальная энергия переходит в кинетическую, а затем механическая - во внутреннюю энергию. При этом закон сохранения энергии не нарушается.

Первому закону термодинамики не противоречил бы и обратный процесс: лежащий на земле камень нагревают переходом тепла от окружающих тел, вследствие чего камень поднимается на некоторую высоту.

Описанную ситуацию в природе наблюдать нельзя.

3.Организация работы в группах.

Продолжительность работы в группах 20-25 минут.

Задача: познакомиться с текстом учебника, и выполнить предложенные задания.

Задание 1. Изучив материал § 5.8 и 5.9, введите понятия:

- необратимый процесс (приведите примеры);

- второй закон термодинамики;

- вечный двигатель первого рода;

- вечный двигатель второго рода.

Задание 2. Приведите примеры явлений, в которых наблюдается самопроизвольный выход системы из состояния термодинамического равновесия.

Из ответа учащихся:

Вечный двигатель первого рода – устройство для совершения работы без использования источника энергии.

(Важно: данная формулировка противоречит I закону термодинамики.)

Вечный двигатель второго рода – устройство, которое совершало бы работу только лишь за счет получения теплоты из окружающей среды.

(Важно: данная формулировка не противоречит I закону термодинамики.)

Пример нарушения II закона термодинамики в достаточно малых системах – броуновское движение, при котором взвешенная в жидкости частица получает кинетическую энергию от молекул окружающей среды, хотя температура среды не выше, чем температура смой броуновской частицы.

Задание. Изучите материал § 5.8 и 5.9. Рассмотрите предложенные ситуации, объясните происходящие явления.

Для выполнения задания группа использует лабораторное оборудование.

Груз на нити совершает колебания.

Что изменилось бы, если колебания совершались бы в вакууме?

Сосуд разделен перегородкой. В первой половине находится газ, во второй – вакуум. Что произойдет, если перегородку убрать? Вернется ли газ самопроизвольно через некоторое время в половину 1?

Сравните две ситуации и сделайте вывод.

1. Два тела привели в соприкосновение. Укажите направление теплопередачи. Может ли самопроизвольно теплота передаваться в обратном направлении?

2.В стакан с водой опустили кусочек марганцовки. Через некоторое время получился равномерно окрашенный раствор. Может ли снова образоваться кусочек марганцовки?

Задание. Изучите материал § 5.8 и 5.9. Постройте схему устройства, в котором нарушается постулат Клаузиуса; Кельвина. Докажите эквивалентность различных формулировок II закона термодинамики.

К ответу учащихся.

Предполагаемые рассуждения учащихся по доказательству эквивалентности различных формулировок:

1.Предположим, что постулат Кельвина несправедлив.

Тогда можно осуществить такой процесс, единственным результатом которого было бы совершение работы A за счет энергии Q, взятой от единственного источника с температурой T.

Эту работу можно было бы путем трения снова целиком превратить в теплоту, передаваемую телу, температура которого выше, чем T.

Единственным результатом такого составного процесса был бы переход теплоты от тела с температурой T к телу с более высокой температурой. Но это противоречило бы постулату Клаузиуса.

Вывод: постулат Клаузиуса не может быть справедливым, если неверен постулат Кельвина (Томсона).

2.Предположим, что несправедлив постулат Клаузиуса, что постулат Кельвина также не может выполняться.

Построим обычную тепловую машину (левая часть рисунка). Так как постулат Клаузиуса предполагается неверным, можно осуществить процесс, единственным результатом которого будет переход Q2 от холодильника к нагревателю (правая часть рисунка). В результате нагреватель будет отдавать рабочему телу машины теплоту Q1 и получать при процессе, противоречащем постулату Клаузиуса, теплоту Q2, так что в целом он будет отдавать количество теплоты, равное Q1 - Q2. Такое количество теплоты машина превращает в работу.

В холодильнике в целом никаких изменений вообще не происходит, т.к. он отдает и получает одно и тоже Q2.

Комбинируя тепловую машину и процесс, противоречащий постулату Клаузиуса, можно получить процесс, противоречащий постулату Кельвина.

Таким образом, либо верны оба постулата, либо оба постулата неверны, и в этом смысле они эквивалентны.

Цикл является обратимым, если он состоит из обратимым процессов, т.е.таких, которые можно провести в любом направлении через одну и ту же цепочку равновесных состояний.

а) Адиабатические процессы обратимы, если их проводить достаточно медленно.

б) Изотермические процессы – это единственные процессы с теплообменом, которые могут быть проведены обратимым образом.

При любом другом процессе температура рабочего тела изменяется!

4. Представление группами результатов работы.

Общее время на представление результатов работы групп составляет 20-25 минут.

Каждая группа представляет классу результаты своей работы, отвечает на уточняющие, углубляющие понимание материала вопросы ребят, учителя.

5.Закрепление полученных знаний.

Задача: Объяснить необратимость реальных тепловых процессов с точки зрения статистической механики.

Рассмотрим с точки зрения МКТ модель “вечного” двигателя второго рода.

  1. Газ самопроизвольно собирается в левой половине цилиндра.
  2. Поршень подвигают вплотную к газу. При этом внешние силы работу не совершают, т.к. газ, собравшийся в левой половине, не оказывает давления на поршень.
  3. Подводим к газу теплоту и заставляем его изотермически расширяться до первоначального объема. При этом газ совершает работу за счет подведенного тепла.
  4. После того, как поршень перейдет в крайнее правое положение, необходимо ждать, пока газ снова не соберется самопроизвольно в левой половине сосуда, и затем повторяем все снова.

1.Термодинамический подход не объясняет природу необратимости реальных процессов в макроскопических системах.

2.Молекулярно-кинетический подход позволяет проанализировать причины необратимости.

Итог: Получилась периодически действующая машина, которая совершает работу только за счет получения теплоты от окружающей среды.

(МКТ позволяет объяснить, почему такое устройство не будет работать.

Учащимся предлагается поразмышлять над этим вопросом.)

Теперь становится возможным объяснение того, какой смысл вкладывается в понятие необратимого процесса: процесс является необратимым, если обратный процесс в действительности почти никогда не происходит.

Рассмотренный материал станет основой изучения материала следующего урока по теме “Тепловые двигатели”

6. Проверочная работа.

Время работы – 5-7 минут.

1.Когда тело получает тепло за счет совершения механической работы, то это означает необратимое превращение кинетической энергии упорядоченного макроскопического движения в кинетическую энергию хаотического движения молекул.

2.Превращение теплоты в работу, означает превращение энергии беспорядочного движения молекул в энергию упорядоченного движения макроскопического тела.

Нажмите, чтобы узнать подробности

Разработка урока физики в 10 классе на тему "Второй закон термодинамики. Тепловые машины". Рассмотрен принцип необратимости явлений в природе, принцип действия тепловых машин, коэффициент полезного действия тепловых машин, цикл Карно. Урок предполагает формирование у учащихся понимания проблем экологии.

Ваш браузер должен поддерживать фреймы Ваш браузер должен поддерживать фреймы--> --> Ваш браузер должен поддерживать фреймы--> --> Ваш браузер должен поддерживать фреймы--> -->


-75%

Нажмите, чтобы узнать подробности

4. Что называют рабочим телом? Какие вещества используются в качестве рабочего тела в двигателях?

5. По какой формуле определяют работу, совершаемую двигателем?

6. Что называется КПД теплового двигателя?

7. По какой формуле определяется КПД машины Карно?

8. Каков КПД двигателей внутреннего сгорания?

1. Как изменится внутренняя энергия идеального газа при адиабатическом расширении?

2. Газ, находящийся под давлением р = 10 5 Па, изобарно расширился от 25 до 50 м 3 . Определите работу, совершенную газом при расширении

3. Газу передано 100 Дж количества теплоты, а внешние силы совершили над ним работу 300 Дж. Чему равно изменение внутренней энергию газа?

4. Как изменится внутренняя энергия идеального газа при изотермическом сжатии?

5. Газ получил количество теплоты 300 Дж. Его внутренняя энергия увеличилась на 200 Дж. Чему равна работа, совершенная газом?

6. Газ, находящийся под давлением р = 10 5 Па, изобарно расширился, совершив работу А = 25 Дж. На сколько увеличился объем газа?

1. Какова внутренняя энергия 10 молей одноатомного газа при 27 °С?

2. На сколько изменится внутренняя энергия гелия массой 200 г при увеличении температуры на 20 °С?

Карточка для учащихся

III. Изучение нового материала

Задолго до открытия закона сохранения энергии Французская академия наук приняла в 1775 г. решение не рассматривать проектов вечных двигателей первого рода. Подобные решения были приняты позднее ведущими научными учреждениями других стран.

Под вечным двигателем первого рода понимают устройство, которое могло бы совершать неограниченное количество работы без затраты топлива или других материалов, т. е. без затраты энергии. Таких проектов было создано очень много. Но все они не действовали вечно, именно это привело к мнению, что здесь дело не в несовершенстве отдельных конструкций, а в общей закономерности.

Согласно I закону термодинамики, если Q = 0, то работа может совершаться за счет убыли внутренней энергии. Если запас энергии исчерпан, двигатель перестал работать. Если система изолирована и не совершается работа, то внутренняя энергия остается неизменной.

Закон сохранения энергия утверждает, что внутренняя энергия при любых ее превращениях остается неизменной, но ничего не говорит о том, какие превращения возможны. Между тем многие процессы, вполне допустимые с точки зрения закона сохранения, в действительности не протекают.

Более нагретое тело само собой остывает, передавая свою энергию более холодным телам. Обратный процесс передачи от более холодного тела к горячему не противоречит закону сохранения, но не происходит. Таких примеров можно привести много. Это говорит о том, что процессы в природе имеют определенную направленность, не как не отраженную в первом законе термодинамики. Все процессы в природе необратимы (старение организмов).

Можно заставить увеличить амплитуду маятника, подтолкнув его, но это произойдет не само собой, это результат более сложного процесса, включающего толчок рукой.

Второй закон термодинамики указывает направление возможных энергетических превращений и тем самым выражает необратимость процессов в природе. Был установлен путем обобщения опыта.

Немецкий ученый Р. Клаузиус сформулировал его так:

Невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах.

Английский ученый У. Кельвин сформулировал так:

Невозможно осуществлять периодически такой процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника.

Иначе говоря, ни один тепловой двигатель не может иметь коэффициент полезного действия, равный единице.

Формулировка второго закона, данная Кельвином, позволяет выразить этот закон в виде утверждения. Невозможно построить вечный двигатель второго рода, т. е. создать двигатель, совершающий работу за счет охлаждения какого-нибудь одного тела.

Вечный двигатель второго рода не нарушает закона сохранения энергии, но если бы он был возможен, мы получили бы практически неограниченный источник работы, черпая ее из океанов и охлаждая их. Однако охлаждение океана, как только его температура становится ниже температуры окружающей среды, означало бы переход теплоты от более холодного к телу более горячему, а такой процесс идти не может.

Второй закон термодинамики указывает направление процессов в природе.

IV. Закрепление изученного

1. Какие процессы считаются необратимыми?

2. Сформулируйте второй закон термодинамики.

3. Как связана формулировка второго закона термодинамики с необратимостью тепловых процессов?

4. В чем заключается статистическая интерпретация второго закона термодинамики?

Читайте также: