Закон пирамиды энергии кратко

Обновлено: 05.07.2024

Каковы причины потери энергии?

1. Пища не полностью переваривается и усваивается, так что часть энергии уходит из организма впустую.

2. Огромная часть энергии расходуется на движение, поддержание обменных процессов в организме, рассеивается в виде тепла в ходе дыхания.

Интересно, что при фотосинтезе растения используют только 0,1–0,5 процента энергии Солнца, падающей на Землю.


Внутри каждой экосистемы трофические сети имеют хорошо выраженную структуру, которая характеризуется природой и количеством организмов, представленных на каждом уровне различных пищевых цепей. Для изучения взаимоотношений между организмами в экосистеме и для их графического изображения обычно используют не схемы пищевых сетей, а экологические пирамиды. Экологические пирамиды выражают трофическую структуру экосистемы в геометрической форме. Они строятся в виде прямоугольников одинаковой ширины, но длина прямоугольников должна быть пропорциональна значению измеряемого объекта. Отсюда можно получить пирамиды численности, биомассы и энергии.

Экологические пирамиды отражают фундаментальные характеристики любого биоценоза, когда они показывают его трофическую структуру:

§ их высота пропорциональна длине рассматриваемой пищевой цепи, т. е. числу содержащихся в ней трофических уровней;

§ их форма более или менее отражает эффективность превращений энергии при переходе с одного уровня на другой.

Пирамиды численности. Они представляют собой наиболее простое приближение к изучению трофической структуры экосистемы. При этом сначала подсчитывают число организмов на данной территории, сгруппировав их по трофическим уровням и представив в виде прямоугольника, длина (или площадь) которого пропорциональна числу организмов, обитающих на данной площади (или в данном объеме, если это водная экосистема). Установлено основное правило, которое гласит, что в любой среде растений больше, чем животных, травоядных больше, чем плотоядных, насекомых больше, чем птиц, и т. д. (рис. 1).

Пирамиды численности отражают плотность организмов на каждом трофическом уровне. В построении различных пирамид численности отмечается большое разнообразие. Нередко они перевернуты.

Например, в лесу насчитывается значительно меньше деревьев (первичные продуценты), чем насекомых (растительноядные). Подобная же картина наблюдается в пищевых цепях сапрофитов и паразитов.

Пирамида биомассы. Отражает более полно пищевые взаимоотношения в экосистеме, так как в ней учитывается суммарная масса организмов (биомасса) каждого трофического уровня. Прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема. Форма пирамиды биомассы нередко сходна с формой пирамиды численности. Характерно уменьшение биомассы на каждом следующем трофическом уровне.

Пирамиды биомассы, так же как и численности, могут быть не только прямыми, но и перевернутыми. Перевернутые пирамиды биомассы свойственны водным экосистемам, в которых первичные продуценты, например фитопланктонные водоросли, очень быстро делятся, а их потребители - зоопланктонные ракообразные - гораздо крупнее, но имеют длительный цикл воспроизводства. В частности, это относится к пресноводной среде, где первичная продуктивность обеспечивается микроскопическими организмами, скорость обмена веществ которых повышена, т. е. биомасса мала, производительность велика.


Рисунок 1 - Упрощенная схема пирамиды численности (по Г.А. Новикову, 1979)

Пирамида энергии. Наиболее фундаментальным способом отображения связей между организмами на разных трофических уровнях служат пирамиды энергии. Они представляют эффективность преобразования энергии и продуктивность пищевых цепей, строятся подсчетом количества энергии (ккал), аккумулированной единицей поверхности за единицу времени и используемой организмами на каждом трофическом уровне. Так, можно относительно легко определить количество энергии, накопленной в биомассе, и сложнее оценить общее количество энергии, поглощенной на каждом трофическом уровне. Построив график, можно констатировать, что деструкторы, значимость которых представляется небольшой в пирамиде биомассы, а в пирамиде численности наоборот, получают значительную часть энергии, проходящей через экосистему. При этом только часть всей этой энергии остается в организмах на каждом трофическом уровне экосистемы и сохраняется в биомассе, остальная часть используется для удовлетворения метаболических потребностей живых существ: поддержание существования, рост, воспроизводство. Животные также расходуют значительное количество энергии и для мышечной работы.




Внутри каждой экосистемы трофические сети имеют хорошо выраженную структуру, которая характеризуется природой и количеством организмов, представленных на каждом уровне различных пищевых цепей. Для изучения взаимоотношений между организмами в экосистеме и для их графического изображения обычно используют не схемы пищевых сетей, а экологические пирамиды. Экологические пирамиды выражают трофическую структуру экосистемы в геометрической форме. Они строятся в виде прямоугольников одинаковой ширины, но длина прямоугольников должна быть пропорциональна значению измеряемого объекта. Отсюда можно получить пирамиды численности, биомассы и энергии.

Экологические пирамиды отражают фундаментальные характеристики любого биоценоза, когда они показывают его трофическую структуру:

§ их высота пропорциональна длине рассматриваемой пищевой цепи, т. е. числу содержащихся в ней трофических уровней;

§ их форма более или менее отражает эффективность превращений энергии при переходе с одного уровня на другой.

Пирамиды численности. Они представляют собой наиболее простое приближение к изучению трофической структуры экосистемы. При этом сначала подсчитывают число организмов на данной территории, сгруппировав их по трофическим уровням и представив в виде прямоугольника, длина (или площадь) которого пропорциональна числу организмов, обитающих на данной площади (или в данном объеме, если это водная экосистема). Установлено основное правило, которое гласит, что в любой среде растений больше, чем животных, травоядных больше, чем плотоядных, насекомых больше, чем птиц, и т. д. (рис. 1).

Пирамиды численности отражают плотность организмов на каждом трофическом уровне. В построении различных пирамид численности отмечается большое разнообразие. Нередко они перевернуты.

Например, в лесу насчитывается значительно меньше деревьев (первичные продуценты), чем насекомых (растительноядные). Подобная же картина наблюдается в пищевых цепях сапрофитов и паразитов.

Пирамида биомассы. Отражает более полно пищевые взаимоотношения в экосистеме, так как в ней учитывается суммарная масса организмов (биомасса) каждого трофического уровня. Прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема. Форма пирамиды биомассы нередко сходна с формой пирамиды численности. Характерно уменьшение биомассы на каждом следующем трофическом уровне.

Пирамиды биомассы, так же как и численности, могут быть не только прямыми, но и перевернутыми. Перевернутые пирамиды биомассы свойственны водным экосистемам, в которых первичные продуценты, например фитопланктонные водоросли, очень быстро делятся, а их потребители - зоопланктонные ракообразные - гораздо крупнее, но имеют длительный цикл воспроизводства. В частности, это относится к пресноводной среде, где первичная продуктивность обеспечивается микроскопическими организмами, скорость обмена веществ которых повышена, т. е. биомасса мала, производительность велика.


Рисунок 1 - Упрощенная схема пирамиды численности (по Г.А. Новикову, 1979)

Пирамида энергии. Наиболее фундаментальным способом отображения связей между организмами на разных трофических уровнях служат пирамиды энергии. Они представляют эффективность преобразования энергии и продуктивность пищевых цепей, строятся подсчетом количества энергии (ккал), аккумулированной единицей поверхности за единицу времени и используемой организмами на каждом трофическом уровне. Так, можно относительно легко определить количество энергии, накопленной в биомассе, и сложнее оценить общее количество энергии, поглощенной на каждом трофическом уровне. Построив график, можно констатировать, что деструкторы, значимость которых представляется небольшой в пирамиде биомассы, а в пирамиде численности наоборот, получают значительную часть энергии, проходящей через экосистему. При этом только часть всей этой энергии остается в организмах на каждом трофическом уровне экосистемы и сохраняется в биомассе, остальная часть используется для удовлетворения метаболических потребностей живых существ: поддержание существования, рост, воспроизводство. Животные также расходуют значительное количество энергии и для мышечной работы.


Из данного видеоурока вы узнаете о том, что для изучения взаимоотношений между организмами в экосистеме и для их графического изображения обычно используют экологические пирамиды. Познакомитесь с правилом экологической пирамиды (правилом 10 %). В данном уроке приводятся следующие понятия: трофический уровень, автотрофы, гетеротрофы, сапротрофы, экологическая пирамида, пирамида численности, пирамида биомасс, пирамида энергии, чистая продукция.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Экологические пирамиды"

Наиболее важными взаимосвязями живых организмов в природе, являются пищевые (трофические). От греческого trophḗ ― пища, питание. Трофические взаимосвязи строятся в пищевые цепи, а они в свою очередь в пищевые сети.

Первыми в пищевой цепи являются продуценты, то есть растения.

Продуцентами питаются консументы 1-го порядка, то есть травоядные животные, которыми питаются консументы 2-го порядка ― хищные животные.

Ими питаются консументы 3-го порядка ― плотоядные животные.


А редуценты, находящиеся на последнем трофическом уровне и завершающие цепь питания, разлагают органические вещества на минеральные компоненты.

Положение, которое занимает организм в пищевой цепи, называется трофическим уровнем. Трофические уровни можно представить в виде ступенек.

Виды, которые составляют одну ступеньку, объединяются не происхождением или внешним сходством, а типом питания.

На 1-м трофическом уровне располагаются автотрофы, которые синтезируют органические вещества из неорганических.

На втором, третьем и четвёртом уровне гетеротрофы, которые живут за счёт органического вещества, созданного автотрофами.

А на пятом трофическом уровне располагаются организмы, которые питаются органическими веществами мёртвых тел или экскрементами животных. Их называют сапротрофы.

В экосистеме обычно бывает 4–5 трофических уровней и редко больше 6. Частично это обусловлено тем, что на каждом из уровней часть вещества и энергии теряется.

Таким образом и органическое вещество, и энергия передаются по цепям питания. То есть от растения к травоядному животному, ― от него к хищному животному и так далее.

Для изучения взаимоотношений между организмами в экосистеме и для их графического изображения обычно используют не схемы пищевых сетей, а — экологические пирамиды.


Такие модели в 1927 г. разработал английский зоолог Чарлз Элтон.

Экологические пирамиды — это графические модели (как правило, в виде треугольников), которые отражают число особей (пирамида чисел), количество их биомассы (пирамида биомасс) или заключённой в них энергии (пирамида энергии) на каждом трофическом уровне и указывают на понижение всех показателей с повышением трофического уровня.

Экологические пирамиды выражают трофическую структуру экосистемы в геометрической форме.

Они строятся в виде прямоугольников одинаковой ширины, но длина прямоугольников должна быть пропорциональна значению измеряемого объекта.

Длина прямоугольников экологической пирамиды пропорциональна числу организмов на единице площади местообитания или в единице объёма (если экосистема водная).

Различают три типа экологических пирамид.

Пирамида численности, или чисел, пирамида биомассы и пирамида энергии.

Сперва рассмотрим пирамиду численности.

Пирамида численности отражает плотность организмов на каждом трофическом уровне.

Для построения такой пирамиды необходимо сначала подсчитать особей разных видов в определённой местности, а затем распределить эти виды по трофическим уровням. Обычно в результате получается постепенное убывание численности организмов каждого трофического уровня при переходе от низшего уровня к высшему.

Чтобы уяснить, что такое пирамида чисел, приведём пример. Предположим, что в основании пирамиды 1000 т травы, массу которой составляют сотни миллионов отдельных травинок. Этой растительностью смогут прокормиться 27 млн кузнечиков, которых, в свою очередь, могут употребить в пищу около 90 тыс. лягушек. Сами лягушки могут служить едой 300 форелям в пруду. А это количество рыбы может съесть за год один человек! Таким образом, в основании пирамиды несколько сотен миллионов травинок, а на её вершине — один человек. Такова наглядная потеря вещества и энергии при переходе с одного трофического уровня на другой.

Чем выше уровень, тем ниже численность составляющих её организмов.

На первом уровне растения, их численность во много раз больше чем, травоядных животных, а травоядных животных больше, чем хищных.

В построении различных пирамид численности отмечается большое разнообразие.

Нередко они перевёрнуты.


Примером перевёрнутых пирамид могут являться пищевые цепи леса, когда продуцентами являются деревья, а первичными консументами являются насекомые. То есть на одном дереве может быть множество насекомых. В таком случае количество первичных консументов численно выше, чем число продуцентов.

Следующий вид пирамид — пирамида биомасс.

Пирамида биомасс — это соотношение между продуцентами и консументами, выраженное в их массе (общем сухом весе или другой мере общего живого вещества).

Если собрать все организмы, обитающие на каком-нибудь лугу, то вес растений окажется гораздо больше веса всех прямокрылых и копытных, питающихся этими растениями.

Вес растительноядных животных, в свою очередь будет больше веса первичных плотоядных, а эти последние также будут превышать по весу питающихся ими хищников, если таковые имеются.

Пирамида биомасс также изображается графически таким образом, что длина или площадь прямоугольника, соответствующего определённому трофическому уровню, пропорциональна его биомассе.

Биомассы на каждом следующем трофическом уровне уменьшаются.

Пирамиды биомассы так же, как и численности, могут быть не только прямыми, но и перевёрнутыми. Перевёрнутые пирамиды биомассы свойственны водным экосистемам.

Например, в океане при довольно высокой продуктивности фитопланктона общая масса его в данный момент может быть меньше, чем у зоопланктона и конечного потребителя-консумента.

Наиболее фундаментальным способом отображения связей между организмами на разных трофических уровнях служат пирамиды энергии.

Пирамида энергии представляет эффективность преобразования энергии и продуктивность пищевых цепей, строится подсчётом количества энергии, аккумулированной единицей поверхности за единицу времени и используемой организмами на каждом трофическом уровне.

Другими словами, пирамида энергии отражает величину потока энергии через пищевую цепь.

При помощи несложных подсчётов можно относительно легко определить количество энергии, накопленной в биомассе.

Перенос энергии с одного уровня на другой никогда не бывает полным. Часть энергии теряется в процессе переработки пищи, а часть вообще не усваивается организмом и выводится из него с экскрементами, а затем разлагается деструкторами.

Часть энергии теряется в виде тепла в процессе дыхания. Любое животное, перемещаясь, охотясь, строя гнездо или производя иные действия, совершает работу, которая требует затрат энергии, в результате чего опять происходит выделение тепла.

Рассмотрим более подробно, что происходит с энергией при её передаче через пищевую цепь.

Как вам уже известно, на 1-м трофическом уровне располагаются автотрофы, которые синтезируют органические вещества из неорганических.

Солнечная энергия, полученная растением, лишь частично используется в процессе фотосинтеза. Фиксированная в углеводах энергия представляет собой валовую продукцию экосистемы.


Валовая первичная продукция ― это количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идёт на поддержание жизнедеятельности самих растений (траты на дыхание).

Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию, которая представляет собой величину прироста растений. Чистая первичная продукция ― это энергетический резерв для консументов и редуцентов.

Чистая продукция определяется по формуле:

Пв = Пч + Д1.

Перерабатываясь в цепях питания, чистая продукция идёт на пополнение массы гетеротрофных организмов.

Прирост за единицу времени массы консументов ― это вторичная продукция сообщества.

Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счёт энергии, поступающей с предыдущего.

А2 = П2 + Д2.

Консументы второго порядка (хищники) не истребляют всю биомассу своих жертв. При этом из того количества её, которое они уничтожают, только часть используется на создание биомассы их собственного трофического уровня. Остальная же часть в основном затрачивается на энергию дыхания, выделяется с экскрементами.

Поток энергии, проходящий через третий уровень консументов второго порядка (плотоядные), выражается формулой:

А3 = П3 + Д3.

Подобным образом можно проследить совокупность пищевой цепи и до последнего трофического уровня. Распределив по вертикали различные затраты энергии на трофических уровнях, получим полную картину пищевой пирамиды в экосистеме.

Поток энергии, который выражается количеством синтезированных органических веществ по цепи питания, на каждом трофическом уровне уменьшается.

Изучая поток энергии по трофическим уровням то можно заметить, что на каждый последующий уровень в среднем переходит около 10 % от предыдущего.

Раймонд Линдеман в 1942 г. сформулировал закон пирамиды энергий, который в учебниках нередко называют "законом 10 %". Согласно этому закону, с одного трофического уровня экологической пирамиды переходит на другой её уровень в среднем не более 10 % энергии.

Например, растения могут усваивать при фотосинтезе до 100 % солнечной энергии. В свою очередь, растительноядные животные потребляют до 10 % энергии растений (или: до 90 % энергии, накопленной растениями, просто теряется). Хищники, питаясь растительноядными животными, получают 10 % энергии, содержащейся в биомассе всего ими съеденного.

Отсюда следует, что передача энергии с одного уровня на другой происходит с очень малым КПД. Это объясняет ограниченное количество звеньев в пищевой цепи, независимо от того или иного биоценоза.

Американский биолог Юджин Одум оценил превращение энергии в предельно упрощённой пищевой цепи (люцерна → телёнок → ребёнок), проиллюстрировал величину потерь энергии.


Допустим, рассуждал он, имеется посев люцерны на площади 4 га. На этом поле кормятся телята (предполагается, что они едят только люцерну), а 12-летний мальчик питается исключительно телятиной.

Результаты расчётов, представленные в виде пирамид ― свидетельствуют, что люцерна использует всего 0,24 % всей падающей на поле солнечной энергии, телёнком усваивается 8 % этой продукции и только 0,7 % биомассы телёнка обеспечивает развитие ребёнка в течение года.

Одум, таким образом, показал, что только одна миллионная доля приходящейся солнечной энергии превращается в биомассу плотоядного, в данном случае способствует увеличению массы ребёнка, а остальное теряется, рассеивается в окружающей среде.

Можно сказать, что экологические пирамиды отражают фундаментальные характеристики любого биоценоза, когда они показывают его трофическую структуру (пищевую последовательность):

• высота экологических пирамид пропорциональна длине рассматриваемой пищевой цепи, т.е. числу содержащихся в ней трофических уровней;

• форма экологических пирамид более или менее отражает эффективность превращений энергии при переходе с одного уровня на другой.

Поток энергии, проходящий через тот или другой трофический уровень, не может абсолютно определяться наличием пищи в нижележащем трофическом уровне.

Всегда остаётся, как известно, достаточный "запас", так как полное уничтожение корма привело бы к гибели потребителей. Эти общие закономерности наблюдаются в рамках популяционных процессов, сообществ, уровней экологической пирамиды, биоценозов в целом.


Ни один организм в природе не существует вне связей со средой и другими организмами. Эти связи – основное условие функционирования экосистем. Через них, как было показано выше, осуществляется образование цепей питания, регулирование численности организмов и их популяций, реализация механизмов устойчивости систем и другие явления. В процессе взаимосвязей происходит поглощение и рассеивание энергии и, в конечном счете, осуществляются средообразующие, средоохранные и средостабилизирующие функции систем.

Подобные экосистемные связи обусловлены всем ходом эволюционного процесса. По этой причине и любое их нарушение не остается бесследным, требует длительного времени для восстановления. В связи с этим экологически обусловленное поведение человека в природе невозможно без знакомства с этими связями и последствиями их нарушения. Целесообразно выделять взаимосвязи и взаимоотношения организмов в природе (экосистемах) как различные понятия.

Самый распространенный тип связей базируется на интересах питания. Такие связи носят название пищевых или трофических (греч. трофо – питание). В данный тип связей выделяется питание одного организма другим или продуктами его жизнедеятельности (например, экскрементами), питание сходной пищей (например, мертвым органическим веществом). Этим типом связей объединяются растения и насекомые, опыляющие их цветки. На базе трофических связей возникают цепи питания.

Связи, основанные на использовании местообитаний, носят название топических (греч. топос – место). Например, топические связи возникают между животными и растениями, которые предоставляют им убежище или местообитание (насекомые, прячущиеся в расщелинах коры деревьев или живущие в гнездах птиц. При этом растения, поселяющиеся на стволах деревьев (но не паразиты). Не только трофическими, но и топическими отношениями связаны паразиты с организмами, на которых они паразитируют.

Следующий тип связей носит название форических (лат. форас – наружу, вон). Они возникают в том случае, если одни организмы участвуют в распространении других или их зачатков (семян, плодов, спор). Животными это распространение может осуществляться как на наружных покровах, так и в пищеварительном тракте.

Выделяют также тип связей, которые носят название фабрических (лат. фабрикатио – изготовление). Для них характерно использование одними организмами других или продуктов их жизнедеятельности, частей (например, растений, перьевого покрова, шерсти, пуха) для постройки гнезд, убежищ и т.п.

Трофический уровень – это место каждого звена в пищевой цепи. Первый трофический уровень – это продуценты, все остальные – консументы. Второй уровень – растительноядные консументы; третий – плотоядные консументы, питающиеся растительноядными формами; четвертый – консументы, потребляющие других плотоядных и т.д.

Энергетические затраты связаны прежде всего с поддержанием метаболических процессов, которые называют тратой на дыхание, меньшая часть идет на рост, а остальная часть пищи выделяется в виде экскрементов. В конечном итоге, вся эта энергия превращается в тепловую и рассеивается в окружающей среде, а на следующий более высокий трофический уровень передается не более 10 % энергии от предыдущего.

15.tif

Рис. 15. Поток энергии через типичную пищевую цепь

Значительную часть гетеротрофов составляют сапрофаги и сапрофиты (грибы), использующие энергию детрита. Поэтому различают два вида трофических цепей: цепи выедания, или пастбищные, которые начинаются с поедания фотосинтезирующих организмов, и детритные цепи разложения, которые начинаются с остатков отмерших растений, трупов и экскрементов животных. Итак, поток лучистой энергии в экосистеме распределяется по двум видам трофических сетей. Конечный итог: рассеивание и потеря энергии, которая, чтобы существовала жизнь, должна возобновляться (рис. 15, 16).

16.tif

Рис. 16. Поток энергии через пастбищную пищевую цепь. Все цифры даны в кДж на метр в квадрате умноженное на год

Прямые пищевые связи типа растение ? фитофаг ? зоофаг ? паразит объединяют виды в цепи питания или трофические цепи, члены которых связаны между собой сложными адаптациями, обеспечивающими устойчивое существование каждой видовой популяции (рис. 17).

В экосистеме выделяют 2 типа цепей: пастбищные и детритные. Процессы, связанные с синтезом и трансформацией живого органического вещества в трофических взаимоотношениях, носят название цепей выедания или пастбищных цепей. Процессы деструкции и минерализации органических веществ выводятся в отдельный блок трофической структуры и называются цепями разложения или детритными цепями. Минерализация и деструкция органики практически происходят на всех трофических уровнях: и растения, и животные в процессе метаболизма редуцируют органическое вещество до СО2 и воды.

Детритные цепи начинаются с разложения мертвой органики особыми группами консументов – сапрофагами. Животные – сапрофаги механически, а отчасти и химически разрушают мертвое органическое вещество, подготавливая его к воздействию редуцентов. Активное участие в разложении мертвого органического вещества принимают почвенные беспозвоночные животные (членистоногие, черви) и микроорганизмы. Разложение может происходить по следующей схеме: бактерии, грибы ? детрит ? насекомые, хищники. Таким образом, на уровне консументов происходит разделение потока вещества по разным группам потребителей: живое органическое вещество следует по цепям выедания, а мертвое – по цепям разложения (рис. 18).

В круговорот веществ в экосистеме часто добавляются вещества, попадающие сюда извне, которые концентрируются в трофических цепях и накапливаются в них – происходит их биологическое накопление. Ю. Одум (1975) приводит пример биологического накопления ДДТ при опылении комаров на болотах п-ова Флорида: при опылении даже концентрациями ДДТ значительно ниже дозы, смертельной для рыб, оказалось, что благодаря многократному поглощению с начала детритной цепи, яд накапливался в жировых отложениях рыб и рыбоядных птиц. И хотя накопившаяся доза у птиц была не смертельна для них, ДДТ препятствовал образованию яичной скорлупы: тонкая скорлупа лопалась еще до развития птенца. Таким образом, биологическое накопление надо учитывать при поступлении в среду любых, даже очень малых, количеств загрязнителей.

Трофическую структуру экосистемы можно изобразить графически, в виде так называемых экологических пирамид:

1) пирамида чисел;

2) пирамида биомассы;

3) пирамида продукции (или энергии).

18.tif

Рис. 18. Модель трофической структуры сообщества

Пирамида чисел отображает закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается. Пирамида биомасс четко указывает на количество всего живого вещества на данном трофическом уровне. В наземных экосистемах действует следующее правило пирамиды биомасс: суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников.

Правило пирамиды продукции (или энергии): на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени (или энергии), больше, чем на последующем. Пирамида продукции отражает законы расходования энергии в трофических цепях и имеет универсальный характер и для всех экосистем (рис. 19).

Если оценить продукцию в последовательных трофических уровнях в любом биоценозе, мы получим убывающий ряд чисел, каждое из которых примерно в 10 раз меньше предыдущего. Этот ряд можно выразить графически в виде пирамиды с широким основанием и узкой вершиной (рис. 20). Поэтому закономерности создания биомассы в цепях питания экологи называют правилом пирамиды биологической продукции. Например, вес всех трав, выросших за год в степи, значительно больше, чем годовой прирост всех растительноядных животных, а прирост хищников меньше, чем растительноядных.

19.tif

Рис. 19. Пирамида продукции и поток энергии в экосистемах

20.tif

Рис. 20. Пирамида чисел (по Ч. Элтону, 1927 г.)

Из правила пирамиды биологической продукции нет исключений, потому что оно отражает законы передачи энергии в цепях питания. Соотношение биомасс может быть различным, потому что биомасса – это просто запас имеющихся в данный момент организмов. Например, в океанах (рис. 21) одноклеточные водоросли делятся с большой скоростью и дают очень высокую продукцию.

21.tif

Рис. 21. Соотношение продукции и биомассы разных групп организмов в океане: 1 – бактерии; 2 – фитопланктон; 3 – зоопланктон; 4 – рыбы

Однако их общее количество меняется мало, потому что с не меньшей скоростью их поедают различные фильтраторы. Образно говоря, водоросли еле успевают размножаться, чтобы выжить. Рыбы, головоногие моллюски, крупные ракообразные растут и размножаются медленнее, но еще медленнее поедаются врагами, поэтому их биомасса накапливается. Если взвесить все водоросли и всех животных океана, то последние перевесят (рис. 22).

22.tif

Рис. 22. Упрощённый вариант экологической пирамиды

Пирамида биомасс в океане оказывается, таким образом, перевернутой. В наземных экосистемах скорость выедания растительного прироста ниже и пирамида биомасс в большинстве случаев напоминает пирамиду продукции.

Все живые компоненты экосистемы составляют общую биомассу сообщества в целом или тех или иных групп организмов. Ее выражают в г/см3 в сыром или сухом виде, или в энергетических единицах – в калориях, джоулях и т.п.

Сукцессия – последовательная закономерная смена биоценозов на одной и той же территории под влиянием природных и антропогенных факторов. Экологическая сукцессия проходит в определенный отрезок времени ряд стадий развития, первые из которых называют стадией первых поселенцев, и вплоть до возникновения стабилизированной системы, называемой климаксом. Поэтому сукцессия – это последовательность сообществ, сменяющих друг друга в данном районе. Для возникновения сукцессии необходимо свободное пространство (рис. 23).

Различают первичную и вторичную сукцессии. Первичная сукцессия – это если формирование сообществ начинается на первоначально свободном субстрате, а вторичная сукцессия – это последовательная смена одного сообщества на данном субстрате другим, более адаптированным для данных абиотических условий.

23.tif

Рис. 23. Схема типичной наземной сукцессии

Вторичная сукцессия является, как правило, следствием деятельности человека. Вторичная сукцессия заканчивается стабильной стадией сообщества через 150–250 лет, а первичная длится 1000 лет.

Таким образом, экосистема – совокупность организмов и условий среды, в которой они обитают. Экосистемы, различающиеся по типам, всегда состоят из одних и тех же трех обязательных компонентов: продуцентов, консументов, редуцентов. Для биогеоценозов характерны определенные свойства: целостность, устойчивость, самовоспроизведение и саморегуляция. Под влиянием внутренних или внешних факторов может происходить смена биоценозов – экологическая сукцессия.

1. Дайте определение понятиям биоценоз, биогеоценоз и экосистема.

2. Взаимоотношения организмов в биоценозах.

3. Дайте характеристику отношениям между видами в сообществе (топические, трофические, форические и фабрические).

4. Что такое экологическая ниша?

5. Охарактеризуйте трофический уровень биоценоза.

6. Дайте характеристику экологической пирамиды.

7. Экосистемы и принципы их функционирования.

Задание для практических занятий

1. Проанализируйте приведенный ниже пример перехода энергии в цепях питания. Гусеницы дубовой моли поедают листья дуба. Обычно гусеницы пожирают столько листьев, сколько нужно, чтобы деревья могли расти и оставаться при этом здоровыми (равновесие между продуцентами и консументами). Но иногда наблюдается неожиданное увеличение количества гусениц. Их бывает так много, и они пожирают столько листьев, что деревья недостаточно используют световую энергию Солнца для фотосинтеза и начинают погибать от отсутствия пищи. Когда гусеница съедает лист, она получает меньше энергии, чем было получено от Солнца, поскольку дуб потреблял энергию не только на выращивание листьев. Когда гусеницу съест птица, она получит еще меньше первоначальной солнечной энергии, потому что часть энергии уже израсходовала гусеница. В экосистеме нарушился баланс: было недостаточно дубов, чтобы поддержать резкое увеличение численности гусениц, и потому дубы погибли.

К каким результатам привело бы наличие птиц в экосистеме, включающей дубы и гусениц?

Если погибло много дубов, листьями которых кормятся гусеницы, то, что случится с гусеницами на следующий год? Подтвердите эти результаты вашим примером.

2. Задача: вывести правило пирамиды продуктивности в экосистеме. Для примера возьмем соотношение биомассы по пищевой цепи: трава – кролики – лисицы. Эколог, изучающий небольшой участок луга в течение года, в начале года обнаружил на участке 25 кроликов. К концу года их число достигло 100. Каждый кролик весит около 1,5 кг. Их общая масса составит почти 150 кг. Каждому кролику на 400 г живого веса требуется 4 кг пищи, а всем кроликам – 1600 кг. Предположим, в начале года имелось 600 кг травы, а вырастет ее еще 1800 кг. Поскольку масса травы составит 2400 кг, то 800 кг останется. Это значит, что за счет прироста травы система может обеспечить кроликов необходимой пищей.

Нарисуйте два прямоугольника (друг над другом): нижний будет соответствовать массе травы, а верхний, меньшего размера, массе кроликов. Это две нижние ступени пирамиды. Предположим, что на луг проникли две лисицы. Вес каждой 6 кг, следовательно, общий – 12 кг. Поскольку лисица потребляет 60 кг пищи, двум хищникам требуется 120 кг крольчатины для выживания. Если каждый кролик весит 1,5 кг, то лисицы съедят 75 кроликов в течение года. К концу года из 100 кроликов на лугу останется всего 25. Это значит, что экосистема обеспечивает травой 100 кроликов, из которых 75 идет на питание двух лисиц. Нарисуйте третью, самую маленькую ступень пирамиды. Пирамида биомассы в данной пищевой цепи приобретает следующий вид:

– 2 лисы, съедающие 120 кг крольчатины;

– 100 кроликов, съедающих 1600 кг травы;

Сформулируйте три основных принципа функционирования экосистем, используя следующие понятия:

Читайте также: