Подобие в жизни человека геометрия доклад

Обновлено: 04.07.2024

Природа говорит языком математики:
буквы этого языка - круги, треугольники
и иные математические фигуры.
Галилей

Цели и задачи урока:

  • показать применение подобия треугольников при проведении измерительных работ на местности;
  • показать взаимосвязь теории с практикой;
  • познакомить учащихся с различными способами определения высоты предмета и расстояния до недоступного объекта;
  • формировать умения применять полученные знания при решении разнообразных задач данного вида.
  • повышать интерес учащихся к изучению геометрии;
  • активизировать познавательную деятельность учащихся;
  • формировать качества мышления, характерные для математической деятельности и необходимые для продуктивной жизни в обществе.
  • мотивироватьинтерес учащихся к предмету посредством включения их в решение практических задач.

Ход урока

Слайды 1-2 (Презентация 1)

Геометрия - одна из самых древних наук. Она возникла на основе практической деятельности людей и в начале своего развития служила преимущественно практическим целям. В дальнейшем геометрия сформировалась как самостоятельная наука, занимающаяся изучением геометрических фигур.

Геометрические знания широко применяются в жизни - в быту, на производстве, в науке. При покупке обоев надо знать площадь стен комнаты; при изготовлении технических чертежей - выполнять геометрические построения; при определении расстояния до предмета, наблюдаемого с двух точек зрения, нужно пользоваться известными вам теоремами.

Геометрия всегда решала те задачи, которые перед ней ставила жизнь. Учение о подобии фигур на основе теории отношений и пропорций было создано в Древней Греции в 5-4 веках до нашей эры и существует и развивается до сих пор. Например, многие детские игрушки подобны предметам взрослого мира, обувь и одежда одного фасона выпускается различных размеров. Эти примеры можно продолжать и дальше. В конце концов, все люди подобны друг другу и как утверждает Библия, создал их бог по своему образу и подобию. В повседневной жизни встречаются предметы одинаковой формы, но разных размеров, например футбольный и теннисный мячи, две фотографии разного формата.

Мы уже знаем, что в геометрии фигуры одинаковой формы принято называть подобными. Сегодня мы обсудим, как свойства подобных треугольников могут быть использованы для проведения различных измерительных работ на местности.

  • определение высоты предмета;
  • определение расстояния до недоступного объекта.

Для начала в этом нам помогут герои известного мультфильма "Шрек".

Начнем мы со сказки День Рождения Шрека или Практическое применение подобия треугольников. (Презентация 2)

Слайд 3 (Презентация 1)

Уже в XVI в. В России нужды землемерия, строительства и военного дела привели к созданию рукописных руководств геометрического содержания. Первое дошедшее до нас сочинение этого рода носит название "О земном верстании, как землю верстать". Оно является частью "Книги сошного письма", написанной, как полагают, при Иване IV в 1556 г. Сохранившаяся копия относится к 1629 г. При разборе Оружейной Палаты в Москве в 1775 г. была обнаружена инструкция "Устав ратных, пушечных и других дел, касающихся до военной науки", изданная в 1607 и 1621 годах и содержащая некоторые геометрические сведения, которые сводятся к определенным приемам решения задач на нахождение расстояний.

Слайд 4 (Презентация 1) Вот один пример.Для измерения расстояния от точки Я до точки Б (см. рис.) рекомендуется вбить в точке Я жезл примерно в рост человека. К верхнемуконцужезла Ц прилагается вершина прямого угла угольника так, чтобы один из катетов (или его продолжение) проходил через точку Б. Отмечается точка З пересечения другого катета (или его продолжения) с землей. Тогда расстояние БЯ относится к длине жезла ЦЯ так, как длина жезла к расстоянию ЯЗ. Дляудобства расчетов и измерений жезл был разделен на 1000 равных частей.

Рассмотрим несколько случаев из истории и литературы.

1. Определение высоты предмета по длине его тени.

Слайд 5-7 (Презентация 1)

Греческие ученые решили множество практических задач, которые до них люди не умели решать. Например, за шесть веков до нашей эры греческий мудрец Фалес Милетский научил египтян определять высоту пирамиды по длине ее тени.

Как это было, рассказывается в книге Я.И. Перельмана "Занимательная геометрия".Фалес, говорит предание, избрал день и час, когда длина собственной его тени равнялась его росту. В этот момент высота пирамиды должна также равняться длине отбрасываемой его тени. Вот, пожалуй, единственный случай, когда человек извлёк пользу из своей тени.

Слайд 8 (Презентация 1)

Я хочу прочитать вам эту маленькую притчу.

"Усталый северный чужеземец пришел в страну Великого Хапи. Солнце уже садилось, когда он подошел к великолепному дворцу фараона и что-то сказал слугам. Те мгновенно распахнули перед ним двери и провели его в приемную залу. И вот он стоит в запыленном походном плаще, а перед ним на золоченом троне сидит фараон. Рядом стоят высокомерные жрецы, хранители вечных тайн природы.

- Кто ты? - спросил верховный жрец.

- Зовут меня Фалес. Родом я из Милета.

Жрец надменно продолжал:

- Так это ты похвалялся, что сможешь измерить высоту пирамиды, не взбираясь на нее? - жрецы согнулись от хохота.

- Будет хорошо, - насмешливо продолжал жрец, - если ты ошибешься не более, чем на сто локтей.

- Я могу измерить высоту пирамиды и ошибусь не более чем на пол-локтя. Я сделаю это завтра.

Лица жрецов потемнели. Какая наглость! Этот чужестранец утверждает, что может вычислить то, чего не могут они - жрецы Великого Египта.

- Хорошо, сказал фараон. - Около дворца стоит пирамида, мы знаем ее высоту. Завтра проверим твое искусство".

Слайд 9-11 (Презентация 1)

На следующий день Фалес нашёл длинную палку, воткнул её в землю чуть поодаль пирамиды. Дождался определённого момента. Он измерил тень от палки и тень от пирамиды. Сравнивая соотношения высот реальных предметов с длинами их теней, Фалес нашел высоту пирамиды.

Определение высоты пирамиды по длине ее тени.

ВС - длина палки, DE - высота пирамиды.

АВС подобен D СDE (по двум углам):

АВС= СDЕ, т. к. соответственные при АВ || DС и секущей АС (солнечные лучи падают параллельно)

В подобных треугольниках сходственные стороны пропорциональны:

Таким образом, Фалес нашел высоту пирамиды.

Вопрос классу: Однако, способ предложенный Фалесом, применим не всегда. Почему?

  • нельзя измерить высоту предмета при отсутствии солнца и, как следствие, тени.

2. Определение высоты предмета по шесту.

Слайд 12-15 (Презентация 1)

При отсутствии тени в пасмурную погоду можно воспользоваться способом измерения, которыйживописнопредставлен у Жюль Верна в известном романе "Таинственный остров".

Читаем отрывок из романа.

":- Сегодня нам надо измерить высоту площадки скалы Дальнего вида, - сказал инженер.

- Вам понадобится для этого инструмент? - спросил Герберт.

- Нет, не понадобится. Мы будем действовать несколько иначе, обратившись к не менее простому и точному способу.

Юноша, стараясь научиться, возможно, большему, последовал за инженером, который спустился с гранитной стены до окраины берега.

Взяв прямой шест, длиной 10 футов, инженер измерил его возможно точнее, сравнивая со своим ростом, который был хорошо ему известен. Герберт нёс за ним отвес, вручённый ему инженером: просто камень, привязанный к концу верёвки.

Не доходя футов 500 до гранитной стены, поднимавшейся отвесно, инженер воткнул шест фута на два в песок и, прочно укрепив его, поставил вертикально с помощью отвеса. Затем он отошёл от шеста на такое расстояние, чтобы лёжа на песке, можно было на одной прямой линии видеть и конец шеста, и край гребня. Эту точку он тщательно отметил колышком.

- Тебе знакомы зачатки геометрии? - спросил он Герберта, поднимаясь с земли.

- Помнишь свойства подобных треугольников?

- Их сходственные стороны пропорциональны.

- Правильно. Так вот: сейчас я построю 2 подобных прямоугольных треугольника. У меньшего одним катетом, будет отвесный шест, другим - расстояние от колышка до основания шеста; гипотенуза же - мой луч зрения. У другого треугольника катетами будут: отвесная стена, высоту которой мы хотим определить, и расстояние от колышка до основания этой стены; гипотенуза же - мой луч зрения, совпадающий с направлением гипотенузы первого треугольника.

- Понял! - воскликнул юноша. - Расстояние от колышка до шеста так относится к расстоянию к расстоянию от колышка до основания стены, как высота шеста к высоте стены.

- Да, и, следовательно, если мы измерим два расстояния, то зная высоту шеста, сможем вычислить четвёртый неизвестный член пропорции, т.е. высоту стены. Мы обойдёмся, таким образом, без непосредственного измерения этой высоты.

Оба расстояния были измерены. Расстояние от колышка до палки равнялось 15 футам, а от палки до скалы 485 футам.

По окончании измерений инженер составил следующую запись:

Значит, высота гранитной стены равнялась приблизительно 333 футам".

Преимущества способа Жюль Верна:

- можно производить измерения в любую погоду;

  • нельзя измерить, высоту предмета не испачкавшись, так как приходится ложиться на землю.

3. Определение высоты предмета.

Есть несколько простых способов определения высоты предметов. Например, такие способы приведены в настольной книге охотника-спортсмена.

Слайд 16 (Презентация 1)

По луже. Этот способ можно удачно применять после дождя, когда на земле появляется много лужиц. Измерение производят таким образом: находят невдалеке от измеряемого предмета лужицу и становятся около нее так, чтобы она помещалась между вами и предметом. После этого находят точку, из которой видна отраженная в воде вершина предмета. Измеряемый предмет, например дерево, будет во столько раз выше вас, во сколько расстояние от него до лужицы больше, чем расстояние от лужицы до вас.

Слайд 17-18 (Презентация 1)

Вместо лужицы можно пользоваться положенным горизонтально зеркальцем. Зеркало кладут горизонтально и отходят от него назад в такую точку, стоя в которой, наблюдатель видит в зеркале верхушку дерева. Луч света FD, отражаясь от зеркала в точке D, попадает в глаз человека.

АВD подобен D EFD (по двум углам):

АDВ = EDF, т.к. угол падения равен углу отражения.

В подобных треугольниках сходственные стороны пропорциональны:

Таким образом, найдена высота объекта.

4. Определение расстояния до недоступного объекта.

Рассмотрим применение подобия треугольников к определению расстояния до недоступного объекта. Слайд 19-25 (Презентация 1, с использованием Приложения 1).

5. Практическое задание. Слайд 26 (Презентация 1)

Предлагается решить задачу № 583.В ней предлагается, применив подобие треугольников, измерить ширину реки.Чертеж к задаче имеется в учебнике. Ученикам необходимо объяснить, как получен такой чертеж, доказать подобие треугольников и провести вычисления.

По построению АВС подобен АВ1С1 (по двум углам).

В подобных треугольниках сходственные стороны пропорциональны:

6. Рассмотрение и обсуждение примеров. Слайды 27-28 (Презентация 1).

7. Дополнительный материал. Слайд 29-30 (Презентация 1 с использованием Приложения 1)

Для "проведения" длинных отрезков на местности используют прием, называемый провешиванием прямой. Этот прием заключается в следующем: сначала отмечают какие-нибудь точки А и В. Для этой цели используют две вехи - шесты длиной около 2 м, заостренные на одном конце для того, чтобы их можно было воткнуть в землю. Третью веху (точка С) ставят так, чтобы вехи, стоящие в точках А и В, закрывали ее от наблюдателя находящегося в точке А. Следующую веху ставят так, чтобы ее закрывали вехи, стоящие в точках В и С, и т.д.

Измерение углов на местности можно провести с помощью специального прибора - астролябия. Астролябия состоит из двух частей: диска, разделенного на градусы, и вращающегося вокруг центра диска линейки (алидады). На концах алидады находятся два узких окошечка, которые используются для установки ее в определенном направлении. Для того чтобы измерить АОВ на местности, треножник с астролябией ставят так, чтобы отвес, подвешенный к центру диска, находился точно над точкой О. Затем устанавливают алидаду вдоль одной из сторон ОА или ОВ, и отмечают деление, против которого находится указатель алидады. Далее поворачивают алидаду, направляя ее вдоль другой стороны измеряемого угла, и отмечают деление, против которого окажется указатель алидады. Разность отсчета и дает градусную меру АОВ.

8. Подведение итогов.

Домашнее задание: пункт 64 параграфа 3, стр. 150-151, № 581, 582, придумать свои задачи на определение высоты предмета и определение расстояния до недоступной точки (оформить либо в виде презентации, либо в виде практической работы в формате А4).

9. Выступления учащихся на следующем уроке с домашним заданием по теме. Выбраны, как примеры, некоторые презентации учеников разных классов - 8 "А" историко-филологического и 8 "Г" физико-математического - в этих классах я работала в том учебном году, когда проходили данную тему. Сейчас эти ребята учатся в десятом классе. (Презентации 3-9).

Нажмите, чтобы узнать подробности

Работа построениа на исследовании возможности применения подобия треугольников в реоальной жизни, выполнены эксперименты по измерению длины с помощью высотомера.

ПОДОБИЕ ТРЕУГОЛЬНИКОВ В РЕАЛЬНОЙ ЖИЗНИ

Сушко Дарья Олеговна

Ученица 8 класса

Икаева Марина Александровна

Учитель математики, II категория

Геометрия зародилась в глубокой древности. Мир, в котором мы живем сегодня, также наполнен геометрией. Все предметы, окружающие нас, имеют геометрические формы. Это здания, улицы, растения, предметы обихода. В повседневной жизни часто встречаются фигуры одинаковой формы, но разного размера. Такие фигуры в геометрии называют подобными. Моя работа посвящена подобию треугольников, так как, изучая эту тему на уроках математики, меня заинтересовало, как на практике применяются понятие подобия треугольников и признаки подобия. Актуальность моей темы заключается в том, что без каких - либо инструментов, только опираясь на подобие треугольников, можно измерить высоту столба, колокольни, дерева, ширину реки, озера, оврага, длину острова, глубину пруда и т.д.

Целью работы было найти области применения подобия треугольников в реальной жизни.

Задачами работы были

изучить литературу по данной теме;

изучить историю возникновения понятия подобия;

узнать, где применяется подобие треугольников;

измерить высоту столба при помощи подобия треугольников различными способами;

Объекты и предметы исследования: высота: столб; дерево, модель пирамиды.

В ходе работы были применены следующие методы: обзор литературы, практическая работа, сравнение.

Работа носит практико-ориентированный характер, так как практическая значимость работы заключается в возможности использования результатов исследования на уроках геометрии, в повседневной жизни.

В результате выполнения работы были проведены измерения высоты столба, дерева, моделей, изготовленных автором.

Легенда об измерении Фалесом высоты пирамиды

Понятие подобия фигур. Признаки подобия.

4.1 Определение высоты по тени

4.2. Измерение высоты методом Жюля Верна

4.3. Измерение высоты с помощью высотомера

Геометрия зародилась в глубокой древности. Строя жилища и храмы, украшая их орнаментами, размечая землю, измеряя расстояния и площади, человек применял свои знания о форме, размерах и взаимном расположении предметов, полученные из наблюдений и опытов. Мир, в котором мы живем сегодня, также наполнен геометрией. Все предметы, окружающие нас, имеют геометрические формы. Это здания, улицы, растения, предметы обихода. В повседневной жизни часто встречаются фигуры одинаковой формы, но разного размера. Такие фигуры в геометрии называют подобными. Моя работа посвящена подобию треугольников, так как, изучая эту тему на уроках математики, меня заинтересовало, как на практике применяются понятие подобия треугольников и признаки подобия. Актуальность моей темы заключается в том, что без каких - либо инструментов, можно измерить высоту столба, колокольни, дерева, ширину реки, озера, оврага, длину острова, глубину пруда и т.д.

Целью моей работы было найти области применения подобия треугольников в реальной жизни.

Задачами моей работы были

изучить литературу по данной теме;

изучить историю возникновения понятия подобия;

узнать, где применяется подобие треугольников;

измерить высоту столба при помощи подобия треугольников различными способами;

2. Легенда об измерении Фалесом высоты пирамиды.

С пирамидой связано много таинственных историй и легенд. В один из жарких дней Фалес вместе с главным жрецом храма Изиды прогуливался мимо пирамиды Хеопса.

- Знает ли кто – либо, какова её высота?- спросил он.

- Нет, сын мой, - ответил ему жрец,- древние папирусы не сохранили нам этого. - Но ведь определить высоту пирамиды можно совсем точно и прямо сейчас!- воскликнул Фалес.

- Вот смотрите,- продолжал Фалес,- именно в это время, какой бы мы предмет не взяли, тень от него, если поставить его вертикально, точно высоте предмета! Чтобы воспользоваться тенью для решения задачи о высоте пирамиды, надо было знать уже некоторые геометрические свойства треугольника, - именно следующие два (из которых первое Фалес открыл сам):

1. Что углы при основании равнобедренного треугольника равны, и обратно – что стороны, лежащие против равных углов треугольника, равны между собою; 2. Что сумма углов всякого треугольника равна двум прямым углам.

Только вооружённый этим знанием Фалес вправе был заключить, что, когда его собственная тень равна его росту, солнечные лучи встречают ровную почву под углом в половину прямого, и следовательно, вершина пирамиды, середина её основания и конец её тени должны обозначить равнобедренный треугольник . Этим простым способом очень удобно, казалось бы, пользоваться в ясный солнечный день для измерения одиноко стоящих деревьев, тень которых не сливается с тенью соседних. Но в наших широтах не так легко, как в Египте, подстеречь нужный для этого момент: Солнце у нас низко стоит над горизонтом, и тени бывают равны высоте отбрасывающих их предметов лишь в околополуденные часы летних месяцев. Поэтому способ Фалеса в указанном виде применим не всегда.

3. Понятие подобных фигур.

В жизни мы встречаемся не только с равными фигурами, но и с такими, которые имеют одинаковую форму, но разные размеры. Геометрия называет такие фигуры подобными. Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника. Признаки подобия треугольников — геометрические признаки, позволяющие установить, что два треугольника являются подобными без использования всех элементов.

Признаки подобия треугольников.

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

4. Измерительные работы с помощью подобия.

4.1. Определение высоты по тени.

Я решила провести эксперимент по определению высоты по тени.

Для этого мне понадобились: фонарик, макет пирамиды, фигурка. Сделать миниатюрную пирамиду для проведения экспериментов несложно. Мне понадобились: лист бумаги; карандаш; линейка; ножницы; клей для бумаги. На листе бумаги я построила развертку пирамиды, в основании которой квадрат со стороной 7,6 см, а баковые грани – равные равнобедренные треугольники с боковой стороной 9,6 см. Высота получившейся пирамиды – 7,9 см. Высота фигурки 8,1 см. Попробуем измерить высоту данной пирамиды по её тени, используя также тень фигурки. В солнечный день я измерила тень пирамиды и фигурки. У меня получилось: 15см - тень фигурки, 13 см - тень пирамиды.



Построим геометрическую модель данной задачи:


Исходные данные задачи: Длина тени пирамиды ВС = 11 см, длина тени фигурки КЛ =15 см, высота фигурки КМ=8 см, основание пирамиды – квадрат со стороной 7,6 см. Высота пирамиды АО – искомое.

Рассмотрим прямоугольные треугольники АОС и МКЛ:

, ∠ АСО= ∠ МЛК как углы падения солнечных лучей, значит по двум углам.




Найдем теперь высоту пирамиды другим способом для сравнения результатов. Найдем высоту боковой грани: АВ=

Из найдем высоту АО=

Мы получили практически одинаковые результаты. Получив такие результаты, я решила измерить высоту столба, выйдя на улицу.

Я выбрала столб, от которого падала четкая тень и измерила её. Она равнялась 21 м. Затем я стала рядом со столбом и мой помошник измерил мою тень, она равнялась 4,5 метра. Мой рост, учитывая, что я была в обуви и головном уборе, составил 1,6 .

Найдем высоту столба, составив геометрическую модель задачи.



Рассмотрим , КО – длина моей тени, ВС – длина тени столба. АВ – искомое.

∠АВС=∠МКО= как углы падения солнечных лучей.

=


Таким образом, я получила приблизительное значение высоты столба 7,46 м.

4.2. Измерение высоты пирамиды методом Жюля Верна.

— Тебе знакомы начатки геометрии? — спросил он Герберта, поднимаясь с земли.

— Помнишь свойства подобных треугольников?

— Их сходственные стороны пропорциональны. — Правильно. Так вот: сейчас я построю два подобных прямоугольных треугольника. У меньшего одним катетом будет отвесный шест, другим — расстояние от колышка до основания шеста; гипотенуза же — мой луч зрения. У другого треугольника катетами будут: отвесная стена, высоту которой мы хотим определить, и расстояние от колышка до основания этой стены; гипотенуза же — мол луч зрения, совпадающий с направлением гипотенузы первого треугольника.

— Понял!—воскликнул юноша.—Расстояние от колышка до шеста так относится к расстоянию от колышка до основания стены, как высота шеста к высоте стены. — Да. И следовательно, если мы измерим два первых расстояния, то, зная высоту шеста, сможем вычислить четвертый, неизвестный член пропорции, т. е. высоту стены. Mы обойдемся, таким образом, без непосредственного измерении этой высоты. Оба горизонтальных расстояния были измерены: меньшее равнялось 15 футам, большее — 500 футам. По окончании измерений инженер составил следующую запись:

15 : 500 = 10:х, 500 X 10 = 5000, 5000 : 15 = 333,3.

4.3 Определение высоты с помощью высотомера

Высоту можно измерить специальным прибором - высотомером. Для изготовления данного прибора потребуется: Плотный белый картон, линейка, ручка, карандаш, ножницы, нитка, грузик, игла.

1. Из картона чертим и вырезаем квадрат размером 15х15см.

2. Делим квадрат на два прямоугольника: 5х15 см, 10х15 см.

3. Прямоугольник 10х15 см делим на две части: 5 см и 10 см.

4. На большей части с длиной 10 см, наносим сантиметровые деления и обозначаем их десятичной дробью, то есть 0,1;0,2 и т.д.

5. В точке Е иглой делаем отверстие и протаскиваем нитку с грузиком, а затем закрепляем нитку сзади.

6. Для того, чтобы было удобнее смотреть, отгибаем верхний прямоугольник от основания.

7. На нём с боков отгибаем два прямоугольника размером 3х5 см и прорезаем два отверстия с разным диаметром: одной поменьше - у глаза, другой побольше – для того, чтобы навести на вершину дерева. Итак, я решила провести эксперимент и проверить данный способ измерения высоты предмета. В качестве измеряемого объекта я выбрала дерево, растущее возле школы.

Я отошла от измеряемого предмета на 21 шаг, то есть EO =6,3 м. Я измерила показания прибора, он показывал 0,7. Мой рост 1,6 м. Требуется найти высоту дерева.

Для этого построим геометрическую модель данной задачи:


=

Прибавим к полученной величине мой рост и получим: ЛВ=ЛО+ОВ=3,71

1,6=5,31 – высота дерева.

Также, я могла допустить ошибки в использовании прибора Ошибки в использовании и изготовлении прибора:

1.Если не отгибать верхний прямоугольник от основания, то вы неправильно определите высоту.

2.При измерении высоты предмета, грузик должен быть направлен на конкретную величину разметки.

3.Расстояние от измеряемого объекта должно быть точным.

4.Точно наносить разметку в 1 см.

Выполнив свою работу я узнала о том, что существуют много различных способов определения высоты предмета. Я провела эксперимент по определению высоты предмета по его тени. Испытание я проделала в домашних условиях на модели пирамиды и фигурки, а также на улице при измерении высоты столба. Также, я рассмотрела способ Жюля Верна для определения высоты. Я изучила понятие высотометра и изготовила прибор высотометр, который применила на практике для измерения высоты выбранного объекта. Самым удобным способом измерения высоты для меня пришлось использование высотометра. Таким образом, цели моей работы достигнуты. Можно смело утверждать, что подобие треугольников применяется в реальной жизни при измерительных работах на местности.

2.Перельман Я. И. Занимательная геометрия.– М.:Государственное издательство технико-теоретической литературы, 1950.

5. Перельман Я. И. Занимательная геометрия.– М.:Государственное издательство технико-теоретической литературы, 1950
Измерять высоту дерева можно 3-мя способами.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Проектная работа на тему: Подобие треугольников и применение их в жизни. Выпо.

Описание презентации по отдельным слайдам:

Проектная работа на тему: Подобие треугольников и применение их в жизни. Выпо.

Проектная работа на тему: Подобие треугольников и применение их в жизни. Выполнили: ученики 8 класса Чикоткова Арина Ногих Анна Руководитель: учитель математики Фурсенко Н.П. Лизиновка 2016 МКОУ Лизиновская СОШ

Задачи и цели: Узнать где применяется подобие в жизни. Рассмотреть решение з.

Задачи и цели: Узнать где применяется подобие в жизни. Рассмотреть решение задач на местности.

Немного из истории Определение высоты пирамиды по длине ее тени

Немного из истории Определение высоты пирамиды по длине ее тени

За шесть веков до нашей эры греческий мудрец Фалес Милетский вычислил высоту.

На следующий день Фалес нашёл длинную палку, воткнул её в землю чуть поодаль.

На следующий день Фалес нашёл длинную палку, воткнул её в землю чуть поодаль пирамиды. Дождался определённого момента. Провёл некоторые измерения, сказал способ определения высоты пирамиды и назвал её высоту.

Теория:

Применение теории на практике: Определение высоты предмета По шесту. Для изме.

Применение теории на практике: Определение высоты предмета По шесту. Для измерения нужно взять шест, равный по длине вашему росту. Шест этот надо установить на таком расстоянии от дерева, чтобы лежа можно было видеть верхушку дерева на одной прямой линии с верхней точкой шеста. Тогда высота дерева будет равна линии, проведенной от вашей головы до основания дерева.

Решение ∠L-общий,∠DML= =∠KCL=90° => ΔMLD ~ CLK=> 15/3=5=> MD=3*5=15м. Ответ.

Решение ∠L-общий,∠DML= =∠KCL=90° => ΔMLD ~ CLK=> 15/3=5=> MD=3*5=15м. Ответ: дерево высотой 15 м.

 10:1.60=6.25 6.25*1.60=10м Ответ : дерево высотой 10 метров 10м

10:1.60=6.25 6.25*1.60=10м Ответ : дерево высотой 10 метров 10м

По луже. Этот способ можно удачно применять после дождя, когда на земле появл.

По луже. Этот способ можно удачно применять после дождя, когда на земле появляется много лужиц. Измерение производят таким образом: находят невдалеке от измеряемого предмета лужицу и становятся около нее так, чтобы она помещалась между вами и предметом. После этого находят точку, из которой видна отраженная в воде вершинка предмета. Измеряемый предмет, например дерево, будет во столько раз выше вас, во сколько расстояние от него до лужицы больше, чем расстояние от лужицы до вас

По зеркалу.  АВD подобен EFD (по двум углам):  ВАD= FED=90°;  АDВ = EDF.

По зеркалу.  АВD подобен EFD (по двум углам):  ВАD= FED=90°;  АDВ = EDF, т.к. угол падения равен углу отражения. В подобных треугольниках сходственные стороны пропорциональны:

 12:1=12 12*1.60=19.2м Ответ: дерево высотой 19.2м 19.2м

12:1=12 12*1.60=19.2м Ответ: дерево высотой 19.2м 19.2м

С какого расстояния уже могут быть различимы объекты. 1. На открытой местност.

Измерение расстояния до недоступной точки. 19.2м 19.2м Палец-0.06м, Расстояни.

Измерение расстояния до недоступной точки. 19.2м 19.2м Палец-0.06м, Расстояние от глаза до пальца-0.5м Расстояние до дерева 160м 19.2:0.06=320 320*0.5=160м

Измерение ширены реки с помощью булавочного прибора

Измерение ширены реки с помощью булавочного прибора

Булавочный прибор для измерений

Булавочный прибор для измерений

Также для измерения могут применяться разные инструменты. Экер Экер представл.

Также для измерения могут применяться разные инструменты. Экер Экер представляет собой два бруска, расположенных под прямым углом и укреплённых на треножнике. На концах брусков вбиты гвозди так, что прямые, проходящие через них, взаимно перпендикулярны.

Астролябия Устройство: астролябия состоит из двух частей: диска (лимб), разде.

Астролябия Устройство: астролябия состоит из двух частей: диска (лимб), разделённого на градусы, и вращающейся вокруг центра линейки (алидады). При измерении угла на местности она наводится на предметы, лежащие на его сторонах. Наведение алидады называется визированием. Для визирования служат диоптры. Это металлические пластинки с прорезами. Диоптров два: один с прорезом в виде узкой щели, другой с широким прорезом, посередине которого натянут волосок. При визировании к узкому прорезу прикладывается глаз наблюдателя, поэтому диоптр с таким прорезом называется глазным. Диоптр с волоском направляется к предмету, лежащему на стороне измеряемого; он называется предметным. В середине алидады прикреплён к ней компас.

Вывод: Подобие треугольников применяется в повседневной жизни довольно часто.

Вывод: Подобие треугольников применяется в повседневной жизни довольно часто. Мы выяснили на конкретных примерах, что с помощью подобия можно найти высоту или расстояние до известной или неизвестной нам точки.

История развития теории подобных треугольников…..7 стр.

Различные способы нахождения высоты предмета……9 стр.

Определение расстояния до недоступного объекта…..13 стр.

Практическое применение подобия треугольников…..14 стр.

Геометрия – одна из самых древних наук. Она возникла на основе практической деятельности людей и в начале своего развития служила преимущественно практическим целям. В дальнейшем геометрия сформировалась как самостоятельная наука, занимающаяся изучением геометрических фигур.

Геометрические знания широко применяются в жизни – в быту, на производстве, в науке. При покупке обоев надо знать площадь стен комнаты; при изготовлении технических чертежей – выполнять геометрические построения; при определении расстояния до предмета, наблюдаемого с двух точек зрения, нужно пользоваться известными нам теоремами.

Геометрия всегда решала те задачи, которые перед ней ставила жизнь. Учение о подобии фигур на основе теории отношений и пропорций было создано в Древней Греции в 4-5 веках до нашей эры и существует и развивается до сих пор. Например, многие детские игрушки подобны предметам взрослого мира, обувь и одежда одного фасона выпускается различных размеров. В повседневной жизни встречаются предметы одинаковой формы, но разных размеров, например футбольный и теннисный мяч, коробки различного объема, две фотографии разного формата.

В геометрии фигуры одинаковой формы принято называть подобными.

Проблема: Как свойства подобных треугольников могут быть использованы для проведения различных измерительных работ на местности?

Цель исследования:

Исследовать области применения подобия треугольников в практической жизни человека.

Гипотеза: Применение метода подобия треугольников позволит облегчить и ускорить вычисления при решении прикладных задач на определение размеров объекта и расстояния до недоступной точки.

Задачи исследования:

Изучение исторических сведений о теории возникновения подобия;

Исследование признаков и свойств подобных треугольников;

Исследовать применение подобия треугольников на примере измерительных работ;

Решение прикладных задач, связанных с подобием;

Расширение геометрических представлений.

Актуальность: В туристическом походе, путешествии и в других случаях часто возникает потребность в определении расстояний до недоступных предметов, измерении их длин и высоты, в определении ширины реки или другого препятствия. Конечно, наиболее точно и быстро это можно сделать с помощью специальных приборов: дальномеров, биноклей. Но из-за отсутствия приборов нередко расстояния определяют с помощью подручных средств и применения метода подобия.

Методы исследования : сбор информации, систематизация и обобщение, измерительные работы на местности. Объект исследования: подобные треугольники.

Предмет исследования : применение подобия треугольников при измерительных работах.

Экспериментальное оборудование : рулетка, веревка, зеркало, угольник, калькулятор.

Понятие и признаки подобных треугольников

Определение: Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого (рис. 1)

Если треугольник ABC подобен треугольнику А 1 B 1 С 1 , то углы А, В и С равны соответственно углам A 1 , B 1 и C 1 , . Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия.

Признаки подобия треугольников:

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключённые между этими сторонами, равны, то такие треугольники подобны.

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Свойства подобных треугольников

Отношение соответственных линейных элементов подобных треугольников равно коэффициенту их подобия. К таким элементам подобных треугольников относятся те, которые измеряются в единицах длины. Это, например, сторона треугольника, периметр, медиана. Угол или площадь к таким элементам не относятся.

Отношение площадей подобных треугольников равно квадрату коэффициента их подобия.

Примеры наиболее часто встречающихся подобных треугольников

Рассмотрим ключевые задачи и составим геометрические модели:

Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

Треугольники AOD и COB, образованными отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия - k=AO/OC

В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных данному.

Два прямоугольных треугольника, катеты которых являются продолжениями друг друга, а два другие параллельны, образуют два подобных треугольника.

История развития теории подобных треугольников

Способ Фалеса.

В это момент высота пирамиды должна также равняться длине отбрасываемой его тени. Вот, пожалуй, единственный случай, когда человек извлек пользу из своей тени. На следующий день Фалес нашел длинную палку, воткнул ее в землю чуть поодаль пирамиды. Дождался определенного момента. Он измерил тень от палки и тень от пирамиды. Сравнивая соотношение высот реальных предметов с длинами их теней, Фалес нашел высоту пирамиды (рис. 4).

ВС – длина палки, D Е – высота пирамиды. ∆ АВС подобен ⁓ ∆ С D Е (по двум углам): ВСА= СED =90°; АВС= СDЕ, как соответственные при АВ || DС и секущей АС (солнечные лучи падают параллельно). В подобных треугольниках сходственные стороны пропорциональны:

Таким образом, Фалес нашел высоту пирамиды. Метод Фалеса соответствует модели I ключевых задач.

Преимущества способа Фалеса: не требуются вычисления.

Недостатки: нельзя измерить высоту предмета при отсутствии солнца и, как следствие, тени.

Одинаковые по форме, но различные по величине фигуры встречаются в вавилонских и египетских памятниках. В сохранившейся погребальной камере отца фараона Рамсеса II имеется стена, покрытая сетью квадратиков, с помощью которой на стену перенесены в увеличенном виде рисунки меньших размеров (Приложение 2).

До наших дней сохранилась клинописная табличка, в которой речь идет о построении пропорциональных отрезков путем проведения в прямоугольном треугольнике параллелей к одному из катетов.

Различные способы нахождения высоты предмета

При отсутствии тени в пасмурную погоду можно воспользоваться способом измерения, который живописно представлен у Жюль Верна в известном романе "Таинственный остров" (рис. 5)

Инженер измерял высоту площадки скалы Дальнего вида. Взяв прямой шест, длиной 10 футов, он измерил его возможно точнее, сравнивая со своим ростом, который был хорошо ему известен. Герберт нёс за ним отвес, вручённый ему инженером: просто камень, привязанный к концу верёвки.

Не доходя футов 500 до гранитной стены, поднимавшейся отвесно, инженер воткнул шест фута на два в песок и, прочно укрепив его, поставил вертикально с помощью отвеса. Затем он отошёл от шеста на такое расстояние, чтобы лёжа на песке, можно было на одной прямой линии видеть и конец шеста, и край гребня. Эту точку он тщательно отметил колышком.

- Тебе знакомы зачатки геометрии? - спросил он Герберта, поднимаясь с земли.

- Помнишь свойства подобных треугольников?

- Их сходственные стороны пропорциональны.

- Правильно. Так вот: сейчас я построю 2 подобных прямоугольных треугольника. У меньшего одним катетом, будет отвесный шест, другим - расстояние от колышка до основания шеста; гипотенуза же - мой луч зрения. У другого треугольника катетами будут: отвесная стена, высоту которой мы хотим определить, и расстояние от колышка до основания этой стены; гипотенуза же - мой луч зрения, совпадающий с направлением гипотенузы первого треугольника.

- Понял! - воскликнул юноша. - Расстояние от колышка до шеста так относится к расстоянию к расстоянию от колышка до основания стены, как высота шеста к высоте стены.

- Да, и, следовательно, если мы измерим два расстояния, то зная высоту шеста, сможем вычислить четвёртый неизвестный член пропорции, т.е. высоту стены. Мы обойдёмся, таким образом, без непосредственного измерения этой высоты.

Оба расстояния были измерены. Расстояние от колышка до палки равнялось 15 футам, а от палки до скалы 485 футам (рис. 6)

По окончании измерений инженер составил следующую запись:

Значит, высота гранитной стены равнялась приблизительно 333 футам".

В данной задаче используется модель 1 ключевой задачи. Преимущества способа Жюль Верна: можно производить измерения в любую погоду, тень не нужна; простота формулы.

Недостатки: нельзя измерить, высоту предмета не испачкавшись, так как приходится ложиться на землю и визуально смотреть на вершину горы.

Способ определения высоты дерева или другого предмета по своему росту и длине тени

Например, длина тени человека d равна трем шагам. Тень дерева D равна девяти шагам. То есть тень дерева длиннее вашей тени в три раза. Если принять рост за 1,5 метра, то высота дерева будет В = 1,5 х 3 = 4,5 метра (рис. 7)

Способ определения высоты предмета с помощью лужи.

Согласно закону преломления из физики, о том, что угол падения равен углу отражения. В зеркальном отражении любой лужи можно найти верхушку объекта и зная свой рост и измерив расстояния, получим искомую высоту. Необходимо зафиксировать точку О любым предметом, брошенным в лужу. Затем измерить расстояния в шагах ОА, ОА1. Зная свой рост и все нужные величины, основываясь на свойствах подобных треугольников, получим высоту объекта (рис. 8)

В данном способе используется модель IV ключевой задачи. Точные измерения считают с помощью мерной рулетки или стальной ленты, длиной 10-20 метров. Нередко применяли длинный шнур, на котором ставится метки: белые - через каждые 2м и красные - через каждые 10 м, с закреплёнными на концах шпильками.

Определение расстояния до недоступного объекта

Дистанционно-визуальные способы измерений длин – они применяются в тех случаях, когда существует непреодолимая преграда, препятствие (река, болото, озеро, глубокий овраг, горное ущелье), но сохраняется прямая видимость, достаточная для производства измерений.

Вы находитесь на берегу реки и хотите измерить ее ширину, не имея возможности перебраться> на другой берег. Для этого вы отыскиваете глазами на противоположном берегу реки близко к воде какой-либо заметный ориентир А - камень, деревце и т. п.- и отмечаете на своем берегу точку В, расстояние от которой до точки А представляет собой, по-вашему, ширину реки. Как измерить длину отрезка АВ?

Решение: Выберем точку С на продолжении прямой АВ за точку В, а также точку D, не лежащую на прямой АВ (рис. 9). Затем выберем точки Е и F на продолжениях прямых BD и CD соответственно за точку D так, чтобы выполнялись равенства BD = DE, CD = DF. Наконец, найдем точку G пересечения прямых EF и AD. Тогда искомое расстояние между точками А а В будет равно длине отрезка EG. Действительно, из равенства треугольников BDC и EDF (по двум сторонам и углу между ними) имеем равенство углов CBD и FED. Поэтому треугольники BAD и EGD равны (по стороне и двум прилежащим к ней углам), а значит, равны и их соответствующие стороны АВ и GE. Вывод: в данном методе используется модель II ключевой задачи.

Практическое применение подобия треугольников

Эксперимент 1 Измерение высоты стены в классе с помощью зеркала.

Известна зависимость длины шага от параметров человека. Исходя из этого, можно определить длину шага, зная свой рост.

ДШ - длина одного шага в метрах

Р - рост человека в метрах.

Длина шага Романа М. ДШ = (Р/4)+0,37 = =(1,61/4)+0,37 ≈ 0,77 м

Длина шага Егора Р. ДШ = (Р/4)+0,37 = =(1,56/4)+0,37 ≈ 0,76 м

Расстояние от Романа М. до зеркала АО = 0,77 ·3,5 = 2,69 м, от зеркала до стены СО = 0,77 ·6,5 = 5,0 м

Расстояние от Егора Р. до зеркала АО = 0,76 ·4 = 3,04 м, от зеркала до стены СО = 0,76 ·7 = 5,31 м

Вы можете изучить и скачать доклад-презентацию на тему ПОДОБИЕ В ЖИЗНИ. Презентация на заданную тему содержит 10 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500

194909 194933 194912 194929 194950 194940 194923 194951 194945 194906 194913 194944 194918 194941 194911 194936 194943 194934 194949 194919 194946 194942 194930 194948 194932 194935 194947 194907 194922 194910

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать её на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Мы в социальных сетях

Читайте также: