Занимательные опыты по физике 7 класс которые можно показать в школе

Обновлено: 04.07.2024

Без увлечений, удивлений и чудес не были бы сделаны многие открытия, не созданы первые модели будущих механизмов, сооружений. Вопрошайте, проверяйте, пробуйте занимательные опыты по физике, глупых вопросов не бывает. Образовательная ценность опытных исследований и понятий бесспорна. Благодаря им дети быстрее и основательнее разберутся, как устроены процессы в окружающем мире, полюбят творить и изобретать.

Физические эксперименты для детей младших классов

Воздушный шарик, огонь и вода

Надутый и завязанный шарик лопнет, если поднести к огню. Резина подопытного шарика стала горячей, ослабла и разорвалась под давлением находящегося там воздуха. Но шарик, с налитой водой, не разорвется при зажженной спичке в отличие от первого.

Как объяснить такой результат? Происходит чудо из-за удивительных свойств жидкости. Вода способна аккумулировать, много поглощать тепла (теплопроводность). Она заберет большее количество тепла и не даст резине шарика, уже не такой горячей, сильно ослабиться, расплавиться.

Резка дерева бумажным диском

После высыхания в центре вырезается отверстие под шуруповерт (болгарку). Устанавливаем и закрепляем бумажный диск. Запускаем инструмент, режем брусок дерева, возможно гипсокартон, пластик. Срез получается гладким, распил ровным.

Почему так происходит? Быстрое вращение обеспечивает бумаге достаточное натяжение. Приобретает бумага высокую режущую особенность через передаваемую диску значительную скорость вращения и центробежное ускорение.

Пушка из магнитов

Каких только интересных магнитных конструкторов не найти в детских магазинах игрушек. А вот собрать магнитную пушку своими руками не составит затруднения, были бы подходящие магниты. Постоянные магниты – изделия из твердых сплавов, сохраняющие магнитную силу продолжительное время. Для эксперимента понадобятся:

  • сильные постоянные магниты (неодимовые) 4 шт. минимум;
  • стальные шарики (от шарикоподшипников);
  • для основы пушки (направляющая) профиль пластиковый или алюминиевый, чтобы шарики могли катиться;
  • изолента или скотч для закрепления на профиле магнитов, расстояние между ними не более 80 мм.

Опыты по физике в 5-8 классах

Для рационального понимания материала предлагается после изучения какой-то темы сразу же пробовать применить, закрепить практическим результатом теорию. Найдите время, с увлечением и удовольствием проводите домашние эксперименты по физике, анализируйте, предлагайте выводы и запоминайте правила и законы.

Водяная свеча

Свеча в воде погаснет, пожалуй, скажет почти каждый. Но при испытании это не происходит продолжительное время. В качестве подсвечника возьмем стакан с водой. Утяжелим плавающую, погруженную в воду толстую свечу гвоздем, чтобы только фитиль и кончик парафина выступали над поверхностью. Зажигаем фитиль.

Что происходит со свечей? Для горения нужен кислород (окислитель) и горючее (парафин в фитиле). В свече горит не сам фитиль, а парафин, которым он пропитан. Широкая свеча постепенно укорачивается, становится легче, поэтому чуточку всплывает. С краев парафин, охлаждённый водой, тает медленней, чем у фитиля. Так образуется глубокая воронка с тонкими краями-ограждениями, внутри которой в расплавленном парафине горит фитиль. Углубление также облегчает свечу, она держится на воде как кораблик. Но со временем вода и водяной пар прекратят доступ кислорода и свеча погаснет. Такого опыта не получится с тонкими свечами. Парафин интенсивно охлаждается водой, перестает плавиться, не поднимается по фитилю (пропадает горючее), исчезает огонь.

Магнитный парашют

Парашют обычно служит для замедления падения, торможения. Его используют не только в воздухе, но и под землей, в шахтах. Можно ли сбрасывать скорость с помощью магнита. Если магнит уронить на пол, он под действием силы тяжести при гравитации быстро стукнется об поверхность. В основе всей электротехники заложена связь между магнетизмом и электричеством.

Проведем опыт с неодимовым магнитом и вертикальной медной трубкой, у которой диаметр раза в 2 больше размера магнита. После опускания магнита в отверстие, он неожиданно медленно опускается, а не скоренько падает, как раньше. Может это преодоление гравитации — левитация?

Из-за чего же замедляется падение? Причина этому – два базовых принципа электромагнетизма:

  • Изменение магнитного поля наводит в окружающих проводниках электрический ток.
  • Электрический ток порождает связанное с ним магнитное поле.

При продвижении магнита в трубе магнитный поток изменяется так, что индуцирует в трубе циркулирующие круговые токи. Токи в свою очередь порождают магнитные поля, взаимодействующие с полем магнита. Направление тока при этом (определяется по правилу Ленца) такое, что магнитное поле тока притягивает магнит сверху, затормаживает. Над падающим магнитом уменьшается магнитный поток.

Эксперименты для старшеклассников

С любознательной привязанностью к физике без экспериментов дома точно не обойдется. Даже порешать интересные практичные задачки помогут модели и опыты.

Вулкан

Как такое получается? Спирт по плотности меньше, чем вода. Она медленно поступает внутрь пузырька, выталкивая тушь, которой только-то и остается вырваться наверх. Плотность одна из основных характеристик вещества в природе.

Поющая рюмка

Из чего только не делают музыкальные инструменты: металла, дерева, кожи, пластика. Существуют даже стеклянная арфа, флейта, орган. Проверим на мелодичность простые рюмки и стеклянные бокалы, у виртуоза чудесно получается исполнять музыкальные произведения.

Поэкспериментируем с бокалами различной формы и толщины, водой, деревянной палочкой.

Бокал зазвучит, если чистым влажным пальцем проводить по его краю многократно, круг за кругом. Создается волна при движении пальца, кисть должна быть расслаблена. На практике замечены следующие особенности:

Звук воспринимает орган слуха человека – ухо. Есть люди, обладающие музыкальным слухом.

Что услышим, как получается звук? Высота звука зависит от толщины и формы бокала, а также от способа воспроизведения звука. При трении пальца о бокал создаются звуковые волны – физическое сложное явление, которое отдельно изучается в акустике, радиотехнике. Звук распространение в виде упругих волн механических колебаний в окружающей среде. Тон звука определяется частотой звуковой волны (периодом волны). Чем выше частота, тем выше звучание. Колебания, осуществляемые с частотой от 20 Гц (17м) до 20 000 Гц (17 мм) – звуковые волны.

Физические опыты в занимательной форме знакомят учащихся с разнообразными применениями законов физики. Опыты можно использовать на уроках для привлечения внимания учащихся к изучаемому явлению, при повторении и закреплении учебного материала, на физических вечерах. Занимательные опыты углубляют и расширяют знания учащихся, способствуют развитию логического мышления, прививают интерес к предмету.

В данной работе описано 10 занимательных опытов, 5 демонстрационных экспериментов с использованием школьного оборудования. Авторами работ являются учащиеся 10 класса МОУ СОШ № 1 п. Забайкальск, Забайкальского края – Чугуевский Артём, Лаврентьев Аркадий, Чипизубов Дмитрий. Ребята самостоятельно проделали данные опыты, обобщили результаты и представили их в виде данной работы

Роль эксперимента в науке физике

О том, что физика наука молодая
Сказать определённо, здесь нельзя
И в древности науку познавая,
Стремились постигать её всегда.

Цель обучения физики конкретна,
Уметь на практике все знания применять.
И важно помнить – роль эксперимента
Должна на первом месте устоять.

Уметь планировать эксперимент и выполнять.
Анализировать и к жизни приобщать.
Строить модель, гипотезу выдвинуть,
Новых вершин стремиться достигнуть

Законы физики основаны на фактах, установленных опытным путем. Причем нередко истолкование одних и тех же фактов меняется в ходе исторического развития физики. Факты накапливаются в результате наблюдений. Но при этом только ими ограничиваться нельзя. Это только первый шаг к познанию. Дальше идет эксперимент, выработка понятий, допускающих качественные характеристики. Чтобы из наблюдений сделать общие выводы, выяснить причины явлений, надо установить количественные зависимости между величинами. Если такая зависимость получается, то найден физический закон. Если найден физический закон, то нет необходимости ставить в каждом отдельном случае опыт, достаточно выполнить соответствующие вычисления. Изучив экспериментально количественные связи между величинами, можно выявить закономерности. На основе этих закономерностей развивается общая теория явлений.

Следовательно, без эксперимента не может быть рационального обучения физике. Изучение физики предполагает широкое использование эксперимента, обсуждение особенностей его постановки и наблюдаемых результатов.

Занимательные опыты по физике

Описание опытов проводилось с использованием следующего алгоритма:

  1. Название опыта
  2. Необходимые для опыта приборы и материалы
  3. Этапы проведения опыта
  4. Объяснение опыта

Опыт № 1 Четыре этажа

Приборы и материалы: бокал, бумага, ножницы, вода, соль, красное вино, подсолнечное масло, крашенный спирт.

Этапы проведения опыта

Попробуем налить в стакан четыре разных жидкости так, чтобы они не смешались и стояли одна над другой в пять этажей. Впрочем, нам удобнее будет взять не стакан, а узкий, расширяющийся к верху бокал.

  1. Налить на дно бокала солёной подкрашенной воды.
  2. Свернуть из бумаги “Фунтик” и загнуть его конец под прямым углом; кончик его отрезать. Отверстие в “Фунтике” должно быть величиной с булавочную головку. Налить в этот рожок красного вина; тонкая струйка должна вытекать из него горизонтально, разбиваться о стенки бокала и по нему стекать на солёную воду.
    Когда слой красного вина по высоте сравняется с высотой слоя подкрашенной воды, прекратить лить вино.
  3. Из второго рожка налей таким же образом в бокал подсолнечного масла.
  4. Из третьего рожка налить слой крашенного спирта.

Вот и получилось у нас четыре этажа жидкостей в одном бокале. Все разного цвета и разной плотности.

Жидкости в бакалее расположились в следующем порядке: подкрашенная вода, красное вино, подсолнечное масло, подкрашенный спирт. Самые тяжёлые - внизу, самые лёгкие – вверху. Самая большая плотность у солёной воды , самая маленькая у подкрашенного спирта .

Опыт № 2 Удивительный подсвечник

Приборы и материалы: свеча, гвоздь, стакан, спички, вода.

Этапы проведения опыта

Не правда ли, удивительный подсвечник – стакан воды? А этот подсвечник совсем не плох.

  1. Утяжелить конец свечи гвоздём.
  2. Рассчитать величину гвоздя так, чтобы свеча вся погрузилась в воду, только фитиль и самый кончик парафина должны выступать над водой.
  3. Зажечь фитиль.

- Позволь, - скажут тебе, - ведь через минуту свеча догорит до воды и погаснет!

- В том-то и дело, - ответишь ты, - что свеча с каждой минутой короче. А раз короче, значит и легче. Раз легче, значит, она всплывёт.

И, правда, свеча будет понемножку всплывать, причём охлаждённый водой парафин у края свечи будет таять медленней, чем парафин, окружающий фитиль. Поэтому вокруг фитиля образуется довольно глубокая воронка. Эта пустота, в свою очередь, облегчает свечу, потому-то наша свеча и догорит до конца.

Опыт № 3 Свеча за бутылкой

Приборы и материалы: свеча, бутылка, спички

Этапы проведения опыта

  1. Поставить зажженную свечу позади бутылки, а самому стань так, чтобы лицо отстояло от бутылки на 20-30 см.
  2. Стоит теперь дунуть, и свеча погаснет, будто между тобой и свечёй нет никакой преграды.

Свеча гаснет потому, что бутылка воздухом “Обтекается”: струя воздуха разбивается бутылкой на два потока; один обтекает её справа, а другой – слева; а встречаются они примерно там, где стоит пламя свечи.

Опыт № 4 Вертящаяся змейка

Приборы и материалы: плотная бумага, свеча, ножницы.

Этапы проведения опыта

  1. Из плотной бумаги вырезать спираль, растянуть её немного и посадить на конец изогнутой проволоки.
  2. Держать эту спираль над свечкой в восходящем потоке воздуха, змейка будет вращаться.

Змейка вращается, т.к. происходит расширение воздуха под действием тепла и о превращении теплой энергии в движение.

Опыт № 5 Извержение Везувия

Приборы и материалы: стеклянный сосуд, пузырёк, пробку, спиртовая тушь, вода.

Этапы проведения опыта

  1. В широкий стеклянный сосуд, наполненный водой, поставить пузырёк спиртовой туши.
  2. В пробке пузырька должно быть небольшое отверстие.

Вода имеет большую плотность, чем спирт; она постепенно будет входить в пузырёк, вытесняя оттуда тушь. Красная, синяя или черная жидкость тоненькой струйкой будет подниматься из пузырька кверху.

Опыт № 6 Пятнадцать спичек на одной

Приборы и материалы: 15 спичек.

Этапы проведения опыта

  1. Положить одну спичку на стол, а на неё поперёк 14 спичек так, чтобы головки их торчали кверху, а концы касались стола.
  2. Как поднять первую спичку, держа её за один конец, и вместе с нею все остальные спички?

Для этого нужно только поверх всех спичек, в ложбинку между ними, положить ещё одну, пятнадцатую спичку

Опыт № 7 Подставка для кастрюли

Приборы и материалы: тарелка, 3 вилки, кольцо для салфетки, кастрюля.

Этапы проведения опыта

  1. Поставить три вилки в кольцо.
  2. Поставить на данную конструкцию тарелку.
  3. На подставку поставить кастрюлю с водой.

Данный опыт объясняется правилом рычага и устойчивым равновесием.

Опыт № 8 Парафиновый мотор

Приборы и материалы: свеча, спица, 2 стакана, 2 тарелки, спички.

Этапы проведения опыта

Чтобы сделать это мотор, нам не нужно ни электричества, ни бензина. Нам нужно для этого только… свеча.

  1. Раскалить спицу и воткнуть её их головками в свечку. Это будет ось нашего двигателя.
  2. Положить свечу спицей на края двух стаканов и уравновесить.
  3. Зажечь свечу с обоих концов.

Капля парафина упадёт в одну из тарелок, подставленных под концы свечи. Равновесие нарушится, другой конец свечи перетянет и опустится; при этом с него стечёт несколько капель парафина, и он станет легче первого конца; он поднимается к верху, первый конец опустится, уронит каплю, станет легче, и наш мотор начнёт работать вовсю; постепенно колебания свечи будут увеличиваться всё больше и больше.

Опыт №9 Свободный обмен жидкостями

Приборы и материалы: апельсин, бокал, красное вино или молоко, воду, 2 зубочистки.

Этапы проведения опыта

  1. Осторожно разрезать апельсин пополам, очистить так, чтобы кожица снялась целой чашечкой.
  2. Проткнуть в дне этой чашечки два отверстия рядом и положить её в бокал. Диаметр чашечки должен быть немного больше диаметра центральной части бокала, тогда чашечка удержится на стенках, не падая на дно.
  3. Опустить апельсинную чашечку в сосуд на одну треть высоты.
  4. Налить в апельсинную корку красного вина или подкрашенного спирта. Оно будет проходить через дырку, пока уровень вина не дойдёт до дна чашечки.
  5. Затем налить воды почти до края. Можно увидеть, как струя вина поднимается через одно из отверстий до уровня воды, между тем как вода, более тяжёлая, пройдет через другое отверстие и станет опускаться ко дну бокала. Через несколько мгновений вино очутится на верху, а вода внизу.

Опыт №10 Певучая рюмка

Приборы и материалы: тонкая рюмка, вода.

Этапы проведения опыта

  1. Наполнить рюмку водой и вытереть края рюмки.
  2. Смоченным пальцем потереть в любом месте рюмки, она запоёт.

1. Диффузия жидкостей и газов

Диффузия (от лат. diflusio - распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотическим тепловым движением молекул (атомов). Различают диффузию в жидкостях, газах и твёрдых телах

Приборы и материалы: вата, нашатырный спирт, фенолфталеин, установка для наблюдения диффузии.

Этапы проведения эксперимента

  1. Возьмём два кусочка ватки.
  2. Смочим один кусочек ватки фенолфталеином, другой – нашатырным спиртом.
  3. Приведём ветки в соприкосновение.
  4. Наблюдается окрашивание ваток в розовый цвет вследствие явления диффузии.

Явление диффузии можно пронаблюдать при помощи специальной установки

  1. Нальём в одну из колбочек нашатырный спирт.
  2. Смочим кусочек ваты фенолфталеином и положим сверху в колбочку.
  3. Через некоторое время наблюдаем окрашивание ватки. Данный эксперимент демонстрирует явление диффузии на расстоянии.

Докажем что явление диффузии зависит от температуры. Чем выше температура, тем быстрее протекает диффузия.

Для демонстрации данного опыта возьмём два одинаовых стакана. В один стакан нальём холодной воды, в другой – горячей. Добавим в стаканы медный купорос, наблюдаем, что в горячей воде медный купорос растворяется быстрее, что доказывает зависимость диффузии от температуры.

2. Сообщающиеся сосуды

Для демонстрации сообщающихся сосудов возьмем ряд сосудов различной формы, соединенных в нижней части трубками.

Будем наливать жидкость в один из них: мы сейчас же обнаружим, что жидкость перетечет по трубкам в остальные сосуды и установится во всех сосудах на одном уровне.

Объяснение этого опыта заключается в следующем. Давление на свободных поверхностях жидкости в сосудах одно и то же; оно равно атмосферному давлению. Таким образом, все свободные поверхности принадлежат одной и той же поверхности уровня и, следовательно, должны находиться в одной горизонтали плои верхняя кромка самого сосуда: иначе чайник нельзя будет налить доверху.

Шар Паскаля – это прибор предназначен для демонстрации равномерной передачи давления, производимого на жидкость или газ в закрытом сосуде, а также подъёма жидкости за поршнем под влиянием атмосферного давления.

Для демонстрации равномерной передачи давления, производимого на жидкости в закрытом сосуде, необходимо, используя поршень, набрать в сосуд воды и плотно насадить на патрубок шар. Вдвигая поршень в сосуд, продемонстрировать истечение жидкости из отверстий в шаре, обратив внимание на равномерное истечение жидкости по всем направлениям.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Вечер занимательных опытов по физике.

Цель мероприятия: развитие познавательного интереса к физике, грамотной монологической речи с использованием физических терминов, развитие внимания, наблюдательности, умения применять знания в новой ситуации, приучение детей к доброжелательному общению.

Сценарий вечера

Добрый вечер, ребята! Добрый вечер, друзья! Вы знаете, что в нашей школе проходит неделя физики, в рамках которой проходит множество мероприятий. А сегодня мы Вам покажем занимательные опыты. Внимательно смотрите и попытайтесь их объяснить. Наиболее отличившиеся в объяснении опытов получат призы – хорошие и отличные оценки по физике. Итак, начнем.

Оборудование: шарик на нити и кольцо на штативе, бумага, спички.

hello_html_m7a7f7839.jpg

Проведение: Покажем, что шарик при комнатной температуре свободно проходит сквозь кольцо, затем нагреем его в пламени спиртовки и покажем, что нагретый шарик застревает в кольце. Объясните, почему нагретый шарик застрял в кольце, а когда остыл, прошел в него ?

Объяснение: При нагревании расстояние между молекулами, из которых состоит шарик, увеличилось, вследствие того, что они стали колебаться с большей амплитудой и поэтому шарик застрял в кольце. Когда же шарик остыл, расстояние между молекулами шарика уменьшилось и он опять прошел сквозь кольцо.

Оборудование: тарелка, кусок хозяйственного мыла.

Проведение: Налить в тарелку воды и сразу слить. Поверхность тарелки будет влажной. Затем кусок мыла, сильно прижимая к тарелке, повернуть несколько раз и поднять вверх. При этом с мылом поднимется и тарелка. Почему?

Объяснение: Подъем тарелки с мылом объясняется притяжением молекул тарелки и мыла.

Оборудование: стакан с водой, лист плотной бумаги.

Объяснение: Вода удерживается атмосферным давлением, т. е. атмосферное давление больше давления, производимого водой.

Замечания: Опыт лучше получается с толстостенным сосудом.

При переворачивании стакана лист бумаги нужно придерживать рукой.

Примечание: усложним опыт: поставим перевернутый стакан с водой на стол и аккуратно выдернем лист бумаги – вода не выливается. Почему?

Оборудование: рейка длиной 50-70 см, газета, метр.

Проведение: Положим на стол рейку, на нее полностью развернутую газету. Если медленно оказывать давление на свешивающийся конец линейки, то он опускается, а противоположный поднимается вместе с газетой. Если же резко ударить по концу рейки метром или молотком, то она ломается, причем противоположный конец с газетой даже не поднимается. Как это объяснить?

Объяснение: Сверху на газету оказывает давление атмосферный воздух. При медленном нажатии на конец линейки воздух проникает под газету и частично уравновешивает давление на нее. При резком ударе воздух вследствие инерции не успевает мгновенно проникнуть под газету. Давление воздуха на газету сверху оказывается больше, чем внизу, и рейка ломается.

Замечания: Рейку нужно класть так, чтобы ее конец 10 см свешивался. Газета должна плотно прилегать к рейке и столу.

Оборудование: два штативами с муфтами и лапками, два бумажных кольца, рейка, метр.

Проведение: Бумажные кольца подвесим на штативах на одном уровне. На них положим рейку. При резком ударе метром или металлическим стержнем посередине рейки она ломается, а кольца остаются целыми. Почему?

Объяснение: Время взаимодействия очень мало. Поэтому рейка не успевает передать полученный импульс бумажным кольцам.

Замечания: Ширина колец – 3 – см. Рейка длиной 1 метр, шириной 15-20 см и толщиной 0,5 см.

Оборудование: штатив с двумя муфтами и лапками, два демонстрационных динамометра

Проведение: Укрепим на штативе два динамометра – прибора для измерения силы. Почему их показания одинаковы? Что это означает?

Объяснение: тела действуют друг на друга с силами равными по модулю и противоположными по направлению. (Третий закон Ньютона)

Оборудование: два одинаковых по размеру и массе листа бумаги (один из них скомканный)

Проведение: Одновременно отпустим оба листа с одной и той же высоты. Почему скомканный лист бумаги падает быстрее?

Объяснение: скомканный лист бумаги падает быстрее, так как на него действует меньшая сила сопротивления воздуха.

А вот в вакууме они падали бы одновременно.

Оборудование: стеклянный сосуд с водой, стеариновая свеча, гвоздь, спички.

Проведение: Зажжем свечу и опустим в сосуд с водой. Как быстро погаснет свеча?

Объяснение: Кажется, что пламя зальется водой, как только сгорит отрезок свечи, выступающий над водой, и свеча погаснет.

Но, сгорая, свеча уменьшается в весе и под действием архимедовой силы всплывает.

Замечание: К концу свечи прикрепить снизу небольшой груз (гвоздь) так, чтобы она плавала в воде.

Оборудование: металлический стержень, полоска бумаги, спички, свеча (спиртовка)

Проведение: Стержень плотно обернем полоской бумаги и внесем в пламя свечи или спиртовки. Почему бумага не горит?

Объяснение: Железо, обладая хорошей теплопроводностью, отводит тепло от бумаги, поэтому она не загорается.

Оборудование: штатив с муфтой и лапкой, спирт, носовой платок, спички

Проведение: Зажать в лапке штатива носовой платок (предварительно смоченный водой и отжатый), облить его спиртом и поджечь. Несмотря на пламя, охватывающее платок, он не сгорит. Почему?

Объяснение: Выделившаяся при горении спирта теплота полностью пошла на испарение воды, поэтому она не может зажечь ткань.

Оборудование: штатив с муфтой и лапкой, перышко, обычная нить и нить, вымоченная в насыщенном растворе поваренной соли.

Проведение: На нити подвесим перышко и подожжем ее. Нить сгорает, а перышко падает. А теперь подвесим перышко на волшебной нити и подожжем ее. Как видите, волшебная нить сгорает, но перышко остается висеть. Объясните секрет волшебной нити.

Объяснение: Волшебная нить была вымочена в растворе поваренной соли. Когда нить сгорела, перышко держится на сплавленных кристаллах поваренной соли.

Замечание: Нить должна быть вымочена 3-4 раза в насыщенном растворе соли.

Оборудование: штатив с муфтой и лапкой, бумажная кастрюля на нитках, спиртовка, спички.

Проведение: Подвесим бумажную кастрюлю на штативе.

Можно ли закипятить воду в этой кастрюле?

Объяснение: Вся теплота, выделяющаяся при горении, идет на нагревание воды. Кроме того, температура бумажной кастрюли не достигает температуры воспламенения.

Пока закипит вода, можно предложить залу вопросы:

1.Что растет вниз вершиной? (сосулька)

2. В воде купался, а сух остался. (Гусь, утка)

3. Почему водоплавающие птицы не намокают в воде? (Поверхность перьев у них покрыта тонким слоем жира, а вода не смачивает жирную поверхность.)

4. С земли и ребенок поднимет, а через забор и силач не перекинет. (Пушинка)

5. Днем окно разбито, на ночь вставлено. (Прорубь)

Оборудование: штатив с муфтой и лапкой, металлический стержень, нить, две картофелины одинаковой массы, спички, спиртовка.

Проведение: Укрепим картофелины на концах стержня. Подвесим стержень на нити на штативе. Уравновесим рычаг, передвигая картофелины.

Нагреем один конец стержня в пламени спиртовки. Почему нарушилось равновесие?

Объяснение: При нагревании длина стержня увеличивается. А значит, и плечо этой силы стало больше. По правилу Архимеда рычаг не может находиться в равновесии, если силы равны, а плечи не равны.

Оборудование: два стеклянных сосуда с водой, картофелина.

Проведение: Поместим одну и ту же картофелину в сосуды с равным количеством воды. В одном сосуде картофелина тонет, а в другом плавает. Объясните загадку картофелины.

Объяснение: В одном из сосудов находится насыщенный раствор поваренной соли. Плотность соленой воды больше, чем чистой. Плотности соленой воды и картофелины примерно одинаковы, поэтому она плавает в растворе соли. Плотность чистой воды меньше плотности картофелины, поэтому она тонет в воде.

Оборудование: бутылка из-под кетчупа, картонное кольцо, монета (несколько монет), линейка.

hello_html_65dfc298.jpg

Проведение: поставьте на горлышко бутылки картонное кольцо, шириной 2-3 см и диаметром 10-15 см. На кольцо положите монету, а внутрь введите линейку и резким горизонтальным движением выбейте кольцо из-под монеты. Монета упадет в бутылку. Как объяснить наблюдаемое явление?

Объяснение: При резком выбивании картонного кольца из-под монеты время взаимодействия указанных тел мало, поэтому небольшая по величине сила трения, действующая на монету, не может сообщить последней скорость в горизонтальном направлении. Практически монета сохраняет состояние покоя по инерции, но при удалении опоры падает в бутылку.

Оборудование: бутылка, лист бумаги формата А4.

Проведение: Положите листок бумаги на край стола. На листок поставьте горлышком вниз пустую бутылку. Свешивающийся конец листка возьмите в одну руку, а ребром ладони другой руки резко ударьте по нему. При этом листок выдергивается, а бутылка остается на месте. Почему?

Объяснение: вследствие инерции, бутылка не может быстро изменить свою скорость, поэтому практически остается на месте.

Оборудование: стакан с водой, лист бумаги формата А4.

Проведение: Положите листок бумаги на край стола. На листок поставьте стакан с водой. Свешивающийся конец листка возьмите в одну руку, а ребром ладони другой руки резко ударьте по нему. При этом листок выдергивается, а стакан остается на месте. Почему?

Объяснение: вследствие инерции, стакан с водой не может быстро изменить свою скорость, поэтому практически остается на месте.

Оборудование: две вилки, пробка, иголка, монета, бутылка.

Проведение: В пробку воткните достаточно длинную иглу. На горлышко бутылки положите пятикопеечную монету, а на нее обоприте острием иглы пробку с вилками. На пробке можно закрепить резиновую фигуру птицы. Вся система находится в устойчивом равновесии. В этом легко убедиться, если сообщить пробке с вилками вращательное или колебательное движение. При этом система двигается, но не падает, а фигура, поворачиваясь раскланивается.

Объяснение: Вертикальная линия, проведенная через центр тяжести системы из пробки с вилками, проходит через точку опоры. Причем центр тяжести лежит ниже точки опоры, а при этом условии система находится в устойчивом равновесии.

Оборудование: доска с вбитым гвоздем и еще 10-20 таких же гвоздей. Вопрос: можно ли удержать в равновесии на шляпке гвоздя 10-20 гвоздей, чтобы они не упали?

Объяснение: Эта конструкция устойчива потому, что центр ее масс находится ниже, чем точка опоры.

Оборудование: два свинцовых цилиндрика, несколько грузов.

Проведение: Основания свинцовых цилиндриков зачистите ножом. Цилиндры приведите в соприкосновение, чуть поверните и сжимайте. Наблюдается их сцепление. Подвесьте цилиндры к штативу, постепенно и осторожно нагружайте их. Доведите груз до нескольких килограммов. Где используется это явление на практике?

Объяснение: Когда мы зачистили основания цилиндриков, то большее число молекул одного цилиндрика будет взаимодействовать с большим числом другого цилиндрика (между молекулами цилиндриков действуют силы притяжения). Это явление используется в процессах пайки, сварки, склеивания, окраски и т.п.

Оборудование: завязанная перчатка, насос Комовского, колокол воздушного насоса.

hello_html_132b1556.jpg

Проведение: Начнем откачивать воздух из-под колокола воздушного насоса, перчатка начнет увеличиваться в размерах.

Используемая литература:

8 простых детских опыта по физики и химии, которые запомнятся ребенку на всю жизнь. В домашних условиях сделайте с ребенком опыты с уксусом, содой, водой, льдом и прекрасно проведите время!

Редакция wsem.ru

Многие уже взрослые люди, вспоминая нудные уроки в школьных классах, приходят в ужас. Любовь к наукам могут отбить даже непонятные опыты на уроках физики, которые учитель проводил на занятиях. Вашим детям всего этого можно избежать, если грамотно организовать дома наглядные демонстрации самых простых законов этих часто нелюбимых школьных предметов. Для этого не нужно иметь ученую степень или степень бакалавра. Любой родитель может провести с пользой для ребенка, а зачастую и для себя, опыты по физике и химии у себя дома.

Начинать занятия желательно, когда ребенок начнет осознавать, что это не волшебство, а простые законы природы. Это, примерно 5-6 лет. Естественно, стоит соблюдать все меры безопасности и хорошо подготовиться, так как некоторые детские опыты могут испачкать комнату, которую сложно будет очистить или нанести травму участникам.

Правила безопасности при проведении опытов по химии и физике


При проведении демонстраций с использованием открытого огня, химических элементов, которые могут оставить следы на мебели или одежде, стоит использовать:

  • перчатки, маску, халат или старую ненужную одежду;
  • вся потенциально опасная зона должна быть максимально изолирована, а мебель накрыта укрывным материалом;
  • объясните ребенку, что при проведении опытов по физике не стоит подносить руки, лицо к реактивам и огню (и сами следуйте этому правилу). Это поможет избежать всем участникам работ ожогов и травм;
  • также следует уточнить наличие у ребенка аллергических реакций на какие-то компоненты и реактивы, которые будут участвовать в эксперименте. Если такие существуют, то от экспериментов лучше отказаться.
  • проветривайте помещение после проведения опытов.

Простые опыты по физики и химии в домашних условиях



Это один из зрелищных экспериментов, которые оценит ваш ребенок. Для демонстрации нужно всего лишь: сода, столовый уксус, две емкости небольшого размера.

  • в одну из склянок налейте уксус примерно до половины ее объема;
  • другую - наполните пищевой содой где-то на треть;
  • наливайте уксусный состав в колбу, где находится сода, пока не образуется мощный пенный столб, напоминающий извержение вулкана;
  • для лучшей наглядности желательно соорудить из пластилина или теста подобие вулкана, а в уксусный состав подмешать яркий пищевой краситель.

Инструкция по проведению опыта:

Опыт: Шарик, который надувается сам

Это достаточно распространенный опыт по физике и химии в 7 классе. Он наглядно показывает, как газ может высвобождаться за счет химической реакции в закрытых пространствах. Это очень простой и наглядный эксперимент, который можно показать и маленькому ребенку, если все работы, естественно, сделает взрослый. Для демонстрации понадобится воздушный шар (возможно несколько), уксусная кислота, пищевая сода, ложка, пластиковая бутылка небольшого объема (примерно литр).

  • в сдутый воздушный шар ложкой насыпьте соду примерно на треть объема;
  • одну четвертую часть бутылки наполните уксусом;
  • наденьте воздушный шар на горлышко емкости так, чтобы уксус не перелился в шарик;
  • теперь, когда сода будет поступать в бутылку, будет проходить химическая реакция с выделением газа, и шар будет самостоятельно надуваться. Главное соблюдать герметичность!


Вам понадобится: пластиковая емкость, шампунь, краситель (пищевой), йодид калия (можно заменить дрожжами), сама перекись водорода.

  • в емкость с узким горлышком налейте приблизительно 200 мл перекиси;
  • для наглядности перемешайте оксид водорода с красителем и шампунем (жидким мылом);
  • отодвиньтесь на расстояние, так как сейчас будет бурная реакция;
  • всыпьте ложку йодида калия (разведенных в воде дрожжей);
  • любуйтесь столбом пены.

Эксперименты по химии в домашних условиях с применением простых реактивов

На самом деле эти домашние опыты по физике и химии не такие сложные, как могут показаться, просто для них могут потребоваться некоторые компоненты, которых нет на кухне. Однако они очень наглядны и способны объяснить множество природных явлений.

Где взять реактивы для опытов дома

Сегодня в интернете можно найти практически все. Существует множество организаций, которые занимаются продажей наборов для юных химиков. Тем более, что для демонстрации той или иной реакции не потребуются компоненты в производственных масштабах. Дальше мы расскажем, где можно найти дома некоторые нужные элементы.

Описание опытов по физике и химии с применением реактивов

Опыт по химии: Выращивание настоящего кристалла


Это достаточно долгий по продолжительности эксперимент, поэтому стоит запастись терпением — от нескольких дней, до двух недель. Также желательно объяснить ребенку, что в природе большинство процессов протекает медленно. Для демонстрации понадобится небольшая емкость и пищевая сода. Для наращивания кристалла берется нитка или тонкая проволока.

  • в емкость наливается теплая вода;
  • добавляется пищевая сода (гидрокарбонат натрия) и хорошо размешивается (точные пропорции рассчитать сложно — просто досыпайте соду до тех пор, пока она не перестанет растворяться в жидкости);
  • далее на карандаш или другой продолговатый предмет привязывается нитка или проволока и опускается в смесь;
  • продолговатый предмет закрепляется на горлышке емкости для удобства;
  • поставьте вблизи батареи (зимой) или на солнце (летом), чтобы раствор испарялся: в процессе испарения воды из раствора на нитке будет наращиваться кристалл;
  • эксперимент может занять несколько дней или недель, в зависимости от множества внешних факторов. Но в итоге вы получите выращенный собственными руками кристалл. Вместо соды можно использовать каменную соль — кристалл вырастит немного другой. В воду можно добавить немного красителя: сок свеклы или пищевой краситель. Так вы получите цветной кристалл. Эксперементируйте!

Как сделать любую жидкость газированной в домашних условиях


Эта демонстрация наглядно показывает, как взаимодействуют между собой уксусная кислота и пищевая сода. Для опыта нам понадобится: емкость с жидкостью, в которой будут образовываться пузырьки газа, пластиковая бутылка и простая трубочка для коктейлей.

  • в крышке делаем небольшое отверстие, чтобы в него плотно входила трубочка (если необходимо, щели можно дополнительно запечатать пластилином);
  • далее в бутылку насыпаем соду и наливаем уксус (реакция произойдет мгновенно, поэтому важно, как можно быстрее закрутить крышку);
  • опускаем конец трубочки в емкость с жидкостью;
  • наблюдаем, как из него выходит газ, а в воде образуются пузырьки.


Этот эксперимент показывает, что во время горения при закрытой горловине, прекращается подача кислорода, и внутри образуется вакуум. Он имеет отрицательное давление, поэтому яичко само втягивается в бутылку.

Есть еще один похожий опыт, но уже с сырым яйцом. Для него нужно взять непосредственно сырое куриное яичко таких же размеров (большое) и вымочить его в уксусной кислоте на протяжении 14-16 часов. Далее повторяем действия из предыдущей демонстрации. Яйцо окажется в бутылке благодаря тому, что в процессе вымачивания в уксусе, оно стало более пластичным, а кальций в скорлупе – более мягким.

На этом этапе все понятно, но как теперь достать яйцо из емкости? На самом деле все довольно просто. Для этого потребуется простой пищевой целлофановый пакет. Его проталкиваем внутрь так, чтобы его края оставались снаружи колбы. Далее надуваем его. Затем резким движением переворачиваем емкость и с силой выдергиваем пакет. Здесь уже будут действовать основные физические законы.


Такой наглядный опыт можно провести даже с малышами дошкольного возраста. Также нужно объяснить им, что пробовать компоненты на вкус категорически нельзя, даже если они аппетитно выглядят. Для демонстрации нам понадобится прозрачная емкость, пена для бритья, водопроводная вода, небольшой шприц без иглы, краситель.

Более сложные домашние эксперименты мы обязательно опишем в следующей статье. Есть, что добавить — напишите в комментариях или нам на почту — дополним статью.

Читайте также: