Нанотехнологии в биологии конспект урока

Обновлено: 03.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Муниципальное общеобразовательное бюджетное учреждение
средняя общеобразовательная школа № 4 р.п. Лесогорск

Зам директора по УВР

Директор МОБУ СОШ № 4

для обучающихся 10-11 классов

Образовательная область: естественные науки

Чебунин Роман Юрьевич,

первой квалификационной категории

I. Организационно-методический раздел………………………………………… . ..3

III. Система оценки достижений учащихся…………………………………………..6

IV. Список источников и литературы………………………………………………. 7

V. Учебно-тематическое планирование……………………………………………..9

Пояснительная записка

I. Организационно-методический раздел.

Рабочая программа элективного курса составлена на основе следующих нормативно- правовых документов:

- Федеральный государственным образовательным стандартом среднего общего образования (утвержден приказом Минобрнауки РФ от 17.05.2012 г. № 413) с изменениями (утверждены приказами Минобрнауки РФ от 29 декабря 2014 г. № 1645, 31 декабря 2015 г. № 1578, 29 июня 2017 г. № 613) .

- Федеральный базисный учебный план и примерные учебные планы для общеобразовательных учреждений Российской Федерации, реализующих программы общего образования, утвержден приказом Министерства образования Российской Федерации от 09.03.2004 г. № 1312, (в редакциях от 28.08.2008 № 241, от 03.06.2011 № 1994, от 01.02.2012 № 74);

- Приказ Министерства образования и науки Российской Федерации от 3-.08.2013 №1015 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам – образовательным программам начального общего, основного общего, среднего общего образования (редакция 13.12.2013).

- Санитарно-эпидемиологические правила и нормативы СанПиН 2.4.2.2821-10 (постановление главного государственного санитарного врача РФ от 29.12.2010 189.

Примерная (авторская) программа (основного общего образования, среднего (полного) общего образования) по учебным предметам. Рабочая программа ориентирована на реализацию профильного и предпрофильного образования в общеобразовательном учреждении. Прохождение курса рассчитано на 17 часов.

Ведущие страны ежегодно вкладывают огромные средства в нанотехнологии и активно их применяют в разных сферах. Применение нанотехнологий в медицине помогает многократно увеличить эффективность лекарственных препаратов и достичь значительного прогресса в разработки новых лекарств. Появление материалов, разработанных на основе применения нанотехнологий можно сравнить с приходом космических и цифровых технологий.

В современной школе на уроках и элективных курсах по биологии у учащихся формируется восприятие естественно-научной картины мира. Для формирования ключевых знаний в данном курсе происходит ознакомление учащихся с принципами и современными достижениями в области биотехнологии, генной инженерии, нанотехнологий. В рамках программы рассматриваются данные по использованию нанотехнологии в биологии и медицине, экологические принципы использования наноструктур, ведется профориентационная работа.

Цель: Формирование у старшеклассников представления об основах современной молекулярной биологии, биотехнологии и нанотехнологии.

Задачи курса :

· Обобщить межпредметные знания по молекулярной биологии, химии, физики.

· Сформировать у учащихся представление о нано гехнологиях в биологии. Познакомить с основными методами микроскопии, д ать понятие о задачах и методах молекулярной биологии.

· Углубить знания учащихся о структуре геномов организмов, а также о принципах их изменения.

· Рассмотреть примеры использования нанотехнологии в био­ логии, медицине и других отраслях.

· Совершенствовать умения и навыки самообразования и саморазвития.

· Проводить анализ информации на основе знаний общей биологии.

· Формировать умения обращаться с лабораторным оборудованием, веществами, приборами; наблюдать и объяснять химические явления; фиксировать результаты опытов; формировать умения организовать свой рабочий труд, пользоваться учебной, справочной литературой, сайтами Интернет.

· Рассмотреть экологические принципы использования нанопродукции .

В основу программы положено углубленное изучение некоторых теоретических положений, практическое использование знаний, получаемых на занятиях. Программа предусматривает разноуровневые задания в соответствии со способностями и возможностями учащихся.

Нажмите, чтобы узнать подробности

продолжить формирование умений наблюдать, делать выводы, выделять главное.

развивать наблюдательность, внимание, речь, память.

развивать интерес и логическое мышление путем решаемых проблем.

развивать интерес к поиску дополнительной информации через Интернет.

продолжить развивать кругозор учащихся.

воспитывать умение работать в коллективе, осуществлять самостоятельную деятельность.

Тип урока: изучение нового материала

Вид урока: урок-конференция

Организационный момент

2. Мотивационный этап

Ознакомление с планом конференции.

- история возникновения нанотехнологий

-что такое нанотехнология?

- нанотехнология в космосе

- нанотехнология в медецине

- нанотехнология в сельском хозяйстве и промышленности

3. Изучение нового материала

1. История возникновений нанотехнологий

Дедушкой нанотехнологий можно считать греческого философа Демокрита. Он впервые использовал слово “атом” для описания самой малой частицы вещества. В течение двадцати с лишним веков люди пытались проникнуть в тайну строения этой частицы. Решение этой непосильной для многих поколений физиков задачи стало возможным в первой половине ХХ века после создания немецкими физиками Максом Кноллом и Эрнстом Руской электронного микроскопа, который впервые позволил исследовать нанообъекты.

Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий будут все больше влиять на работу механизма. Последний этап — полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать произвольное число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле — таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Принципиальный недостаток такого робота — невозможность создания механизма из одного атома.

2. Что такое нанотехнологии

Появившись совсем недавно, нанотехнологии все активней входят в область научных исследований, а из нее – в нашу повседневную жизнь. Разработки ученых все чаще имеют дела с объектами микромира, атомами, молекулами, молекулярными цепочками. Создаваемые искусственно нанообъекты постоянно удивляют исследователей своими свойствами и обещают самые неожиданные перспективы своего применения.

Основной единицей измерения в нанотехнологических исследованиях является нанометр – миллиардная доля метра. В таких единицах измеряются молекулы и вирусы, а теперь и элементы компьютерных чипов нового поколения. Именно в наномасштабе протекают все базовые физические процессы, определяющие макровзаимодействия.

Создание сканирующего туннельного микроскопа в 1980 году позволило ученым не только различать отдельные атомы, но и двигать их и собирать из них конструкции, в частности, компоненты будущих наномашин – двигатели, манипуляторы, источники питания, элементы управления. Создаются нанокапсулы для прямой доставки лекарств в организме, нанотрубки в 60 раз прочней стали, гибкие солнечные элементы и множество других удивительных устройств.

Другим хорошо известным наноэлементом является углеродная нанотрубка. Это одноатомный слой углерода, свернутый в цилиндр диаметром в несколько нанометров. Впервые эти объекты был получены в 1952 году, но лишь в 1991 году они привлекли внимание ученых. Прочность этих трубок превышает прочность стали в десятки раз, они выдерживают нагрев до 2500 градусов и давление в тысячи атмосфер. Еще одним наноматериалом является графен – двумерный углеродный слой, плоскость, состоящая из атомов углерода. Этот материал был впервые получен русскими физиками, работающими в Англии. Многие ученые полагают, что этот материал, обладающий уникальными свойствами, в будущем станет основой микропроцессоров, вытеснив современные полупроводники. Кроме того, этот материал также невероятно прочен.

Все эти наноэлементы все чаще находят применение в различных областях технологии – от медицины до космических исследований.

3. Нанотехнологии в космосе

Создана система микроспутников, она менее уязвима при попытках ее уничтожения. Одно дело сбить на орбите махину массой в несколько сот килограммов, а то и тонн, сразу выведя из строя всю космическую связь или разведку, и другое - когда на орбите находится целый рой микроспутников. Вывод из строя одного из них в этом случае не нарушит работу системы в целом. Соответственно могут быть снижены требования к надежности работы каждого спутника.

Молодые ученые считают, что к ключевым проблемам микроминиатюризации спутников среди прочего следует отнести создание новых технологий в области оптики, систем связи, способов передачи, приема и обработки больших массивов информации. Речь идет о нанотехнологиях и наноматериалах, позволяющих на два порядка снизить массу и габариты приборов, выводимых в космос. Например, прочность наноникеля в 6 раз выше, чем обычного никеля, что дает возможность при использовании его в ракетных двигателях уменьшить массу сопла на 20-30%. Уменьшение массы космической техники решает множество задач: продлевает срок нахождения аппарата в космосе, позволяет ему улететь дальше и унести на себе больше всякой полезной аппаратуры для проведения исследований. Одновременно решается задача энергообеспечения. Миниатюрные аппараты скоро будут применяться для изучения многих явлений, например, воздействия солнечных лучей на процессы на Земле и в околоземном пространстве.

Сегодня космос — это не экзотика, и освоение его — не только вопрос престижа. В первую очередь, это вопрос национальной безопасности и национальной конкурентоспособности нашего государства. Именно развитие сверхсложных наносистем может стать национальным преимуществом страны. Как и нанотехнологии, наноматериалы дадут нам возможность серьезно говорить о пилотируемых полетах к различным планетам Солнечной системы. Именно использование наноматериалов и наномеханизмов может сделать реальностью пилотируемые полеты на Марс, освоение поверхности Луны. Другим чрезвычайно востребованным направлением развития микроспутников является создание дистанционного зондирования Земли (ДЗЗ). Начал формироваться рынок потребителей информации с разрешением космических снимков 1 м в радиолокационном диапазоне и менее 1 м - в оптическом (в первую очередь такие данные используются в картографии).

Ожидается, что уже в 2025 году появятся первые ассемблеры, созданные на основе нанотехнологий. Теоретически возможно, что они будут способны конструировать из готовых атомов любой предмет. Достаточно будет спроектировать на компьютере любой продукт, и он будет собран и размножен сборочным комплексом нанороботов. Но это всё ещё самые простые возможности нанотехнологий. Из теории известно, что ракетные двигатели работали бы оптимально, если бы могли менять свою форму в зависимости от режима. Только с использованием нанотехнологий это станет реальностью. Конструкция более прочная, чем сталь, более легкая, чем дерево, сможет расширяться, сжиматься и изгибаться, меняя силу и направление тяги. Космический корабль сможет преобразиться примерно за час. Нанотехника, встроенная в космический скафандр и обеспечивающая круговорот веществ, позволит человеку находиться в нем неограниченное время. Нанороботы способны воплотить также мечту фантастов о колонизации иных планет, эти устройства смогут создать на них среду обитания, необходимую для жизни человека. Станет возможным автоматическое строительство орбитальных систем, любых строений в мировом океане, на поверхности земли и в воздухе (эксперты прогнозируют это к 2025 гг.).

4. Нанотехнологии в медицине

Последние успехи нанотехнологий, по словам ученых, могут оказаться весьма полезными в борьбе с раковыми заболеваниями. Разработано противораковое лекарство непосредственно к цели - в клетки, пораженные злокачественной опухолью. Новая система, основанная на материале, известном как биосиликон. Наносиликон обладает пористой структурой (десять атомов в диаметре), в которую удобно внедрять лекарства, протеины и радионуклиды. Достигнув цели, биосиликон начинает распадаться, а доставленные им лекарства берутся за работу. Причем, по словам разработчиков, новая система позволяет регулировать дозировку лекарства.

На протяжении последних лет сотрудники Центра биологических нанотехнологий работают над созданием микродатчиков, которые будут использоваться для обнаружения в организме раковых клеток и борьбы с этой страшной болезнью.

Новая методика распознания раковых клеток базируется на вживлении в тело человека крошечных сферических резервуаров, сделанных из синтетических полимеров под названием дендримеры (от греч. dendron - дерево). Эти полимеры были синтезированы в последнее десятилетие и имеют принципиально новое, не цельное строение, которое напоминает структуру кораллов или дерева.

Оказавшись внутри тела, эти крошечные датчики проникнут в лимфоциты - белые кровяные клетки, обеспечивающие защитную реакцию организма против инфекции и других болезнетворных факторов. При иммунном ответе лимфоидных клеток на определенную болезнь или условия окружающей среды - простуду или воздействие радиации, к примеру, - белковая структура клетки изменяется. Каждый наносенсор, покрытый специальными химическими реактивами, при таких изменениях начнет светиться.

Чтобы увидеть это свечение, ученые собираются создать специальное устройство, сканирующее сетчатку глаза. Лазер такого устройства должен засекать свечение лимфоцитов, когда те один за другим проходят сквозь узкие капилляры глазного дна. Если в лимфоцитах находится достаточное количество помеченных сенсоров, то для того, чтобы выявить повреждение клетки, понадобиться 15-секундное сканирование, заявляют ученые.

стираться. На сегодняшний день создан лишь один примитивный шагающий ДНК-робот.

Наномедицина представлена следующими возможностями:

1. Лаборатории на чипе, направленная доставка лекарств в организме.

2. ДНК – чипы (создание индивидуальных лекарств).

3. Искусственные ферменты и антитела.

4. Искусственные органы, искусственные функциональные полимеры (заменители органических тканей). Это направление тесно связано с идеей искусственной жизни и в перспективе ведёт к созданию роботов обладающих искусственным сознанием и способных к самовосстановлению на молекулярном уровне. Это связано с расширением понятия жизни за рамки органического

5. Нанороботы-хирурги (биомеханизмы осуществляющие изменения и требуемые медицинские действия, распознавание и уничтожение раковых клеток). Это является самым радикальным применением нанотехнологии в медицине будет создание молекулярных нанороботов, которые смогут уничтожать инфекции и раковые опухоли, проводить ремонт повреждённых ДНК, тканей и органов, дублировать целые системы жизнеобеспечения организма, менять свойства организма.

Рассматривая отдельный атом в качестве кирпичика или "детальки" нанотехнологии ищут практические способы конструировать из этих деталей материалы с заданными характеристиками. Многие компании уже умеют собирать атомы и молекулы в некие конструкции.

В перспективе, любые молекулы будут собираться подобно детскому конструктору. Для этого планируется использовать нанороботов (наноботов). Любую химически стабильную структуру, которую можно описать, на самом деле, можно и построить. Поскольку нанобот можно запрограммировать на строительство любой структуры, в частности, на строительство другого нанобота, они будут очень дешевыми. Работая в огромных группах, наноботы смогут создавать любые объекты с небольшими затратами, и высокой точностью. В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью наноботов. Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых. Манипулируя отдельными атомами и молекулами, наноботы смогут осуществлять ремонт клеток. Прогнозируемый срок создания роботов-врачей, первая половина XXI века.

Несмотря на существующее положение вещей, нанотехнологии - как кардинальное решение проблемы старения, являются более чем перспективными.

5. Нанотехнологии в сельском хозяйстве и промышленности

Наноеда (nanofood) – термин новый, малопонятный и неказистый. Еда для нанолюдей? Очень маленькие порции? Еда, сработанная на нанофабриках? Нет, конечно. Но всё же это — любопытное направление в пищевой отрасли. Оказывается, наноеда – это целый набор научных идей, которые уже находятся на пути к реализации и применению в промышленности. Во-первых, нанотехнологии могут предоставить пищевикам уникальные возможности по тотальному мониторингу в реальном времени качества и безопасности продуктов непосредственно в процессе производства. Речь идёт о диагностических машинах с применением различных наносенсоров или так называемых квантовых точек, способных быстро и надёжно выявлять в продуктах мельчайшие химические загрязнения или опасные биологические агенты. И производство пищи, и её транспортировка, и методы хранения могут получить свою порцию полезных инноваций от нанотехнологической отрасли. По оценке учёных, первые серийные машины такого рода появятся на массовых пищевых производствах в ближайшие четыре года. Но на повестке дня и более радикальные идеи. Вы готовы проглотить наночастицы, которые невозможно увидеть? А что если наночастицы будут целенаправленно использоваться для доставки к точно выбранным частям организма полезных веществ и лекарств? Что если такие нанокапсулы можно будет внедрять в пищевые продукты? Пока ещё никто не употреблял наноеду, но предварительные разработки уже идут. Специалисты говорят, что съедобные наночастицы могут быть сделаны из кремния, керамики или полимеров. И разумеется — органических веществ. И если в отношении безопасности так называемых "мягких" частиц, сходных по строению и составу с биологическими материалами – всё ясно, то "твёрдые" частицы, составленные из неорганических веществ – это большое белое пятно на пересечении двух территорий — нанотехнологии и биологии. Учёные ещё не могут сказать, по каким маршрутам подобные частицы будут путешествовать в теле, и где в результате остановятся. Это ещё предстоит выяснить. Зато некоторые специалисты уже рисуют футуристические картины преимуществ наноеды. Помимо доставки ценных питательных веществ к нужным клеткам. Идея заключается в следующем: каждый покупает один и тот же напиток, но затем потребитель сможет сам управлять наночастицами так, что на его глазах будут меняться вкус, цвет, аромат и концентрация напитка.


Няндомский железнодорожный колледж

Цель: Познакомиться с основами нанотехнологий, показать их значимость в современном мире.

1. Адаптировать учащихся к перспективам нанотехнологий.

2. Способствовать формированию познавательного интереса учащихся, расширить и углубить их представления о влиянии размеров атомных структур на разнообразные физические свойства.

3. Способствовать желанию самостоятельно изучать научную информацию в Интернете и умению анализировать получаемую информацию о развитии нанотехнологий.

Основные понятия:

Нано – дольная приставка единиц, обозначающая 10 -9 .

Наночастица – это частица, объект, имеющий размеры 1-100 нанометра.

Нанотехнология – это технология работы с веществом на уровне отдельных атомов.

План лекции:

Как представить себе такую короткую дистанцию? Проще всего это сделать с помощью денег: нанометр и метр соотносятся по масштабу как копеечная монета и земной шар (кстати, если каждый житель Земли даст по монетке, этого вполне хватит, чтобы выложить цепочку вокруг экватора.Уменьшим слона до размера микроба (5000 нм) – тогда блоха у него на спине станет величиной как раз в нанометр. Если бы рост человека вдруг уменьшился до нанометра, мы могли бы играть в футбол отдельными атомами! Толщина листа бумаги казалось бы нам тогда равной… 170 километрам.

Откинем фантазию о крошечных человечках и насекомых. На самом деле нанометрами измеряются лишь самые примитивные существа, вирусы (их длина в среднем 100 нм). Сложные молекулы белков, строительные блоки живого, имеют размеры в 10нм. Простые молекулы в десятки раз меньше. Величина атомов – несколько ангстрем (один ангстрем равен 0,1 нм). Например, диаметр атома кислорода – 0,14 нм. Здесь проходит нижняя граница наномира. Именно в наномире идут процессы фундаментальной важности – совершаются химические реакции, выстраивается строгая геометрия кристаллов, структуры белков. С этими процессами и работают нанотехнологи В этом особом мире работают свои законы и взаимосвязи, значительно отличающиеся от тех, которые действуют в нашем мире. Мы воспринимаем окружающие нас явления с точки зрения знакомых нам законов. Например, мы можем объяснить, почему может разрушиться строение, или почему набравшее скорость тело движется по инерции еще некоторое время. Однако нас удивляет, почему капля воды, муха, или даже некоторые виды ящериц удерживаются на потолке так, как будто закон гравитации на них не действует. Удивительными являются для нас и такие обычные явления, как несмачиваемость листьев некоторых растений или плодов. Все это заставляет задуматься над тем, какие силы работают в данном случае.

Ещё одно из замечательных изобретений природы – лапки геккона. Геккон – небольшая ящерка, прославилась тем, что может свободно перемещаться по вертикальным стенам или даже потолку. И все потому, что его лапки покрыты до миллиарда тончайшими волосками особой формы. Они тесно соприкасаются с поверхностью и притягиваются к ней за счет так называемой ван-дерваальсовой силы, силы, действующей между молекулами. Нанотехнологи уже создали экспериментальные аналоги таких нанолипучек на основе углеродных нанотрубок – вполне возможно, что скоро каждый сможет попробовать себя в роли человека-паука.

В самом общем смысле нанотехнологии включают создание и использование материалов, устройств и технических систем, функционирование которых определяется наноструктурой, то есть ее упорядоченными фрагментами размером от 1 до 100 нм.

Согласно рекомендации 7-ой Международной конференции по нанотехнологиям (Висбаден, 2004 г) выделяют следующие типы наноматериалов:
– нанопористые структуры;
– наночастицы;
– нанотрубки и нановолокна;
– нанодисперсии (коллоиды);
– наноструктурированные поверхности и пленки;
– нанокристаллы и нанокластеры.

Нанотехнологии – это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, часто непривычные для нас свойства. Нанотехнология позволяет поместить частицу лекарства в нанокапсулу и точно нацелить на пораженную болезнью клетку, не повредив соседние. Фильтр, пронизанный бесчисленными нанометровыми каналами, которые пропускают воду, но слишком тесны для примесей и микробов, тоже продукт нанотехнологий. В лабораториях нанотехнологов уже испытывают суперматериалы – углеродные волокна, в тысячи раз прочнее стали, покрытия, делающие предмет невидимым. Создание материалов с такими замечательными свойствами стало возможно благодаря тому, что нанотехнологи работают с веществом на атомном и молекулярном уровне.

Солнечные батареи преобразуют энергию дневного света в электрическую. Раньше такие устройства были только на космических станциях, самые дорогие из них давали эффективность лишь 34%. Нанотехнологии вплотную взялись за солнечную энергетику. Солнечные батареи нового поколения - это дешевая полимерная пленка, вместо дорогого кристаллического кремния, которую обрабатывают на слегка переделанных машинах для производства фотоплёнки. В таком полимере при его освещении возникают токи, а чтобы их аккуратно собрать и выдать потребителю энергию, используют нанотехнологии: покрытие, содержащее фуллерены. Новые солнечные батареи будут обладать рядом существенных преимуществ по сравнению с традиционными батареями на основе кремния, которые применяются сегодня. Прежде всего, элементы питания нового типа не требуют прямого падения солнечных лучей, благодаря чему смогут генерировать электричество даже в пасмурную погоду. Кроме того, себестоимость производства таких батарей будет на порядок ниже себестоимости изготовления батарей на базе кремния.

Каждый из нас знаком с энергетикой плееров, диктофонов, фонариков, игрушек. Её основа – обычная литий-ионная батарейка. Здесь тоже видны первые результаты развития нанотехнологий. Недавно начался промышленный выпуск литий-ионных аккумуляторов, содержащих наночастицы и нанопористые материалы – они заряжаются с немыслимой ещё вчера скоростью: на 80% всего лишь за минуту (обычно для этого требуется несколько часов). Представьте, какое преимущество для электромобилей даст эта новинка!

Совсем недавно появились антиопухолевые препараты в форме нанокапсул. Такие препараты атакуют главным образом клетки опухоли, не поражая организм в целом (в отличие от традиционных онкологических средств) эффективность лечения за счет этого вырастает во много раз. Антимикробное действие серебра резко повышается, если его применить виде наночастиц. Уже несколько лет существуют заживляющее повязки для ожогов и серьёзных ран, содержащие такое наносеребро. В недалёком будущем начнется промышленный выпуск хитозановых повязок, которые ускорят заживление ран в разы. Планируется выпуск наноцемента для костей – он будет наполнителем, создавая нечто вроде каркаса, на который потом нарастает естественная костная ткань.

Московские нанотехнологи разработали телевизор, который можно свернуть в рулон. Толщиной он всего несколько миллиметров и представляет собой органический светодиод. На сегодняшний день есть у него серьёзный недостаток – на воздухе поверхностный слой быстро портится.

Инженеры из Фраунгоферовского института интегральных схем IIS разработали трансформатор напряжения, который может работать от входного напряжения в 20 милливольт. Этот миниатюрный электроприемник приводят в действие самые малые токи, и получить их можно из окружающей среды, например, из тепла человеческого тела.

При разнице температур всего в 2°C (например, между человеческой кожей и окружающим пространством) теплогенератор размером 2х2 см с новым трансформатором напряжения IC генерирует до 4 мВ. Такие миниатюрные и, соответственно, экономичные в изготовлении трансформаторы напряжения имеют большое преимущество во многих областях применения: в медицинской технике, в инженерных системах зданий и сооружений, в автомобилях, в системах автоматизации и логистике.

Перспективы нанотехнологии. По прогнозам экспертов, к 2020 году многие идеи, которые сегодня находятся на стадии исследований, будут реализованы. Давайте немного пофантазируем, представим мир недалекого будущего. Электричеством нас будут обеспечивать солнечные батареи, встроенные в стены и крыши домов. Телевизоры, компьютеры будут компактными виде стикеров. Все окружающие нас предметы будут оснащены миниатюрными процессорами, чтобы, например, поддерживать необходимую температуру, давление, влажность, следить за составом воздуха. Микро- и нанодатчики помогут в обнаружении любых угроз, от пожара до атаки террористов. Даже одежда будет самоочищающая и умеющая контролировать эмоциональное состояние того, кто её носит. Наноматериалы ширко будут использоваться в технике и промышленности, они будут защищать от грязи, коррозии, различных повреждений. Однако самое интересное и важное – как повлияет развитие нанотехнологий на частную жизнь человека, на жизнь общества в целом. Уже ясно, что эти технологии сильно изменят мир. Но предвидеть эти изменения в деталях пока не может никто.

Нанотехнологии – это наше настоящее и будущее. Наверное, нет ни одной сферы жизнедеятельности человека, которую они бы не затронули. Мир нанотехнологий интересен и доступен не только ученым. Ищите, читайте, анализируйте информацию. Занавес в удивительный мир нанотехнологий приоткрыт! Попробуйте самостоятельно познакомиться, например, с наноартом, космическим лифтом.


Видели ли вы когда-нибудь монитор, толщина которого меньше миллиметра? А бумагу, которая не горит и не промокает? Или одежду, которую невозможно испачкать? Да-да! Это не фантастика! Это то, что ожидает нас в недалёком будущем. Такие необычные предметы могут подарить человеку нанотехнологии. Данный видеоурок будет посвящён нанотехнологиям и всему, что с ними связано.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Нанотехнологии"

Видели ли вы когда-нибудь монитор, толщина которого меньше миллиметра? А бумагу, которая не горит и не промокает? Или одежду, которую невозможно испачкать? Да, да то, что вы сейчас слышите – это не фантастика! Это то, что ожидает нас в недалёком будущем. Такие необычные предметы могут подарить человеку нанотехнологии.





Нанотехнологии обеспечивают возможность создавать и модифицировать объекты, которые включают компоненты с размерами менее ста нанометров, принципиально нового качества. Используются самые разные методы (механические, химические, электрохимические, электрические, биохимические, электроннолучевые, лазерные) для искусственной организации заданной атомарной и молекулярной структуры нанообъектов, для создания микроскопических устройств.


Важнейшей составной частью нанотехнологии являются наноматериалы, то есть материалы, необычные функциональные свойства которых определяются упорядоченной структурой их нанофрагментов размером от одного до ста нанометров. В основном выделяют следующие типы наноматериалов: нанопористые структуры; наночастицы; нанотрубки и нановолокна; наноструктурированные поверхности и плёнки; нанокристаллы.


Говоря о наночастицах, обычно предполагают, что их размеры от нуля целых одной десятой нанометра до ста нанометров. Если сравнивать их размеры с размерами других материалов, то обратите внимание, размеры большинства атомов расположены в интервале от нуля целых одной десятой до нуля целых двух десятых нанометров, ширина молекулы ДНК примерно 2 нанометра, характерный размер клетки крови приблизительно 7500 нанометров, человеческий волос — 80 000 нанометров. Именно на таких масштабах работают нанотехнологии.






Можно немного коснуться истории нанотехнологий и поговорить об этапах их развития. Итак, первое упоминание о методах, которые впоследствии назовут нанотехнологиями, предсказал известный физик Ричард Фейнман в 1959 году в своём выступлении.



Он говорил, что в будущем, научившись манипулировать отдельными атомами, человечество сможет синтезировать всё, что угодно. В 1981 году появился первый инструмент для манипуляции атомами — туннельный микроскоп, изобретённый учёными из АйБиЭм.




С тех пор нанотехногии получили широкую общественную огласку. В 1998 году голландский физик Сеез Деккер нашёл практическое применение нанообъектам. Он создал транзистор на основе нанотехнологий.


На сегодняшний день нанотехнологии делят на три направления. Первое направление – это изготовление электронных схем размером до нескольких атомов.


Второе – сборка из отдельных атомов любых веществ и объектов.


И третье – создание наномашин (механизмов размером в несколько атомов).


Уже сегодня нанотехнологии затронули много сфер деятельности людей. Энергетика, электроника, биология и медицина, сельское хозяйство и экология – вот где прогресс лучше всего виден уже сейчас. Так, например, нанотехнологии используют при производстве жёстких дисков персональных компьютеров, теннисных мячей с длительным сроком службы, а также высокопрочных и одновременно лёгких теннисных ракеток, инструментов для резки металлов, антистатических покрытий для чувствительной электронной аппаратуры, специальных покрытий для окон, которые обеспечивают их самоочистку.





Даже в быту есть много незаметных, но очень важных веществ, о присутствии которых мы даже и не подозреваем! Давайте рассмотрим самые яркие примеры. Современные телефоны. Благодаря использованию нанотехнологий появилась возможность оснастить смартфоны, айфоны и другие устройства специальными датчиками, которые выступают в роли защиты. Даже при разбитом стекле микрочипы не перестают работать.


Зубная паста. Ранее никто и не задумывался о том, почему очищающее средство для зубов бывает разным. А объясняется это наличием определённых наночастиц. Например, гидроксиапатит кальция, который незаметен невооружённым глазом, помогает восстановить разрушенную эмаль и защитить зубы от кариеса.


Лейкопластырь. Он имеет нанослой серебра, который способствует быстрому заживлению и обладает антибактериальными свойствами.


Краска для автомобилей. Современные автомобильные краски, благодаря наночастицам, способны перекрывать неглубокие царапины и другие полости, которые образуются на кузове. В их состав входят микроскопические шарики, которые и обеспечивают такой эффект.


Московские нанотехнологи разработали телевизор, который можно свернуть в рулон. Этот телевизор представляет собой органический светодиод, а его толщина всего лишь несколько миллиметров. На сегодняшний день у него имеется один серьёзный недостаток – на воздухе поверхностный слой быстро портится.


Если смотреть более глобально, то нанотехнологии не оставили без внимания и солнечную энергетику. Вы уже знаете, что солнечные батареи преобразуют энергию дневного света в электрическую. Раньше такие устройства были только на космических станциях. Теперь же солнечные батареи нового поколения – это дешёвая полимерная плёнка, которую обрабатывают на слегка переделанных машинах для производства фотоплёнки. Новые солнечные батареи обещают обладать рядом преимуществ по сравнению с традиционными батареями, которые применяются сегодня. Прежде всего, элементы питания нового типа не будут требовать прямого попадания солнечных лучей, благодаря чему смогут генерировать электричество даже в пасмурную погоду. Кроме того, себестоимость производства таких батарей будет на порядок ниже.


Если говорить о перспективах нанотехнологий, то по прогнозам экспертов, к 2020 году многие идеи, которые сегодня находятся на стадии исследований, будут реализованы. Давайте немного пофантазируем, представим мир недалёкого будущего.






Произойдёт полное устранение вредного влияния деятельности человека на окружающую среду. Во-первых, за счёт насыщения экосферы молекулярными роботами-санитарами, которые будут превращать отходы деятельности человека в исходное сырьё, а во-вторых, за счёт перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы. Электричеством нас будут обеспечивать солнечные батареи, которые будут встроены в стены и крыши домов. Телевизоры, компьютеры будут компактными в виде стикеров. Нанодатчики помогут в обнаружении любых угроз, от пожара до атаки террористов. Даже одежда будет самоочищающая и умеющая контролировать эмоциональное состояние того, кто её носит.


Однако самое интересное и важное – это то, как повлияет развитие нанотехнологий на жизнь человека и на жизнь общества в целом. Уже понятно, что эти технологии сильно изменят наш мир. Но предвидеть все эти изменения в деталях пока никто не может. И всё же нанотехнологии – это наше настоящее и будущее.

Читайте также: