Глутаминовая кислота доклад по химии

Обновлено: 02.07.2024

Глутаминовая кислота (2-аминопентандиовая кислота) — алифатическая аминокислота. В живых организмах глутаминовая кислота в виде аниона глутамата присутствуют в составе белков, ряда низкомолекулярных веществ и в свободном виде. Глутаминовая кислота играет важную роль в азотистом обмене.

Содержание

Глутамат как нейромедиатор

Глутаматные рецепторы

Существуют ионотропные и метаботропные (mGLuR 1-8) глутаматные рецепторы.

Ионотропными рецепторами являются NMDA-рецепторы, AMPA-рецепторы и каинатные рецепторы.

Эндогенные лиганды глутаматных рецепторов — глутаминовая кислота и аспарагиновая кислота. Для активации NMDA рецепторов также необходим глицин. Блокаторами NMDA-рецепторов являются PCP, кетамин, и другие вещества. AMPA-рецепторы также блокируются CNQX,NBQX. Каинова кислота является активатором каинатных рецепторов.

При наличии глюкозы в митохондриях нервных окончаний происходит дезаминирование глутамина до глутамата при помощи фермента глутаминазы. Также, при аэробном окислении глюкозы глутамат обратимо синтезируется из альфа-кетоглутарата (образуется в цикле Кребса) при помощи аминотрансферазы.

Синтезированный нейроном глутамат закачивается в везикулы. Этот процесс является протон-сопряжённым транспортом. В везикулу с помощью протон-зависимой АТФазы закачиваются ионы H + . При выходе протонов по градиенту в везикулу поступают молекулы глутамата при помощи везикулярного транспортера глутамата (VGLUTs).

Глутамат выводится в синаптическую щель, откуда поступает в астроциты, там трансаминируется до глутамина. Глутамин выводится снова в синаптическую щель и только тогда захватывается нейроном. По некоторым данным, глутамат напрямую путём обратного захвата не возвращается. [2]

Роль глутамата в кислотно-щелочном балансе

Дезаминирование глутамина до глутамата при помощи фермента глутаминазы приводит к образованию аммиака, который, в свою очередь, связывается со свободным протоном и экскретируется в просвет почечного канальца, приводя к снижению ацидоза. Превращение глутамата в α-кетоглутарат также происходит с образованием аммиака. Далее кетоглутарат распадается на воду и углекислый газ. Последние, при помощи карбоангидразы через угольную кислоту, превращаются в свободный протон и гидрокарбонат. Протон экскретируется в просвет почечного канальца за счет котранспорта с ионом натрия, а бикарбонат попадает в плазму.

Глутаматергическая система

В ЦНС находится порядка 10 6 глутаматергических нейронов. Тела нейронов лежат в коре головного мозга, обонятельной луковице, гиппокампе, черной субстанции, мозжечке. В спинном мозге — в первичных афферентах дорзальных корешков.

В ГАМКергических нейронах глутамат является предшественником тормозного медиатора, гамма-аминомасляной кислоты, образующейся с помощью фермента глутаматдекарбоксилазы.

Патологии, связанные с глутаматом

Повышенное содержание глутамата в синапсах между нейронами может перевозбудить и даже убить эти клетки, что приводит к таким заболеваниям, как АЛС. Для избежания таких последствий глиальные клетки астроциты поглощают избыток глутамината. Он транспортируется в эти клетки с помощью транспортного белка GLT1, который присутствует в клеточной мембране астроцитов. Будучи поглощённым клетками астроглии, глутаминат больше не приводит к повреждению нейронов.

Содержание глутамата в природе

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Содержание натурального глутамата в пище (имеется в виду пища, не содержащая искусственно добавленного глутамата натрия):

То есть полностью исключить из рациона глутамат, как предлагают некоторые издания, достаточно проблематично.

Применение

Фармакологический препарат глутаминовой кислоты оказывает умеренное психостимулирующее, возбуждающее и отчасти ноотропное действие.

Глутаминовая кислота (пищевая добавка E620) и её соли (глутамат натрия Е621, глутамат калия Е622, диглутамат кальция Е623, глутамат аммония Е624, глутамат магния Е625) используются как усилитель вкуса во многих пищевых продуктах [4] .

Глутаминовая кислота используется в качестве хирального строительного блока в органическом синтезе [5] , в частности, дегидратация глутаминовой кислоты приводит к её лактаму ― пироглутаминовой кислоте (5-оксопролину), которая является ключевым предшественником в синтезах неприродных аминокислот, гетероциклических соединений, биологически активных соединений и т.д. [6] , [7] , [8] .

Примечания

См. также

Ссылки

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Глутаминовая кислота" в других словарях:

ГЛУТАМИНОВАЯ КИСЛОТА — HOOCCH(NH2)CH2CH2COOH, алифатическая аминокислота. В организмах присутствует в составе белков, ряда низкомолекулярных веществ (глутатион, фолиевая кислота) и в свободном виде. Играет важную роль в азотистом обмене (перенос аминогрупп, связывание… … Большой Энциклопедический словарь

глутаминовая кислота — сущ., кол во синонимов: 3 • аминокислота (36) • ацидулин (3) • медиатор (9) … Словарь синонимов

глутаминовая кислота — HOOCCH(NH2)CH2CH2COOH, алифатическая аминокислота. В организмах присутствует в составе белков, ряда низкомолекулярных веществ (глутатион, фолиевая кислота) и в свободном виде. Играет важную роль в азотистом обмене (перенос аминогрупп, связывание… … Энциклопедический словарь

глутаминовая кислота — glutamic acid [Glu] глутаминовая кислота [Глу]. α Аминоглутаровая кислота, заменимая аминокислота, входит в состав большинства белков, а также встречается в свободном виде, занимая ключевое положение в азотистом обмене; кодоны ГАА, ГАГ. NH2… … Молекулярная биология и генетика. Толковый словарь.

Глутаминовая кислота — аминокислота, выполняющая функцию возбуждающего нейромедиатора. Посредством декарбоксилазы глутаминовая кислота превращается в гамма аминомасляную кислоту (ГАМК) … Энциклопедический словарь по психологии и педагогике

глутаминовая кислота — glutamo rūgštis statusas T sritis chemija formulė HOOCCH(NH₂)CH₂CH₂COOH santrumpa( os) Glu, E atitikmenys: angl. glutamic acid rus. глутаминовая кислота ryšiai: sinonimas – 2 aminopentano dirūgštis … Chemijos terminų aiškinamasis žodynas

Глутаминовая кислота — глутамин см. Глютаминовая кислота, Глютамин … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Глутаминовая кислота (глютаминовая кислота, глутамат) – заменимая аминокислота, в плазме крови вместе со своим амидом (глутамином) составляет около 1/3 всех свободных аминокислот.

Глутаминовая кислота входит в состав белков и ряда важных низкомолекулярных соединений. Она является составной частью фолиевой кислоты.

Название кислоты произошло от сырья, из которого она была впервые выделена – клейковина пшеницы.

Глутаминовая кислота — 2-аминопентандиовая или α-аминоглутаровая кислота.


Глутаминовая кислота (Глу, Glu, E) является одной из важнейших аминокислот растительных и животных белков, молекулярная формула — C5H9NO4.

Глутаминовая кислота впервые была выделена из эндосперма пшеницы в 1866 г. Ритгаузеном, а в 1890 г. синтезирована Вольфом.

Суточная потребность в глутаминовой кислоте выше, чем во всех других аминокислотах и составляет 16 грамм в сутки.

Физические свойства

Глутаминовая кислота представляет собой растворимые в воде кристаллы с температурой плавления 202 0 С. Это кристаллическая масса коричневого цвета со специфическим кислым вкусом и специфическим запахом.

Глутаминовая кислота растворяется в разбавленных кислотах, щелочах и горячей воде, трудно растворяется в холодной воде и концентрированной соляной кислоте, практически не растворима в этиловом спирте, эфире и ацетоне.

Биологическая роль

Глутаминовая кислота играет важную роль в обмене веществ.

В значительном количестве эта кислота и ее амид содержатся в белках.

Глутаминовая кислота стимулирует окислительно-восстановительные процессы в головном мозге. Глутамат и аспартат содержится в мозге в высоких концентрациях.

Глутаминовая кислота нормализует обмен веществ, изменяя функциональное состояние нервной и эндокринной систем.

Стимулирует передачу возбуждения в синапсах ЦНС, связывает и выводит аммиак.

Находясь в центре азотистого обмена, глутаминовая кислота тесно связана с углеводным, энергетическим, жировым, минеральным и другими видами обмена веществ живого организма.

Участвует в синтезе других аминокислот, АТФ, мочевины, способствует переносу и поддержанию необходимой концентрации K + в мозге, повышает устойчивость организма к гипоксии, служит связующим звеном между обменом углеводов и нуклеиновых кислот, нормализует содержание показателей гликолиза в крови и тканях.

Глутаминовая кислота оказывает положительное влияние на дыхательную функцию крови, на транспорт кислорода и его использование в тканях.

Она регулирует липидный и холестериновый обмены.

Глутаминовая кислота играет важную роль не только в образовании вкусовых и ароматических свойств хлеба, но и оказывает влияние на деятельность основных представителей бродильной микрофлоры ржаных заквасок и теста – дрожжей и молочнокислых бактерий.

Обмен глутаминовой кислоты в организме

Свободная глутаминовая кислота содержится в различных органах и тканях в большом количестве по сравнению с другими аминокислотами.

Глутаминовая кислота участвует в пластическом обмене. Более 20% белкового азота представлено глутаминовой кислотой и ее амидом.

Она входит в состав фолиевой кислоты и глутатиона, участвует в обмене более 50% азота белковой молекулы.

При синтезе аспарагиновой кислоты, аланина, пролина, треонина, лизина и др. аминокислот используется не только азот глутамата, но и его углеродный скелет.

До 60% углерода глутаминовой кислоты может включаться в гликоген, 20-30% — в жирные кислоты.

Глутаминовая кислота и ее амид (глутамин) играют основную роль в обеспечении азотом метаболических превращений — синтеза заменимых аминокислот.

Участие глутаминовой кислоты в пластическом обмене тесно связано с ее детоксикационной функцией – она принимает на себя токсичный аммиак.

Участие глутаминовой кислоты в азотистом обмене может быть охарактеризовано как высокоактивная утилизация и обезвреживание аммиака.

Велика роль глутамата и глутамина в синтезе мочевины, так как оба ее азота могут быть поставлены этими соединениями.

Превращения глутаминовой кислоты регулируют состояние энергетического обмена митохондрий.

Влияние глутаминовой кислоты на обмен веществ

Глутаминовая кислота при введении ее в организм оказывает воздействие на процессы азотистого обмена. После инъекций глутамата натрия возрастает содержание аланина, глутамина, аспарагиновой кислоты в почках, мозгу, сердечной и скелетных мышцах.

Глутаминовая кислота обезвреживает аммиак, образующийся в организме в результате распада. Аммиак связывается с глутаминовой кислотой с образованием глутамина. Синтезированный в тканях глутамин поступает в кровь и переносится ее в печень, где используется для образования мочевины.

Обезвреживающее действие глутаминовой кислоты особенно выражено при повышенном содержании аммиака в крови тканях (при воздействии холода, перегреве, гипоксии, гипероксии, аммиачном отравлении).

Глутаминовая кислота способна связывать аммиак и стимулировать обмен веществ в печени, что дает возможность применять ее при печеночной недостаточности.

Глутаминовая кислота способна увеличивать синтез белка и РНК в печеночной ткани, стимулировать синтез белков и пептидов.

Глутаминовая кислота и ее амид играют существенную роль в синтезе белка:

— значительное содержание глутаминовой кислоты в белке;

— глутаминовая кислота легко превращается в заменимые аминокислоты, обеспечивает достаточный набор всех аминокислот, необходимых для биосинтеза белка.

Кроме анаболического действия глутаминовая кислота тесно связана с процессами метаболизма углеводов: до 60% углерода введеной глутаминовой кислоты обнаруживается в составе гликогена.

Глутаминовая кислота понижает уровень сахара в крови при гипергликемии.

Глутаминовая кислота препятствует накоплению в крови молочной и пировиноградной кислот, сохраняет на более высоком уровне содержание гликогена в печени и мышцах.

Под влиянием глутаминовой кислоты при гипоксии наблюдается нормализация содержания АТФ в клетках.

Углеродный скелет глутаминовой кислоты легко образует углеводы. Глутаминовая кислота не только сама включается в углеводные ресурсы тканей, но и значительно стимулирует окисление углеводов.

Наряду с метионином глутаминовая кислота способна предупреждать жировое перерождение печени, вызванное введением четыреххлористого углерода.

Глутаминовая кислота участвует в минеральном обмене, являясь регулятором обмена калия и связанного с ним метаболизма натрия

Из солей глутаминовой кислоты на распределение калия и натрия в крови и в тканях наибольшее влияние оказывает глутамат натрия. Он увеличивает содержание натрия в скелетных мышцах, сердце, почках, а также калия в сердце, печени и почках при одновременном снижении его уровня в плазме.

Глутаминовая кислота, легко и быстро проникая, через тканевые барьеры с большой скоростью подвергается окислению. Она оказывает воздействие на аминокислотный, белковый, углеводный, липидный обмены, на рапределение калия и натрия в организме.

Эффект воздействия глутаминовой кислоты более выражен при измененном состоянии организма, когда наблюдается дефицит самой кислоты или связанных с ней продуктов обмена веществ.

Влияние глутаминовой кислоты на энергетический обмен митохондрий

Введение глутамата стимулирует дыхание животных, улучшает дыхательную функцию крови, увеличивает напряжение кислорода в тканях.

В условиях кислородного голодания глутамат предотвращает уменьшение содержания гликогена и богатых энергией соединений в печени, мышцах, головном мозге и сердце животных и вызывает снижение уровня недоокисленных продуктов и молочной кислоты в крови и скелетных мышцах.

Влияние глутаминовой кислоты на функциональное состояние нейроэндокринной системы

Глутаминовая кислота может влиять на обмен веществ, функции органов и систем, не только включаясь в тканевые обменные процессы, но и через изменение функционального состояния нервной и эндокринной систем.

Участие нервной системы в механизме действия глутаминовой кислоты определяется особой ролью аминокислоты в обмене веществ головного мозга, так как именно в нервной ткани она наиболее широко вовлекается в разнообразные процессы.

В энергетическом обмене нервной системы глутаминовая кислота занимает центральное место, т.к. не только способна окисляться в мозге наравне с глюкозой, но также и введенная глюкоза в значительной мере превращается в глутаминовую кислоту и ее метаболиты.

Концентрация глутаминовой кислоты в мозге в 80 раз превышает ее концетрацию в крови. В функционально активных участках мозга по сравнению с другими концентрация глутаминовой кислоты в 3 раза больше.

Из всех отделов мозга наибольшее количество глутаминовой кислоты приходится на область двигательного анализатора. Так, уже через несколько минут после перорального или внутреннего введения глутаминовая кислота обнаруживается во всех отделах мозга и гипофизе.

Функцию центрального метаболита глутаминовая кислота выполняет не только в мозге, но и в переферических нервах.

Важное значение глутаминовой кислоты в деятельности нервной системы связано с ее способностью обезвреживать аммиак и образовывать глутамин.

Глутаминовая кислота способна увеличивать артериальное давление, повышать уровень сахара в крови, обеспечивать мобилизацию гликогена в печени и выводить больных из состояния гипогликемической комы.

При длительном приеме глутаминовая кислота стимулирует функции щитовидной железы, что проявляется на фоне дефицита йода и белка в питании.

Подобно нервной системе мышцы относятся к возбудимой ткани с большими нагрузками и резкими переходами от покоя к активности. Глутаминовая кислота увеличивает сократительную способность миокарда, матки. В связи с этим, глутаминовая кислота применяется как биостимулятор при слабости родовой деятельности.

Природные источники

Сыр пармезан, яйца, зеленый горошек, мясо (цыпленок, утка, говядина, свинина), рыба (форель, треска), томаты, свекла, морковь, лук, шпинат, кукуруза.

Области применения

Глутаминовая кислота и глутамин применяются в качестве кормовых и пищевых добавок, приправ, сырья для фармацевтической и парфюмерной промышленности.

Мононатриевая соль глутаминовой кислоты – глутамат натрия – один из важнейших носителей вкусовых качеств, применяемых в пищевой промышленности.

В условиях стрессового энергетического дефицита показано дополнительное введение в организм глутаминовой кислоты, так как это нормализует азотистый обмен в организме и мобилизует все органы, ткани и организм в целом.

Применение глутаминовой кислоты как пищевой добавки

Еще с начала XX века на Востоке глутаминовая кислота используется как вкусовая добавка к пище и источника легко усвояемого азота. В Японии глутамат натрия – обязательная принадлежность стола.

Глутамат натрия усиливает вкус многих пищевых продуктов, а также способствует длительному сохранению вкусовых качеств консервированных продуктов. Это свойство позволяет его широко используют в консервной промышленности, особенно при консервировании овощей, рыбы, мясных продуктов.

Во многих зарубежных странах глутамат натрия добавляют практически во все продукты при консервировании, замораживании или просто при хранении. В Японии, СЩА и других странах глутамат натрия является такой же обязательной принадлежностью стола, как соль, перец, горчица и другие приправы.

Он повышает не только вкусовую ценность пищевых продуктов, но и стимулирует деятельность пищеварительных желез.

Глутамат натрия рекомендуется добавлять в продукты со слабовыраженным вкусом и ароматом: макароннеы изделия, соусы, мясные и рыбные блюда. Так, слабый мясной бульон после добавления в него 1,5-2.0 г глутамата натрия на порцию приобретает вкус крепкого бульона.

Глутамат натрия значительно улучшает также вкус отварной рыбы и рыбных бульонов.

Картофельное пюре становится ароматнее и вкуснее при добавлении в него глутамата натрия в количестве 3-4 г на 1 кг продукта.

При добавлении в офощные изделия глутамат натрия не придает им какого-либо нового вкуса, запаха или цвета, но зато резко усиливает собственный вкус и аромат продуктов, из которых приготавливают блюда, что отличает его от обычных приправ.

С фруктами, некоторыми молочными и зерновыми продуктами, а также очень жирными продуктами глутамат натрия не гармонирует.

В кислой среде действие глутамата натрия на вкус продуктов снижается, т.е. в кислые продукты или кулинарные изделия его необходимо прибавлять больше.

Применение глутаминовой кислоты как кормовой добавки сельскохозяйственных животных

Некоторые заменимые аминокислоты становятся незаменимыми, если они не поступают с пищей, а клетки не справляются с их быстрым синтезом.

Использование глутаминовой кислоты как кормовой добавки особенно эффективно на фоне малобелковой диеты и у растущих организмов, когда потребность в источниках азота возрастает. Под действием глутаминовой кислоты компенсируется дефицит азота.

По эффекту обогащения пищи белковым азотом к глутаминовой кислоте близок ее амид – глутамин.

Эффективность глутаминовой кислоты зависит от ее дозировки. Применение больших количеств глутаминовой кислоты оказывает токсическое действие на организм.

Применение глутаминовой кислоты в медицине

Глутамитновую кислоту широко используют в медицине.

Глутаминовая кислота способствует снижению содержания аммиака в крови и тканях при различных заболеваниях. Она стимулирует окислительные процессы при гипоксических состояниях, поэтому успешно применяют при сердечнососудистой и легочной недостаточности, недостаточности мозгового кровообращения и как профилактическое средство асфиксии плода при патологических родах.

Также глутаминовую кислоту используют при болезни Боткина, печеночной коме, циррозе печени.

В клинической практике применение этой кислоты вызывает улучшение состояния больных при инсулиновой гипокгликемии, судорогах, астенических состояниях.

В детской практике глутаминовую кислоту применяют при задержке психического развития, церебральных параличах, болезни Дауна, полиолимите.

Важной особенностью глутаминовой кислоты является ее защитное действие при различных отравлениях печени и почек, усиление фармакологического действия одних и ослабление токсичности других лекарственных средств.

Антитоксическое действие глутаминовой кислоты обнаружено при отравлении метиловым спиртом, сероуглеродом, окисью углерода, гидразином, четыреххлористым углеродом, нефтегазами, хлористым марганцем, фторидом натрия.

Глутаминовая кислота оказывает влияние на состояние нервных процессов, в связи с этим она широко применяется при лечении эпилепсии, психозов, при истощении, депрессии, олигофрении, черепно-мозговых травм новорожденных, нарушениях мозгового кровообращения, туберкулезном менингите, параличах, а также при заболеваниях мышц.

Глутамат повышает работоспособность и улучшает биохимические показатели при интенсивной мышечной работе и утомлении.

Глутаминовая кислота может быть использована при патологии щитовидной железы, в частности, при эндемическом зобе.

Глутаминовая кислота используется в сочетании с глицином для больных с прогрессирующей мышечной дистрофией, миопатией.

Глутаминовая кислота используется при лечении пневмоний у детей раннего возраста.


Глутаминовая кислота противопоказана при лихорадочных состояниях, повышенной возбудимости и бурно протекающих психотических реакциях.


Рубрики: Аминокислоты

Содержимое работы - 1 файл

Глутаминовая кислота реферат.docx

Глутаминовая кислота, что это?

Глутаминовая кислота (2-аминопентандиовая кислота, альфа-аминоглутаровая кислота) ациклическая, моноаминодикарбоновая аминокислота (Рис.1).

Глутаминовая, глютаминовая, или a-аминоглутаровая кислота, присутствует в организме человека как в свободной форме, так и в составе различных низкомолекулярных веществ и белков, в виде аниона глутамата.

Рис.1 Формула глутаминовой кислоты.

Глутамин также поддерживает нормальное кислотно-щелочное равновесие в организме и здоровое состояние желудочно-кишечного тракта, необходим для синтеза ДНК и РНК.

Глутаминовая кислота как заменимая аминокислота.

Глутаминовая кислота относится к условно незаменимым аминокислотам (эти аминокислоты не являются обязательными, за исключением во время болезни и стресса). Глутамат в норме синтезируется организмом. Синтез происходит преимуществено в печени, почках, мозге и легкх. Для синтеза глутаминовой кислоты необходимо две незаменимые аминокислоты: валин и изолейцин (Рис.2 и 3).

Помимо того, что глутамат синтезируется в организме, он так же может попадать в наш организм вместе с пищей.

Будучи заменимой пищевой аминокислотой, она широко распространена в самых разных белках, и ее суточное потребление составляет не менее 5—10 г. Однако глутаминовая кислота пищевого происхождения в норме очень плохо проникает через гематоэнцефалический барьер, что предохраняет нас от серьезных сбоев в деятельности мозга.

В данной таблице приводится содержание натурального глутамата в пище (имеется в виду пища, не содержащая искусственно добавленного глутамата натрия):

Свободный глутамат [3]

Как показывают научные исследования, что полностью исключить из рациона глутамат, достаточно проблематично.

Как уже было сказано, что глутаминовая кислота относится к заменимым аминокислотам в организме человека, но она является жизненно необходимой кислотой, играющей важнейшую роль в процессах обмена веществ человеческого организма и животных.

Ÿ Она участвует в процессе обмена веществ в реакции переаминирования, служит в организме переносчиком аминогрупп;

Ÿ Играет важную роль в удалении из организма аммиака;

Ÿ Принимает участие в биохимических превращениях центральной нервной системы.

Ÿ В большом количестве входит в состав белого и серого вещества мозга и является единственной кислотой, интенсивно потребляемой нервными клетками при окислительных процессах в головном мозгу.

Поэтому она применяется в качестве медицинского препарата в тяжелых случаях истощения нервной системы, при усталости и потере памяти, аммиачном отравлении организма; ее применяют также при детских нервных заболеваниях, эпилепсии, шизофрении и других душевных заболеваниях.

Опорная схема обмена глутаминовой кислоты (глутамата)

Глутаминовая кислота, являющаяся гликогенной, и как я уже сказал заменимой аминокислотой для человека и животных, также включается в синтез ряда специфических метаболитов, в частности глутатиона, глутамина и гамма-аминомасляная кислоты (рис.4).

Рис.4 Опорная схема обмена глутаминовой кислоты

Глутаминовая кислота занимает важное место в промежуточном обмене нескольких аминокислот. К ним относятся глутамин, пролин, аргинин гистидин (Рис.5)

В качестве примера, я возьму, реакцию превращения глутамина в глутаминовую кислоту катализируется глутаминазой (Рис.6). Учитывая, что глутамин - главная транспортная форма аммиака глутаминаза играет важную роль в органах, активно использующих аммиак и прежде всего в печени и почках.

Рис.6 Реакция превращения глутамина в глутаминовую кислоту

Теперь перейдем непосредственно к реакциям, к основным превращениям глутамата в те или иные продукты.

Образование глутамина - реакция обеспечивающая ассимиляцию аммиака клеткой. Реакция использует АТФ для образования амидной связи (рис.7). Глутаминсинтетаза, катализирующая эту реакцию представляет аллостерический фермент, с большим числом регуляторов. Глутамин –это главная транспортная форма аммиака в крови и донор аминогруппы в синтезе многих азотсодержащих соединений.

Рис.7 Синтез глутамина

Процесс отщепления карбоксильной группы аминокислот в виде CO2 получил название декарбоксилирования. Образующи еся продукты реакции –биогенные амины- оказывают сильное фармакологическое действие на множество физиологических функций человека и животных.

В клинической практике широко используется продукт α-декарбоксилирования глутаминовой кислоты – γ-аминомасляная кислота (ГАМК). Фермент, катализирующий эту реакцию (глутаматдекарбоксилаза), является высокоспецифичным. Кофактором фермента является пиридоксальфосфат (Рис.8) .


Рис.8 Декарбоксилирование глутаминовой кислоты

Интерес к ГАМК объясняется ее тормозящим действием на деятельность ЦНС. Больше всего ГАМК и глутаматдекарбоксилазы обнаружено в сером веществе коры большого мозга, в то время как белое вещество мозга и периферическая нервная система их почти не содержат. Введение ГАМК в организм вызывает разлитой тормозной процесс в коре (центральное торможение) и у животных приводит к утрате условных рефлексов. ГАМК используется в клинике как лекарственное средство при некоторых заболеваниях ЦНС, связанных с резким возбуждением коры большого мозга. Так, при эпилепсии хороший эффект (резкое сокращение частоты эпилептических припадков) дает введение глутаминовой кислоты. Как оказалось, лечебный эффект обусловлен не самой глутаминовой кислотой, а продуктом ее декарбоксилирования – ГАМК.

Реакция восстановления карбоксильной группы

Эту реакцию я рассмотрю на примере глутаминовой кислоты: образующийся при этом глутамат-гамма-полуальдегид используется в различных реакциях, например, в реакции синтеза пролина из глутаминовой кислоты (рис.9).

Рис.9 Реакция восстановления карбоксильной группы

Реакции отщепления α-аминогруппы от АК, в результате чего образуется соответствующая α-кетокислота и выделяется молекула аммиака.

Дезаминирование бывает прямым и непрямым.

Прямое дезаминирование - это дезаминирование, которое происходит в 1 стадию с участием одного фермента. Прямому дезаминированию повергаются глу, гис, сер, тре, цис.

Существует 5 видов прямого дезаминирования АК:

  1. окислительное;
  2. неокислительное;
  3. внутримолекулярное;
  4. восстановительное;
  5. гидролитическое.

В данном случае, я рассмотрю самый активный вид прямого дезаминирования АК - окислительное. В окислительном дезаминировании первая стадия является ферментативной с образованием промежуточного продукта - иминокислоты, которая спонтанно, без участия фермента, распадается на аммиак и альфа-кетокислоту. Этот тип реакций наиболее распространен в тканях.

Прямое окислительное дезаминирование характерно для глутаминовой кислоты (рис.10):

Рис.10 Прямое окислительное дезаминирование глутаминовой кислоты.

Первая стадия катализируется ферментом глутаматдегидрогеназой (ГДГ -анаэробный фермент). Вторая стадия, как уже говорилось ранее, протекает спонтанно. Как мы видим на схеме, обе стадии обратимы.

Непрямое окислительное дезаминирование (трансдезаминирование) – сопряженные реакции дезаминирования и трансаминирования (Рис.11).

Рис.11 Непрямое окислительное дезаминирование

Почти все природные аминокислоты сначала реагируют с альфа- кетоглутаратом в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Глутамат далее подвергается окислительному дезаминированию под действием глутаматдегидрогеназы.

Патологии обмена глутаминовой кислоты.

Роль глутаминовой кислоты в организме совершенно особая. Достаточно сказать, что ее удельный вес в организме составляет 25% от общего количества всех остальных как заменимых, так и незаменимых аминокислот. Хотя она и считается заменимой, в последние годы было выяснено, что для отдельных тканей человеческого организма (например, для нервной системы) глутаминовая кислота является незаменимой, и никакой другой аминокислотой не может быть восполнена. В организме существует своеобразный "фонд" глутаминовой кислоты. Она расходуется, в первую очередь, там, где она в данный момент наиболее нужна.

Нарушение обмена глутаминовой кислоты может привести к таким заболеваниям как: анемия, глаукома, эпилепсия, хорея Хантингтона, рак поджелудочной железы, подагра, ревматоидный артрит, хроническая почечная недостаточность.

Нарушение транспорта глутаминовой кислоты (глутамата) в клетках сетчатки. (т.е. при возникновении излишков глутаминовой кислоты, она не удаляется их клеток сетчатки), приводит к такому заболеванию как глаукома.

Низкое содержание глутаминовой кислоты в организме, приводит к таким заболеваниям как хорея Хантингтона, хроническая почечная недостаточность, а повышенное содержание к ревматоидному артриту, подагре.

По результатам многочисленных экспериментов было доказано, что в определенных концентрациях глутамат может также вызывать перевозбуждение и некроз нервных клеток, из-за чего он и входит в ряд нейротоксичных соединений.

Повышенное содержание глутамата в синапсах между нейронами может перевозбудить и даже убить эти клетки, что приводит к таким заболеваниям, как АЛС (Амиотрофический латеральный склероз), Паркинсона и Альцгеймера. Будучи поглощённым клетками астроглии, глутаминат больше не приводит к повреждению нейронов.

Ученые Мичиганского университета говорят, что повышенный уровень в мозгу нейромедиатора глутамата вызывает желание свести счеты с жизнью. Работа глутамата во многом зависит от наличия хинолиновой кислоты, которая побуждает клетки более интенсивно пользоваться этим нейромедиатором.

Говоря о глутаминовой кислоте, немало важно упомянуть мононатриевую соль глутаминовой кислоты - глутамат натрия.

ГЛУТАМИНОВАЯ КИСЛОТА

ГЛУТАМИНОВАЯ КИСЛОТА (аминоглутаровая к-та, Glu, E) HOOCCH2CH2CH(NH2)COOH, мол. м. 147,13; бесцв. кристаллы. Для L-изомера т. пл. 247-249°С (с разл.); + 32° (1 г в 100 мл 6 н. НС1). Для D-изомера т. пл. 313 о С (с разл.); плохо раств. в воде и этаноле, не раств. в эфире. При 25 °С рКа 2,19 , 4,25, 9,67 (NH2); р/ 3,08.

По хим. св-вам глутаминовая кислота-типичная алифатич.аминокислота. При нагр. образует 2-пирролидон-5-карбоновую, или пироглутаминовую, к-ту, с Си и Zn-нерастворимые соли. В образовании пептидных связей участвует гл. обр.карбоксильная группа, в нек-рых случаях, напр. у прир. трипептида глутатиона,-аминогруппа. В синтезе пептидов из L-изомера наряду сNН2-группой защищаюткарбоксильную группу, для чего ее этерифицируют бензиловым спиртом или получают трет-бутиловый эфир действием изобутилена в присут. к-т.Группу СООН остатков глутаминовой кислоты в белках модифицируют так же, как у аспарагиновой кислоты.

L-Глутаминовая кислота встречается во всех организмах в своб. виде (в плазме крови вместе с глутамином составляет ок. 1/3 всех своб. аминокислот) и в составе белков. Р-ция L-глутаминовая кислота + NН3 + АТФ глутамин + АДФ + Н3РО4 (АДФ-аденозиндифосфат) играет важную роль в обмене NH3 у животных и человека. В организме декарбоксилируется до аминомасляной к-ты, а через цикл трикарбоновых к-т превращ. в янтарную к-ту. L-Глутаминовая кислота-предшественник в биосинтезе орнитина и проли-на, участвует в переаминировании при биосинтезе аминокислот, а также в транспорте ионов К + в центр. нервной системе.

Глутаминовая кислота-кодируемая аминокислота, заменимая. Биосинтез L-глутаминовой кислоты осуществляется изкетоглутаровой к-ты: NH3 + НООСС(О)СН2СН2СООН + НАДФН L-глутаминовой кислоты + НАДФ, где НАДФН и НАДФ-соотв. восстановленная и окисленная формы кофермента никотинамидадениндинуклеотидфосфата. В пром-сти ее получают гл. обр. микробиол. синтезом изкетоглутаровой к-ты. В спектре ЯМР L-глутаминовой кислоты в D2O хим. сдвиги протонов (в м. д.) уатома С составляют 3,792, у иатомов-соотв. 2,136 и 2,537.

Мононатриевая соль глутаминовой кислоты, напоминающая по вкусу мясо, применяется в пищ. пром-сти, соли Са и Mg-для лечения психич. и нервных заболеваний. Мировое произ-во L-глутаминовой кислоты ок . 270 тыс т/год (1982). В.В.Баев.

Читайте также: