Физика и ее влияние на развитие техники конспект 7 класс кратко

Обновлено: 02.07.2024

Образовательная: Сформировать у учащихся представление о взаимосвязи науки и техники. Показать роль физики в развитии научно- технического прогресса. Ознакомить учащихся с основными этапами становления физики как науки.

Воспитательная: Воспитание интереса к изучению физики.

Развивающая: Развитие умения анализировать полученную информацию, логически и творчески мыслить.

Сформировать у учащихся представление и взаимосвязи науки и техники путем подготовки докладов. Закрепить полученные знания.

Применяемые на уроке педагогические технологии Метод проектов. Работа в парах.

Деятельность учащихся на уроке

Необходимое оборудование и материалы: ноутбук, проектор, презентации учащихся.

Мотивация учащихся, актуализация знаний

Ответить на вопросы

-Что изучает физика?

-Чем отличается наблюдение от опытов?

-Какой формулой необходимо пользоваться для определения цены деления прибора

- Какой формулой необходимо пользоваться при определении физических величин с учетом погрешности?

Эпиграф к уроку:

Научившись добывать огонь, человек заложил первый камень в основание большой науки.

2) Слово учителя

Развитие физики сопровождалось изменением представлений людей об окружающем мире. Отказ от привычных взглядов, возникновение новых теорий, изучение физических явлений характерно для физики с момента зарождения этой науки до наших дней.

Важное значение имеют открытия в области физики для развития техники. Так, например, двигатель внутреннего сгорания, при¬давший в движение автомобили, тепловозы, речные и морские суда ,был создан на основе изучения тепловых явлений.

Современное кино, телевидение, радио, магнитная запись— все это возникло после того, как были изучены многие звуковые, световые и электрические явления. В свою очередь, развитие техники влияет на развитие науки. Так, например, усовершенствованные машины, точные измерительные и другие приборы используются учеными при исследовании физических явлений. После того как были созданы современные приборы и ракеты, стало возможным глубже изучить космическое пространство.

Подобных примеров можно привести множество. Открытия, сделанные в науке, есть результат упорного труда многих ученых разных стран.

Что же было у истоков науки физики? (Доклады учащихся).

Дальнейшее развитие физики определилось изучением тепловых и электромагнитных явлений. Стремление ученых проникнуть в глубь тепловых процессов привело к зарождению идей о молекулярном строении вещества.

Исследования электромагнитных явлений коренным образом изменило научную картину мира. Оказалось, что нас окружают физические тела и поля. Общую теорию электромагнитных явлений создал Джеймс Максвелл. Теория Максвелла объяснила природу света помогла разработке новых технических приборов и устройств, основанных на явлениях электромагнетизма.

Новый этап бурного развития физики научался в XX в. Возникли и стали развиваться новые направления: ядерная физика, физика элементарных частиц, физика твердого тела и , др. Возросла роль физики и ее влияние на технический и социальный прогресс. Свой вклад в развитие современной физики внесли видные ученые России: М. Г. Басов, П. П. Капица, Л. Б. Ландау, Л. И. Мандельштам, А. М. Прохоров и др.

Ярким подтверждением связи науки и Техники явился огромный прорыв в области Изучения космоса. Так, 4 октября 1957 г. В Нашей стране был запущен первый в мире искусственный спутник Земли, а 12 апреля ; 1961 г. Юрий Алексеевич Гагарин стал первым космонавтом, облетевшим земной шар. 21 июля 1969 г. впервые была осуществлена Посадка на Луну американского космического корабля с астронавтами на борту: Нейлом Армстронгом и Эдвином Олдрином. Большой вклад в научную и техническую разработку космических полетов сделал Сергей Павлович Шоролев. Здесь названы лишь основные этапы развития физики и перечислены немногие из выдающихся людей науки, сделавших важные Открытия, благодаря которым развивалась эта наука.

Организационная информация
Тема: Физика и техника. Роль физики в формировании научной картины мира
Класс 7
Дата
Методическая информация
Тип урока: Комбинированный
Цели урока
Образовательная: Сформировать у учащихся представление о взаимосвязи науки и техники. Показать роль физики в развитии научно- технического прогресса. Ознакомить учащихся с основными этапами становления физики как науки.

Воспитательная: Воспитание интереса к изучению физики.

Развивающая: Развитие умения анализировать полученную информацию, логически и творчески мыслить.
Задачи урока
Сформировать у учащихся представление и взаимосвязи науки и техники путем подготовки докладов. Закрепить полученные знания.
Применяемые на уроке педагогические технологии Метод проектов. Работа в парах.
Деятельность учащихся на уроке
- Речевая,
- Слушанье,
- Записывание с доски,
- Анализ информации.
Связь с ранее изученным материалом
Государственные требования к уровню общеобразовательной подготовки учащихся
Необходимое оборудование и материалы, демонстрации Ноутбук, проектор, презентации учащихся.

1. оргмомент
2. проверка домашнего задания
3. актуализация опорных знаний
4. целевая установка
5. мотивация учебной деятельности
6. изучение нового материала
7. закрепление
8. итоги урока
9. рефлексия
10.домашнее задание

Мотивация учащихся, актуализация знаний
Эпиграф к уроку:
Научившись добывать огонь, человек заложил первый камень в основание большой науки.
1) Орг. Момент
2) Слово учителя:
Мы с вами продолжаем изучение физики и, сегодня мы поговорим о том, какое влияние эта наука оказывает на развитие техники и представление человека об окружающем мире.
Первые ученые
Нельзя сказать точно, когда физика возникла как наука, но сначала она была неразрывно связана с химией, биологией, географией. Да и профессии научного работника как таковой, разумеется, не было. Просто человек хотел есть, одеваться, лечить болезни, т. е. стремился удовлетворить свои потребности и таким образом облегчить жизнь. Сначала он просто использовал природу, добывая пищу и мастеря из костей и камней орудия для охоты. Заметив, что во время грозы может возникать огонь, человек после множества неудачных попыток достиг своей заветной цели — научился его добывать.
Он открыл, что вследствие трения одной сухой палочки о другую возникает тепло, осуществил первую химическую реакцию и получил огонь.
А уже укротив его, изобрел способ борьбы с вызывающими гниение бактериями. С этого момента мясо, добытое на охоте, научились хранить, оно не портилось так быстро. Таким образом, именно первобытные люди были первыми физиками, химиками, и биологами.

Открыв металлы, человек осуществил настоящую революцию. Однако металлов, существующих в природе в чистом виде, как, например, медь и золото, было мало, потому и встречались они крайне редко. С помощью огня люди научились добывать медь из руды, нагревая ее до температуры плавления. Так возникла металлургия.
Исследовав свойства металлов, люди научились изготавливать из них предметы для дома, обработки земли, охоты и защиты. Смешав несколько металлов, получили первые сплавы. Так, добавив в медь немного олова, в ІІІ тыс. до н. э. получили бронзу. Этот, более прочный, чем медь, сплав стал первым материалом для изготовления оружия и инструментов. Знали тогда и о железе, однако добывать его было сложно. Но однажды человек решил нагреть руду на древесном угле — так было получено чистое железо (литейный чугун).

Далее рассказ том, как развивалась физика, продолжат наши учащиеся.

Ход и содержание урока
3) Выступление учащихся с докладами.

Доклад №2
Что же было у истоков науки физики?
Самые ранние работы по описанию, упорядочению и объяснению явлений природы относятся к 4 в до н.э. Наличие обширных практических знаний, технических навыков, высокий общий культурный уровень - всё это создало в Греции почву для формирования физики как науки. Однако некоторые начатки научных исследований пришли к грекам от народов ещё более древней культуры, в первую очередь из Вавилона и Египта.
Колесо было изобретено около 5500 лет назад на Ближнем Востоке, это было одним из первых технических достижений. Из глубокой древности, возможно более чем 3000 до н.э., пришли такие изобретения, как обожжённый кирпич, гончарный круг, колёсный экипаж. Несколько позднее были открыты способы выплавки и обработки металлов, изобретены вёсельные и парусные суда, применены плуг, весы, отвес, уровень, циркуль, клещи. Во втором тысячелетии до н.э. были изобретены кузнечные мехи, рычаги, клин, домкрат, блоки. Все эти приспособления призваны были облегчить жизнь и труд человека, они же способствовали развитию науки, т.к. делали возможным проведение множества физических экспериментов. Первая значительная попытка научной систематизации знаний связана с трудами Аристотеля (384-322 г.г. до н. э.) , многие его труды сохранились. В них содержатся многочисленные сведения из области музыки, метеорологии, физики, прикладной механики, мысли о распространении звука в воздухе, объясняется явление эха, приводится попытка экспериментального определения веса воздуха и многое другое. Аристотелева физика была основана на наблюдениях и частично на опытах. Попытки систематических научных исследований конкретных явлений природы связаны с именем другого древнегреческого учёного – Архимеда (287-212 г.г. до н. э.). Он имел навыки к проведению точных научных экспериментов, сконструировал мосты через Нил, дамбы для регулировки разливов Нила. Но наиболее гениальным изобретением этого периода был винт, который и до сих пор называется винтом Архимеда. Он служил для подъёма воды на высоту до 4 метров и для осушения низменных местностей. Весьма многочисленны (около 40) другие механические изобретения, приписываемые Архимеду, хотя исторические источники, которыми располагают учёные и содержат порой элементы легенды, однако Архимед был действительно автором целого ряда изобретений.

Доклад №3
Активно развивалась физика и в странах Востока, наибольшее развитие там получили механика и оптика – наука о распространении света. Арабские учёные рассматривали глаз как один из органов чувств нашего организма, описали его строение, выяснили функции зрительного нерва. В своих экспериментах они пользовались специальными увеличительными стёклами (линзами). Им принадлежит и описание первого компаса (1242 г.)
Многочисленные физические открытия связаны с именем знаменитого французского учёного Роджера Бэкона (1214-1292). Его считают прародителем экспериментального метода, легенды приписывают ему самые разнообразные изобретения: порох, линзы, подзорную трубу, компас, паровую машину, самолёт. До сих пор нельзя назвать ни времени, ни места изобретения линз и очков, открытие было, очевидно, случайным и вполне вероятно допустить, что автором был некто изготовлявший стёкла.

Доклад №6
Создание физической теории связано с именем выдающегося английского физика Исаака Ньютона (1643-1727). Величайшая заслуга этого учёного заключается в анализе, систематизации, обобщении трудов великих физиков, математиков, астрономов, его предшественников - Галилео Галилея (1564-1642), Иоганна Кеплера (1571-1630), Рене Декарта (1596-1650), Христиана Гюйгенса (1629-1695). В результате Ньютон открыл ряд законов, изучил свойства световых лучей, значительно усовершенствовал конструкцию существовавших тогда телескопов.
Большую роль в развитие физики в России внёс замечательный русский физик, поэт, астроном, металлург, географ, историк, просветитель и государственный деятель Михаил Васильевич Ломоносов (1711-1765). Он ввёл в русский язык новые слова: термометр, формула, зажигательное стекло, атмосфера и многие другие. Он является автором первого учебника по физике в России. Немало сил стоило Ломоносову добиться открытия первого в России высшего учебного заведения – университета в Москве, который теперь с гордостью носит его имя.

Доклад №7
Важнейшим шагом вперёд в развитии учения об электрических и магнитных явлениях было изобретение первого источника постоянного тока – гальванического элемента. История этого изобретения относится к концу 18 в. и связана с именем итальянского врача Луиджи Гальвани (1737-1798). Как уже говорилось, в 1821 г. был изобретён первый электрический двигатель, все машины современной электропромышленности работают по тому же принципу, что и первый электродвигатель Фарадея. Работы Майкла Фарадея воодушевили молодого шотландского физика Джемса Кларка Максвелла (1831-1879) систематизировать все известные труды по электричеству, в результате чего в 1864 г. была создана электромагнитная теория.
Новый этап бурного развития физики начался в 20 в. В науке появились новые направления: ядерная физика, физика элементарных частиц, физика твёрдого тела. Выдающиеся достижения физики послужили мощным толчком развития современной цивилизации, открыли новый этап в исследовании космоса, внесли в повседневную жизнь человека множество полезных вещей – от электрического освещения до лекарств.

4) Закрепление.

Устно: 1-О чем мы с вами сегодня говорили на уроке?
2- Что больше всего запомнилось?
Задание: Работа в парах. Составить по 5 вопросов по темам докладов и задать их друг другу.

5) Итоги урока.

Проверка и оценивание учебных достижений
Выставление оценок за работу на уроке.

2- Атлас физики и химии . Хорди Ллансана

Советы по логическому переходу от данного урока к последующим
Межпредметные связи
Другое
Слайды презентации:

Физика тесно связана с техникой. До середины прошлого столетия связь между физикой и техникой носила такой характер, когда техника шла впереди. Создавались технические устройства, возникали технические проблемы, которые затем вызывали к жизни соответствующие физические исследования.

VIII век - создана паровая машина.

Начало ХIХ века - встал вопрос об увеличении кпд тепловых машин.

Сади Карно решил эту проблему, и его работа стала фундаментом для возникновения общего учения о передаче и превращении энергии - термодинамики.

Затем крупные физические открытия стали приводить к созданию новых отраслей техники. Академик С.И. Вавилов (1891 - 1955), советский физик и общественный деятель, сказал, что теснейшая связь физики с другими отраслями естествознания привела к тому, что физика глубочайшими корнями вросла в химию, геологию, астрономию, биологию и др. Возникли новые смежные дисциплины: астрофизика, биофизика, геофизика, физическая химия и т.д.

Физика является основой многих технических наук: теоретической механики, сопромата, электротехники.

Физика явилась фундаментом, на котором выросли такие области техники как – электро - и радиотехника, электронная и вычислительная техника, приборостроение.

Техника стимулирует развитие физики и наоборот. Могучая ускорительная техника способствует развитию исследований по физике атомного ядра и элементарных частиц.

Содружество физики и техники приводит к сокращению временных интервалов между научными открытиями и их технической реализацией.

  • фотография - 110 лет
  • радио - 50 лет
  • транзистор - 15 лет
  • лазер - 7 лет
  • шариковая ручка-5 лет

Физика тесно связана с математикой. Без математического описания невозможен точный инженерный расчет и развитие физических теорий.

Физика - база для создания новых отраслей техники, или научная база, на которой должна основываться общетехническая подготовка специалистов.

Физику подразделяют на классическую и квантовую. Начало классической физики было положено И. Ньютоном, сформулировавшим основные законы механики, а завершено развитие классической физики созданием в 1905 г. А. Эйнштейном специальной теории относительности и учитывающей требования этой теории релятивистской механики.

Периоды развития физики

I. Предыстория физики (от древнейших времен до ХVII века)

Это период накопления физических знаний об отдельных явлениях природы. Его делят на:

эпоху античности - (VI вв. до н. э. - V в. н. э.)

средние века - (I - ХIV вв.)

эпоха Возрождения - (ХV - ХVI вв.).

Эпоха античности - Архимед установил условия плавания тел.

Средние века - введены понятия: мгновенной скорости, деление движения на поступательное и вращательное, угловой скорости.

Эпоха возрождения - Леонардо до Винчи - выполняет графическое построение хода лучей в линзе. Открыт закон сложения сил по правилу параллелограмма и разложения сил на составляющие.

II. Период становления физики как науки (начало ХVII-80 годы ХVII вв.)

Г. Галилей - установил законы движения тела, брошенного под углом к горизонту.

И. Кеплер - установил законы движения планет.

Э.Торричелли - открыл атмосферное давление.

И. Ньютон - создал корпускулярную теорию света.

Гюйгенс - создал волновую теорию света.

II.Классическая физика (конец ХVII в - начало ХХ в до 1905 г.)

Установлены: закон сохранения момента импульса, закон сохранения электрического заряда (Б. Франклин) и закон Кулона.

Юнг - открыл явление интерференции.

Г. Ом - ввел понятия - “ЭДС” и “падения напряжения”.

М. Фарадей - сформулировал концепцию поля.

Максвелл - 1894 г. - создал теорию электромагнитного поля.

А.Н. Лодыгин - изобрел лампу накаливания.

Н.П. Яблочков - изобрел трансформатор.

Г. Герц - открыл внешний фотоэффект.

А.Г. Столетов -1905 г. - создал фотоэлемент и установил один из законов внешнего фотоэффекта

К. Рентген - 1885 г. - открыл рентгеновские лучи, 1897 г. - открыт электрон.

А.С. Попов - 1895 г. - изобрел радио.

А. Беккерель - открыл радиоактивность.

М. Планк -1900 г. - положил начало квантовой теории, выдвинув гипотезу квантов.

Х. Лоренц - 1904 г. - нашел релятивистские преобразования координат и времени.

IV. Современная физика

1905 - 1931 гг. - Эйнштейн - создание СТО.

Резерфорд - открыл атом.

Н. Бор сформулировал принципы соответствия и дополнительности. Гейзенберг - сформулировал принцип неопределенности.

1932 г. - открыт нейтрон (Чедвик).

1932 - 1954 гг.- Поль Дирак выдвинул гипотезу о существовании антивещества; Д.Д. Иваненко выдвинул гипотезу о строении атомных ядер из нейтронов и протонов;

Отто Ган и Ф. Штрассман открыли деление ядер урана;

Г.Н. Флеров - спонтанное деление ядер U235;

П.Л. Капица - сверхтекучесть гелия;

2.12.1942 г. - Э. Ферми - цепная ядерная реакция деления ядер урана;

1945 г. - цепная ядерная реакция деления ядер урана в советском ядерном реакторе - И.В. Курчатов, Юлий Харитон;

1949 г.- первый взрыв атомного заряда в СССР;

1953 г.- на полигоне в г. Семипалатинске произведён взрыв первой транспортабельной атомной бомбы; Изобретен полупроводниковый транзистор;

1954г. - Басов, Прохоров, Таунс создали ОКГ. Возникает квантовая электроника;

1955 г. и далее - начало исследования структуры нуклонов, т.е. развивается физика элементарных частиц.

Физика тесно связана с техникой. До середины прошлого столетия связь между физикой и техникой носила такой характер, когда техника шла впереди. Создавались технические устройства, возникали технические проблемы, которые затем вызывали к жизни соответствующие физические исследования.

VIII век - создана паровая машина.

Начало ХIХ века - встал вопрос об увеличении кпд тепловых машин.

Сади Карно решил эту проблему, и его работа стала фундаментом для возникновения общего учения о передаче и превращении энергии - термодинамики.

Затем крупные физические открытия стали приводить к созданию новых отраслей техники. Академик С.И. Вавилов (1891 - 1955), советский физик и общественный деятель, сказал, что теснейшая связь физики с другими отраслями естествознания привела к тому, что физика глубочайшими корнями вросла в химию, геологию, астрономию, биологию и др. Возникли новые смежные дисциплины: астрофизика, биофизика, геофизика, физическая химия и т.д.

Физика является основой многих технических наук: теоретической механики, сопромата, электротехники.

Физика явилась фундаментом, на котором выросли такие области техники как – электро - и радиотехника, электронная и вычислительная техника, приборостроение.

Техника стимулирует развитие физики и наоборот. Могучая ускорительная техника способствует развитию исследований по физике атомного ядра и элементарных частиц.

Содружество физики и техники приводит к сокращению временных интервалов между научными открытиями и их технической реализацией.

  • фотография - 110 лет
  • радио - 50 лет
  • транзистор - 15 лет
  • лазер - 7 лет
  • шариковая ручка-5 лет

Физика тесно связана с математикой. Без математического описания невозможен точный инженерный расчет и развитие физических теорий.

Физика - база для создания новых отраслей техники, или научная база, на которой должна основываться общетехническая подготовка специалистов.

Физику подразделяют на классическую и квантовую. Начало классической физики было положено И. Ньютоном, сформулировавшим основные законы механики, а завершено развитие классической физики созданием в 1905 г. А. Эйнштейном специальной теории относительности и учитывающей требования этой теории релятивистской механики.

Периоды развития физики

I. Предыстория физики (от древнейших времен до ХVII века)

Это период накопления физических знаний об отдельных явлениях природы. Его делят на:

эпоху античности - (VI вв. до н. э. - V в. н. э.)

средние века - (I - ХIV вв.)

эпоха Возрождения - (ХV - ХVI вв.).

Эпоха античности - Архимед установил условия плавания тел.

Средние века - введены понятия: мгновенной скорости, деление движения на поступательное и вращательное, угловой скорости.

Эпоха возрождения - Леонардо до Винчи - выполняет графическое построение хода лучей в линзе. Открыт закон сложения сил по правилу параллелограмма и разложения сил на составляющие.

II. Период становления физики как науки (начало ХVII-80 годы ХVII вв.)

Г. Галилей - установил законы движения тела, брошенного под углом к горизонту.

И. Кеплер - установил законы движения планет.

Э.Торричелли - открыл атмосферное давление.

И. Ньютон - создал корпускулярную теорию света.

Гюйгенс - создал волновую теорию света.

II.Классическая физика (конец ХVII в - начало ХХ в до 1905 г.)

Установлены: закон сохранения момента импульса, закон сохранения электрического заряда (Б. Франклин) и закон Кулона.

Юнг - открыл явление интерференции.

Г. Ом - ввел понятия - “ЭДС” и “падения напряжения”.

М. Фарадей - сформулировал концепцию поля.

Максвелл - 1894 г. - создал теорию электромагнитного поля.

А.Н. Лодыгин - изобрел лампу накаливания.

Н.П. Яблочков - изобрел трансформатор.

Г. Герц - открыл внешний фотоэффект.

А.Г. Столетов -1905 г. - создал фотоэлемент и установил один из законов внешнего фотоэффекта

К. Рентген - 1885 г. - открыл рентгеновские лучи, 1897 г. - открыт электрон.

А.С. Попов - 1895 г. - изобрел радио.

А. Беккерель - открыл радиоактивность.

М. Планк -1900 г. - положил начало квантовой теории, выдвинув гипотезу квантов.

Х. Лоренц - 1904 г. - нашел релятивистские преобразования координат и времени.

IV. Современная физика

1905 - 1931 гг. - Эйнштейн - создание СТО.

Резерфорд - открыл атом.

Н. Бор сформулировал принципы соответствия и дополнительности. Гейзенберг - сформулировал принцип неопределенности.

1932 г. - открыт нейтрон (Чедвик).

1932 - 1954 гг.- Поль Дирак выдвинул гипотезу о существовании антивещества; Д.Д. Иваненко выдвинул гипотезу о строении атомных ядер из нейтронов и протонов;

Отто Ган и Ф. Штрассман открыли деление ядер урана;

Г.Н. Флеров - спонтанное деление ядер U235;

П.Л. Капица - сверхтекучесть гелия;

2.12.1942 г. - Э. Ферми - цепная ядерная реакция деления ядер урана;

1945 г. - цепная ядерная реакция деления ядер урана в советском ядерном реакторе - И.В. Курчатов, Юлий Харитон;

1949 г.- первый взрыв атомного заряда в СССР;

1953 г.- на полигоне в г. Семипалатинске произведён взрыв первой транспортабельной атомной бомбы; Изобретен полупроводниковый транзистор;

1954г. - Басов, Прохоров, Таунс создали ОКГ. Возникает квантовая электроника;

1955 г. и далее - начало исследования структуры нуклонов, т.е. развивается физика элементарных частиц.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.



Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Цель: научить понятиям, соответствующим теме урока

Задачи: научить применять знания и умения, полученные на уроке, в жизни.

Оборудование: учебник.

1. Орг. момент. Психологический настрой.

Мы пришли сюда учиться

Не лениться, а трудиться,

Учитель: Сегодня на уроке мы совершим увлекательное путешествие в мир природы! И вам понадобятся внимание, наблюдательность и сообразительность..

2. Проверка готовности к уроку (Презентация)

3. Самоопределение темы урока. Целеполагание.

-Рассмотрите предметы, изображённые на доске. Можно ли их отнести к тому, что нас окружает на Земле?

-На какие группы можно распределить все эти объекты?

-По каким признакам вы распределили окружающие нас объекты на группы?

- Как вы думаете, какая тема урока? Задачи урока?

У пилота Боря друг

Красит краской все вокруг.

На окне рисует дождик,

Развитие физики сопровождалось изменением представлений людей об окружающем мире. Отказ от привычных взглядов, возникновение новых теорий, изучение физических явлений характерно для физики с момента зарождения этой науки до наших дней.

Важное значение имеют открытия в области физики для развития техники. Например, двигатель внутреннего сгорания, приводящий в движение автомобили, тепловозы, речные и морские суда, был создан на основе изучения тепловых явлений.

С развитием науки в технике за последние десятилетия произошли грандиозные изменения.

То, что раньше считалось научной фантастикой, сейчас является реальностью. Сегодня трудно представить нашу жизнь без видеомагнитофона, компьютера, мобильной и интернет-связи.

Современное кино, телевидение, радио, магнитная запись - все это возникло после того, как были изучены многие звуковые, световые и электрические явления.

В свою очередь, развитие техники влияет на развитие науки. Так, например, усовершенствованные машины, компьютеры, точные измерительные и другие приборы используются учеными при исследовании физических явлений. После того как были созданы современные приборы и ракеты, стало возможным глубже изучить космическое пространство.

Подобных примеров можно привести множество. Открытия, сделанные в науке, есть результат упорного труда многих ученых разных стран.

Рассмотрим некоторые этапы развития физики.

5. Восприятие и усвоение учащимися нового учебного материала.

Работа по учебнику.

Рассмотреть рисунок в учебнике, ответить на вопросы.

Физминутка:

Мы на цыпочки привстали,

Ручки кверху мы подняли,

Мы вздохнули, потянулись

И друг другу улыбнулись.

Выдохнули, руки вниз,

Все этапы работы и результат показаны на слайдах презентации.

7. Самостоятельная творческая работа. (тренировочные упражнения)

Взаимосвязь развития техники и теоретической физики известна давно. Еще в 18 веке, когда создавалась первая паровая машина, два эти направления шли рука об руку: практики обнаруживали недостатки и недоработки, а физики-теоретики находили пути их решения.

Постепенно физика стала основой для формирования таких наук, как:

  • теоретическая механика;
  • сопромат;
  • электротехника;
  • радиотехника;
  • электроника;
  • вычислительная техника;
  • приборостроение.

Без физических открытий были бы невозможны такие технические достижения, как фотография, транзистор, лазер, трансформатор, лампа накаливания, рентген.

Советский ученый Сергей Иванович Вавилов в своих трудах не раз подчеркивал теснейшую связь физики с химией, астрономией, биофизикой, физической химией, геофизикой, а также ее влияние на технические прорывы, сделанные в рамках этих отраслей.

Техника, в свою очередь тоже оказывает влияние на развитие физики, во многом определяет выбор направлений для активного изучения. Ведь физики-теоретики не существуют отдельно от общего процесса, жизни, быта, технического прогресса. Напротив, их основной целью является решение актуальных практических задач.

Примеры физики в технике

На основе изучения физиками тепловых явлений были созданы двигатели внутреннего сгорания для:

  • морских и речных судов;
  • грузовых и легковых автомобилей;
  • тепловозов.

Исследование звуковых, электрических и световых явлений определило возможности развития телевидения, кинопроизводства, радио, магнитной записи. Изучение электромагнитных явлений сделало возможным изобретение и практическое применение сотовой связи.

Краткий обзор простейших технических изобретений также отображает определяющее влияние физической теории. К примеру, в известных всем ножницах использовано правило рычага, а при создании зеркала были использованы знания об отражении света от гладкой поверхности.

Читайте также: