Ремонт усилителя звуковой частоты конспект

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Практическая работа №1

Диагностика неисправностей УЗЧ

1. Параметры усилителей звуковых частот

В зависимости от назначения аппаратуры усилители звуковых частот (УЗЧ) различаются качественными показателями и конструктивным исполнением. По функциональным признакам УЗЧ разделяют на предварительные и усилители мощности. Структурная схема УЗЧ представлена на рисунке 1.1. Схема стереофонического усилителя дополняется вторым аналогичным каналом.

Усилители звуковой частоты характеризуются номинальной выходной мощностью, диапазоном усиливаемых частот, динамическим диапазоном сигналов. Номинальная выходная мощность – это наибольшая мощность, при которой искажения сигнала не превышают допустимой величины. Диапазон усиливаемых частот – область частот, в которой коэффициент усиления изменяется в пределах, заданных техническими условиями. Динамический диапазон сигналов – отношение амплитуд наибольшего и наименьшего сигналов в децибеллах.

Качественные показатели УЗЧ оцениваются коэффициентами гармоник и интермодуляционных искажений, уровнем фона. Коэффициент гармоник (нелинейных искажений) определяет уровень высших гармоник по отношению к уровню основного гармонического сигнала. Коэффициент интермодуляционных искажений обусловлен суммарным уровнем комбинационных частот, появляющихся на выходе усилителя, при воздействии двух или более гармонических сигналов. Фон в УЗЧ возникает при недостаточной фильтрации питающего напряжения. Его величина определяется эффективным напряжением фона по отношению к эффективному напряжению сигнала при его максимальном уровне.

hello_html_m3c4e88f6.jpg

Рисунок 1.1 – Структурная схема полного усилителя звуковых частот

Буферные усилители (см. рисунок 1.1) в УЗЧ служат для развязки и согласования частотно-зависимых каскадов усилителя. Оконечные усилители звуковой частоты предназначены для усиления звукового сигнала по мощности. Структурная схема усилителя мощности приведена на рисунке 1.2.

hello_html_460d5615.jpg

Рисунок 1.2 – Структурная схема усилителя мощности

2 Диагностика усилителей звуковых частот

Для поиска неисправностей в УЗЧ необходимы следующие приборы: звуковой генератор типа ГЗ-102, ГЗ-118, осциллограф типа С1-78, С1-83 или подобный, измеритель нелинейных искажений С6-5, универсальный вольтметр типа В7-27 или ему подобный, эквиваленты нагрузок 4, 8, 16 Ом соответствующей мощности. В качестве эквивалентов можно использовать проволочные резисторы. Для поиска неисправностей в высококачественных УЗЧ и последующей их регулировки требуется звуковой генератор с прецизионной формой сигнала, низкочастотный анализатор спектра и измеритель амплитудно-частотных характеристик.

Алгоритм поиска неисправностей усилителя звуковой частоты (структурную схему см. на рисунке 1.1) показан на рисунке 1.4.

Существенно упрощается процесс контроля АЧХ усилителя при наличии измерителя частотных характеристик типа XI-49 или ему подобного. Подключив усилитель к измерителю, на его экране наблюдают амплитудно-частотную характеристику.

Если коэффициент гармоник меньше 0,1%, то его измерение сопряжено со значительными сложностями, так как промышленностью не выпускаются измерители нелинейных искажений с такой разрешающей способностью.

Рисунок 1.3. Схема подключения приборов

Структурная схема подключения приборов для проведения измерений приведена на рисунке 1.3.

Перечень параметров, по которым производится регулировка, и методика измерений

Перечень параметров, по которым производится регулировка.

Коэффициент усиления К у , не менее 40.

Выходная мощность, Р вых .

Выходное сопротивление, R вых .

Коэффициент нелинейных искажений К ни, не более 0,01%.

Напряжение питания, U пит , 220в ± 30.

Технология измерения параметров:

Установить f = 10 кГц и подать сигнал U вх = 100 мВ и установить регулятор усиления в максимальное положение.

С помощью осциллографа проверить форму сигнала. Если нелинейное искажение превышает 5-7%, то провести диагностику усилителя.

Уровень нелинейных искажений измерить с помощью ИНИ, их величины не должны превышать заданных.

Измерить P вых на частоте f = 10 кГц, P вых должно быть не менее заданного.

Установить частоту выходного сигнала f = 10 Гц и амплитуду U вх = 100 мВ.

Измерить выходную мощность Р вых на частоте f=10Гц, её уровень должен быть не менее 0,7 по отношению к мощности на частоте f=10кГц,

Провести измерение по пункту 6, установить частоту равную f=20 кГц и входное напряжение U вх =100 мВ.

При несоответствии указанных параметров ТУ провести вновь диагностику и устранить неисправность.

Цель составления и разработка алгоритма устранения неисправности

Алгоритм поиска неисправности - это последовательное проведение всех действий радиомеханика по ремонту, необходимых для определения неисправного блока, каскада и элемента ремонтируемого устройства. Целью составления алгоритма является разработка последовательности действий по выявлению причин неисправности, проверка работоспособности блока и устранение неисправности, приводящее к замене неисправных деталей и проверке их основных характеристик после выполнения ремонта или в процессе наладки.

Алгоритм поиска неисправности может быть составлен двумя способами:

- записью порядка выполнения работ, при которой указывается типовая неисправность, возможные причины и последовательность действий при устранении неисправности;

- графическим способом, при котором при помощи условных обозначений показан порядок проведения работ.

Для составления блок-схемы алгоритма, поиска неисправности применяются следующие блок схемы:

- блок выполнения операций (действий) по обработке данных, текст внутри блока является кратким описанием этого.

- блок проверки выполнения условия с целью принятия решения о направлении последующего кода вычислений. Возможные результаты проверки указываются на линиях, выходящих из блоков.

- блок печати и конца алгоритма.

Алгоритм, состоящий из блок-схем, дает полное представление о работе той или иной системы. Опираясь на технологическую документацию, можно составить алгоритм по нахождению заданных неисправностей.

Обобщенный алгоритм поиска неисправностей УЗЧ приведен на рисунке 1.4.

hello_html_6fbef664.jpg

Рисунок 1.4 – Алгоритм поиска неисправностей в усилителе звуковых частот

Зарисовать принципиальную схему УЗЧ

Определить возможные неисправности УЗЧ и методика их устранения

Составить алгоритм устранения неисправностей

Вопросы для самоконтроля:

1. Структурная схема подключения приборов для проверки работоспособности УЗЧ и основных параметров, требования к приборам.

2. Неисправности УЗЧ: выходная мощность занижена, отсутствует сигнал. Причины появления неисправностей и методика их отыскания.

3. Неисправности УЗЧ: самовозбуждение. Причина, обнаружение, устранение.

4. Неисправности УЗЧ: искажение синусоидального сигнала. Причина, обнаружение, устранение.

5. Регулировка УЗЧ.

6. Контроль параметров УЗЧ: выходной мощности и уровня собственных шумов.

7. Контроль параметров УЗЧ: АЧХ, уровень фона.

8. Контроль параметров УЗЧ: гармоники, амплитудная характеристика.

9. Контроль параметров УЗЧ: коэффициент интермодуляционных искажений, пределы регулировки тембров.

Усилитель звуковой частоты представляет собой устройство, где сигнал проходит через последовательно соединённые каскады. Поиск неисправностей осуществляется по достаточно простому алгоритму, поэтому вопрос, как отремонтировать усилитель звука своими руками не является слишком сложным. Единственное условие – это наличие измерительной техники. Обычный тестер позволяет обнаружить некоторые дефекты, а наличие такой измерительной аппаратуры, как осциллограф и генератор звуковой частоты, позволят отремонтировать устройство эффективно и быстро.

Как починить усилитель звука

Поиск и устранение неисправностей в системах усиления низкой частоты должны выполняться в определённой последовательности. Это позволит избежать ошибок и лишней траты времени. Ремонт усилителя звука начинается с внешнего осмотра. При этом можно легко заметить оторванные провода, нарушенные проводники или механические повреждения отдельных элементов. Поскольку все детали звуковой системы, попадающие под воздействием слишком больших токов, изменяются, осмотр позволит выявить дефекты, связанные с электрическими повреждениями в различных цепях. На постоянных резисторах полностью обгорает краска, и часто нарушаются печатные дорожки на плате. Дефектные электролитические конденсаторы легко обнаружить по вздутию в верхней части цилиндрического корпуса. Обычно такие повреждения радиодеталей являются не причиной, а следствием другой неисправности, поэтому после устранения видимых дефектов устройство включать не рекомендуется, а следует последовательно проверять все каскады. Первое, что можно сделать – это прозвонить акустическую систему и проверить на обрыв цепи между выходом усилителя и динамиками.

Блок питания

Проверку устройства звуковой частоты нужно начинать с блока питания. В большинстве узлов применяются простые схемы трансформаторных источников питания и только в некоторых конструкциях используются импульсные преобразователи напряжения. Если дефект системы звуковой частоты неизвестен, то перед проверкой, блок питания следует отключить от основной схемы. Это можно сделать, разрезав печатные дорожки. Проверка блока питания начинается с измерения выходного постоянного напряжения. Если оно сильно завышено, нужно проверить регулирующий транзистор и стабилитроны.

Усилительный тракт

Если блок питания и выходные транзисторы исправны, нужно искать дефекты в предоконечном и предварительном каскадах. Для этого сигнал с генератора частотой 800 Гц-1кГц и амплитудой 100 мв нужно последовательно подавать на каскады блока звуковой частоты и контролировать прохождение сигнала через акустическую систему. При ремонте конструкций большой выходной мощности вместо динамиков нужно использовать эквивалент нагрузки, а сигнал контролировать осциллографом.

Конструкции, собранные на специализированных интегральных микросхемах, не имеют дискретных элементов. На плате могут находиться конденсаторы фильтра питания и входная ёмкость. В этом случае какая-либо диагностика не имеет смысла. Если питающее напряжение устройства в норме и во входных и выходных цепях нет обрывов, то микросхему придётся менять. В автомобильных системах частыми неисправностями являются дефекты печатного монтажа. Такие нарушения встречаются у китайских производителей. Некачественная пайка от тряски и вибрации нарушается, и автомобильный низкочастотный блок выходит из строя.

Методика Ремонта УНЧ, Методика ремонта усилителя, Методика Ремонта УНЧ, алгоритм ремонта усилителя, Как отремонтировать усилитель
Методика Ремонта УМЗЧ

Здесь приведены три статьи по ремонту транзисторных усилителей:

Методика ремонта УМЗЧ

Главной задачей ремонта любого УМЗЧ является локализация вышедшего из строя элемента, повлекшего за собой неработоспособность как всей схемы, так и выход из строя других каскадов. Поскольку в электротехнике бывает всего 2 типа дефектов:

  1. наличие контакта там, где его быть не должно;
  2. отсутствие контакта там, где он должен быть,

Перечень оборудования и инструментов, необходимых (или по крайней мере крайне желательных) при ремонте:

  1. Отвертки, бокорезы, пассатижи, скальпель (нож), пинцет, лупа – т.е., минимальный обязательный набор обычного монтажного инструмента.
  2. Тестер (мультиметр).
  3. Осциллограф.
  4. Набор ламп накаливания на различные напряжения – от 220 В до 12 В (по 2 шт.).
  5. Низкочастотный генератор синусоидального напряжения (весьма желательно).
  6. Двухполярный регулируемый источник питания на 15…25(35) В с ограничением выходного тока (весьма желательно).
  7. Измеритель емкости и эквивалентного последовательного сопротивления ( ESR ) конденсаторов (весьма желательно).
  8. И, наконец, самый главный инструмент – голова на плечах (обязательно!).

а) двухполярный источник питания (не показан);

б) входной дифференциальный каскад на транзисторах VT 2, VT 5 с токовым зеркалом на транзисторах VT 1 и VT 4 в их коллекторных нагрузках и стабилизатором их эмиттерного тока на VT 3;

в) усилитель напряжения на VT 6 и VT 8 в каскодном включении, с нагрузкой в виде генератора тока на VT 7;

г) узел термостабилизации тока покоя на транзисторе VT 9;

д) узел защиты выходных транзисторов от перегрузки по току на транзисторах VT 10 и VT 11;

е) усилитель тока на комплементарных тройках транзисторов, включенных по схеме Дарлингтона в каждом плече ( VT 12 VT 14 VT 16 и VT 13 VT 15 VT 17).


  1. Первым пунктом любого ремонта является внешний осмотр сабжа и его обнюхивание (!). Уже одно это позволяет иногда хотя бы предположить сущность дефекта. Если пахнет паленым – значит, что-то явно горело.
  1. Проверка наличия сетевого напряжения на входе: тупо перегорел сетевой предо­хранитель, разболталось крепление проводов сетевого шнура в вилке, обрыв в сетевом шнуре и т.п. Этап – банальнейший по своей сущности, но на котором ремонт заканчивается примерно в 10% случаев.
  1. Проверяем блок питания. Отпаиваем провода, идущие от БП к схеме (или отсоединяем разъем, если он есть). Вынимаем сетевой предохранитель и к контактам его держателя подпаиваем лампу на 220 В (60…100 Вт). Она ограничит ток первичной обмотки трансформатора, равно как и токи во вторичных обмотках.

Включаем усилитель. Лампа должна мигнуть (на время зарядки конденсаторов фильтра) и погаснуть (допускается слабое свечение нити). Это значит, что К.З. по первичной обмотке сетевого трансформатора нет, как нет явного К.З. в его вторичных обмотках. Тестером на режиме переменного напряжения измеряем напряжение на первичной обмотке трансформатора и на лампе. Их сумма должна быть равна сетевому. Измеряем напряжения на вторичных обмотках. Они должны быть пропорциональными тому, что измерено фактически на первичной обмотке (относительно номинального). Лампу можно отключать, ставить предохранитель на место и включать усилитель прямо в сеть. Повторяем проверку напряжений на первичной и вторичной обмотках. Соотношение (пропорция) между ними должно быть таким же, как при измерении с лампой.

Лампа горит постоянно в полный накал – значит, имеем К.З. в первичной цепи: проверяем целостность изоляции проводов, идущих от сетевого разъема, тумблер питания, держатель предохранителя. Отпаиваем один из поводов, идущих на первичную обмотку трансформатора. Лампа погасла – скорее всего вышла из строя первичная обмотка (или межвитковое замыкание).

Лампа горит постоянно в неполный накал – скорее всего, дефект во вторичных обмотках или в подключенных к ним цепях. Отпаиваем по одному проводу, идущему от вторичных обмоток к выпрямителя(м). Не перепутать, Кулибин! Чтобы потом не было мучительно больно от неправильной подпайки назад (промар­кировать, например, с помощью кусочков липкой малярной ленты). Лампа погасла – значит, с трансформатором все в порядке. Горит – снова тяжко вздыхаем и либо ищем ему замену, либо перематываем.



  1. Выпрямители и конденсаторы целые, но на выходе блока питания стои́т стабилизатор напряжения? Не беда. Между выходом выпрямителя(ей) и входом(ами) стабилизатора(ов) включаем лампу(ы) (цепочку(и) ламп) на суммарное напряжение близкое к указанному на корпусе конденсатора фильтра. Лампа загорелась – дефект в стабилизаторе (если он интегральный), либо в цепи формирования опорного напряжения (если он на дискретных элементах), либо пробит конденсатор на его выходе. Пробитый регулирующий транзистор определяется прозваниванием его выводов (выпаять!).
  1. С блоком питания все в порядке (напряжения на его выходе симметричные и номинальные)? Переходим к самому главному – собственно усилителю. Подбираем лампу (или цепочки ламп) на суммарное напряжение, не ниже номинального с выхода БП и через нее (них) подключаем плату усилителя. Причем, желательно к каждому из каналов по отдельности. Включаем. Загорелись обе лампы – пробиты оба плеча выходных каскадов. Только одна – одно из плеч. Хотя и не факт.

Лампы не горят или горит только одна из них. Значит, выходные каскады, скорее всего, целые. К выходу подключаем резистор на 10…20 Ом. Включаем. Лампы должны мигнуть (на плате обычно есть еще конденсаторы по питанию). Подаем на вход сигнал от генератора (регулятор усиления – на максимум). Лампы (обе!) зажглись. Значит, усилитель что-то усиливает, (хотя хрипит, фонит и т.п.) и дальнейший ремонт заключается в поиске элемента, выводящего его из режима. Об этом – ниже.

  1. Для дальнейшей проверки лично я не использую штатный блок питания усилителя, а применяю 2-полярный стабилизированный БП с ограничением тока на уровне 0,5 А. Если такового нет – можно использовать и БП усилителя, подключенный, как было указано, через лампы накаливания. Только нужно тщательно изолировать их цоколи, чтобы случайно не вызвать КЗ и быть аккуратным, чтобы не разбить колбы. Но внешний БП – лучше. Заодно виден и потребляемый ток. Грамотно спроектированный УМЗЧ допускает колебания питающих напряжений в довольно больших пределах. Нам ведь не нужны при ремонте его супер-пупер параметры, достаточно просто работоспособности.
  1. Для начала отключаем узел защиты, для чего выпаиваем из платы правые выводы диодов VD 6 и VD 7 (у меня в практике было три случая, когда причиной неработо­способности был выход из строя именно этого узла). Смотрим напряжение не выходе. Если нормализовалось (может быть остаточный перекос в несколько милливольт – это норма), прозваниваем VD 6, VD 7 и VT 10, VT 11. Могут быть обрывы и пробои пассивных элементов. Нашли пробитый элемент – меняем и восстанавливаем подключение диодов. На выходе ноль? Выходной сигнал (при подаче на вход сигнала от генератора) присутствует? Ремонт закончен.

er=0 width=1058 height=584 src="http://www.donex-ua.narod.ru/el/amp_repair.files/image004.jpg">

Ничего с сигналом на выходе не изменилось? Оставляем диоды отключенными и идем дальше.

  1. Выпаиваем из платы правый вывод резистора ООС ( R 12 вместе с правым выводом C 6), а также левые выводы R 23 и R 24, которые соединяем проволочной пере­мычкой (показана на рис. 4 красным) и через дополнительный резистор (без нумерации, порядка 10 кОм) соединяем с общим проводом. Перемыкаем проволочной перемычкой (красный цвет) коллекторы VT 8 и VT 7, исключая конденсатор С8 и узел термостабилизации тока покоя. В итоге усилитель разъединяется на два самостоятельных узла (входной каскад с усилителем напряжения и каскад выходных повторителей), которые должны работать самостоятельно.

Если есть возможность, сто́ит переставить R 22 в базо-эмиттерную цепь. Правда, при этом регулировка тока покоя станет выражено нелинейной от угла поворота движка, но IMHO это не такая уж и большая плата за надежность. Можно просто заменить транзистор VT 9 на другой, с обратным типом проводимости, если позволяет разводка дорожек на плате. На работу узла термостабилизации это никак не повлияет, т.к. он является двухполюсником и не зависит от типа проводимости транзистора.

  1. Вот и добрались мы до самого интересного, но и самого сложного – дифкаскада с усилителем напряжения. Они работают только совместно и разделить их на отдельные узлы принципиально невозможно.
  1. Сигнал резко снижен по амплитуде (мало усиление) – в первую очередь проверить емкость конденсатора(ов) С3(С4, т.к. производители для экономии очень часто ставят только один полярный конденсатор на напряжение 50 В и больше, рассчитывая, что в обратной полярности он все равно будет работать, что не есть гут). При его подсыхании или пробое резко снижается коэффициент усиления. Если нет измерителя емкости – проверяем просто путем замены на заведомо исправный.

Сигнал перекошен – в первую очередь проверить емкость конденсаторов С5 и С9, шунтирующих шины питания предусилительной части после резисторов R17 и R19 (если эти RC-фильтры вообще есть, т.к. нередко они не ставятся).

  1. Естественно, описать все возможные причинно-следственные варианты дефектов мало реально. Поэтому дальше просто изложу, как проверять узлы и компоненты данного каскада.

Стабилизаторы тока VT 3 и VT 7. В них возможны пробои или обрывы. Из платы выпаиваются коллекторы и замеряется ток между ними и землей. Естественно, сначала нужно рассчитать по напряжению на их базах и номиналам эмиттерных резисторов, каким он должен быть. ( N . B .! В моей практике был случай самовозбуждения усилителя из-за чрезмерно большого номинала резистора R 10, поставленного изготовителем. Помогла подстройка его номинала на полностью работающем усилителе – без указанного выше разделения на каскады).

Аналогично можно проверить и транзистор VT 8: если перемкнуть коллектор-эмиттер транзистора VT 6, он также тупо превращается в генератор тока.

Транзисторы дифкаскада VT 2 V 5 T и токового зеркала VT 1 VT 4, а также VT 6 проверяются их прозвонкой после отпайки. Лучше замерить коэффициент усиления (если тестер – с такой функцией). Желательно подобрать с одинаковыми коэффициентами усиления.

Если проверили все активные компоненты, а дефект сохраняется – нужно (опять же, с тяжким вздохом), выпаять из платы хоть по одной ножке и проверить тестером номиналы пассивных компонентов. Нередки случаи обрывов постоянных резисторов без каких-либо внешних проявлений. Неэлектролитические конденса­торы, как правило, не пробиваются/обрываются, но всякое бывает…

  1. Убираем все временные соединения (не забывать. ), собираем усилитель окончательно, закрываем корпус и наливаем чарку, которую с чувством глубокого удовлетворения проделанной работой, выпиваем. А то работать не будет!

Falconist

Запуск усилителя по пунктам

Вначале нужно сказать про защитные резисторы. Смысл всех резисторов - снижать ток. В разные точки схемы включенные, они создают токи коллектора, входные, токи смещения и прочие. Включенные в разрыв питающих проводов, они снижают потребляемый схемой ток, или ограничивают его.

Схема защитного выпрямителя.


На контактах 2-3-7 обычное питание, так сказать, "±" (плюс-минус). На контактах 1-3-8 то же питание, только ослабленное по мощности. В итоге, если выпрямитель отдает ±30В при токе 5А на контактах 2-3-7, то с контактов 1-3-8 мы не снимем ток, больший 0,3А. Испытывая усилитель таким током, работоспособность его проверить можно, а вот если в схеме есть ошибки, то больше чем в половине случаев можно предотвратить выгорание деталей, сэкономить время и деньги. Если только что собранный усилитель испытывать сразу же на полной мощности, ошибки в схеме приведут к различного рода пиротехническим эффектам, выжиганию транзисторов и еще туевой хуче проблем.


Итак, нашего малыша :) подключаем к защитному питанию, и - поехали!

Спустя 10-20 минут работы усилителя на полную мощность можно говорить о его готовности

Старый ржавый электронщик

Как правильно запускать и настраивать транзисторные УМ с ООС

Как правильно запускать и настраивать транзисторные УМ с ООС

Минимальный комплекс представлений о работе ТУМ

Для того, чтобы понять, как работает ТУМ надо совсем немного. 1. Знать закон Ома и быть уверенным в том , что он работает всегда и везде, где есть ток. 2. Знать закон Кирхгофа с такой же уверенностью. 3. Знать, что падение на р-н переходе равно 0,6 В. и что у транзистора их два, а у диода один. 4. Знать простую формулу f = 1 / 2 пи C R. Это частота RC цепи по уровню –3дБ. 5. Иметь представление о диаграммах Боде и уметь их рисовать. Чтобы их нарисовать, надо иметь на кухне минимальный набор приборов.


Минимальный набор приборов


Их совсем немного. 1. Вольтметр постоянного и переменного тока, желательно стрелочный. 2. Осциллограф от 10 мГц. , желательно двухлучевой и с максимально большим экраном. Это твой основной инструмент, так же как и 3. Генератор хотя бы до 200 кГц. с хорошим аттенюатором и хорошей формой амплитуды. ГЗ 118 вполне подойдёт.


Анализ схемы


Берём схему, которую собрались делать, и начинаем её анализировать. Надо чётко понимать, как она работает. Для этого нужны справочные данные всех применённых транзисторов. Рассчитываем всю схему по постоянному току. Смотрим, где какой ток бежит и не являются ли эти режимы предельными или близко к предельным для применённых транз. и диодов. Потом прикидываем пределы изменений для переменного тока при подаче сигнала (при этом допускаем, что автор правильно применил ООС). Если всё чики-пуки, то эту схему можно собрать, и она ,при правильном монтаже, сразу не сгорит. Можно так же провести частотный анализ и нарисовать, как примерно будет работать ООС, но не стоит перегружать мозг, т.к. на рабочем макете это сделать намного проще.

Запуск и настройка

Для ремонта УЗЧ необходимы следующие приборы: звуковой генератор типа ГЗ-102, ГЗ-118, осциллограф типа С1-78, С1-83 или подобный, измеритель нелинейных искажений С6-5, универсальный вольтметр типа В7-27 или ему подобный, эквиваленты нагрузок 4, 8, 16 Ом соответствующей мощности. В качестве эквивалентов можно использовать проволочные резисторы. Для ремонта высококачественных УЗЧ и последующей их регулировки желателен звуковой генератор с прецизионной формой сигнала, низкочастотный анализатор спектра и измеритель амплитудно-частотных характеристик.


Внешние проявления неисправностей усилителей следующие: периодическое пропадание звука или его полное отсутствие, слабый уровень выходного сигнала, большой уровень шума или фона, нелинейные искажения.

Неисправность, при которой появляются пропадание сигнала, треск и другие шумы в момент регулировки уровня сигнала, обычно связана с загрязнением подвижного контакта потенциометра регулировки. Дефект можно устранить разборкой регулятора и протиркой контакта. Если же неисправность устранить нельзя, заменяют потенциометр.

Алгоритмы поиска неисправностей УЗЧ составлены на основе последовательной проверки прохождения сигнала и анализе работоспособности каскадов усилителя (способ последовательных промежуточных измерений от входа к выходу). При диагностике УЗЧ способом исключений проверяется исправность каскадов от выхода по направлению ко входу. Для мощных УЗЧ предпочтителен второй способ. В усилителях малой мощности (до 5 Вт) и предварительных усилителях можно использовать оба способа поиска дефекта. Неисправный элемент в каскаде определяется измерением режимов и сравнением их с номинальными или проверкой сопротивлений и сопоставлением их с картой сопротивлений. Алгоритм поиска неисправности полного усилителя звуковой частоты (структурную схему см. на рис. 5.1) показан на рис. 5.9.


В случае неисправности одного канала стереофонического усилителя для локализации неисправного каскада можно рекомендовать запараллеливание через разделительный конденсатор входных цепей аналогичных каскадов.

Неисправность, проявляющаяся в увеличении шума и фона усилителя, возникает из-за уменьшения емкости конденсаторов в цепях фильтрации питающего напряжения или возбуждения усилителя в звуковом или ультразвуковом диапазоне. Возбуждение усилителя возможно вследствие неудачного размещения в комплексе звуковоспроизводящей аппаратуры, если возбуждение не обусловлено паразитной акустической обратной связью, то для ее устранения надо улучшить развязку по цепям питания или ограничить полосы пропускания усилителя. Повышенный уровень пульсации питающего напряжения и возбуждение усилителя обнаруживают с помощью осциллографа.


Контроль параметров УЗЧ осуществляется по функциональной схеме, приведенной на рис. 5.11. В этом случае номинальную выходную мощность на частоте 1000 Гц можно определить по выражению Р= U2/R«.

Амплитудно-частотная характеристика усилителя строится по точкам при изменении частоты входного напряжения усилителя с фиксацией выходного. Пределы регулировки тембра устанавливаются аналогичным образом.

Существенно упрощается процесс контроля АЧХ усилителя при наличии измерителя частотных характеристик типа XI -49 или ему подобного. Подключив усилитель к измерителю, на его экране наблюдают амплитудно-частотную характеристику.

Если коэффициент гармоник меньше 0,1 %, то его измерение сопряжено со значительными сложностями, так как промышленностью не выпускаются измерители нелинейных искажений с такой разрешающей способностью.

__________________
Если не можете скачать файл. / Наше приложение ВКонтакте / Какими программами открывать скачанное? | Распоряжения 1

Читайте также: