В чем состоит биологический смысл разделения полов кратко

Обновлено: 02.07.2024

Эту статью могут комментировать только участники сообщества.
Вы можете вступить в сообщество одним кликом по кнопке справа.

Нужны ли для скрещивания два пола?
Существует способ размножения, при котором животные не разделены – не дифференцированы – на два пола, однако скрещивание имеет место. Таким способом размножаются дождевые черви. У них каждый червяк одновременно является и самкой и самцом. Или устрицы, у которых одна и та же особь выступает сначала в роли самца, а затем в роли самки.
Казалось бы, такой способ дает больше преимуществ.
Действительно, если, например, популяция животных состоит из 100 особей и все они без исключения могут скрещиваться между собой, то максимальное число возможных вариантов будет (100*99)/2 = 4950. Если та же популяция делится поровну на два пола, то число особей каждого пола равно 50 и максимальное количество возможных вариантов при этом равняется произведению 50*50 = 2500. То есть почти в два раза меньше.
Как видим, разделение на два пола ухудшает дело.
В чем же тогда секрет? Какую выгоду дает дифференциация полов? Ради чего популяция жертвует доброй половиной возможных вариантов, и что она получает взамен?
Считается, что дифференциация на два пола обеспечивает производство двух сортов гамет – половых клеток: с одной стороны маленьких и подвижных сперматозоидов, задача которых состоит в том, чтобы встретиться с яйцеклеткой, и, с другой стороны, относительно больших, но неподвижных яйцеклеток, обеспечивающих будущий зародыш питательными веществами. Однако такая специализация имеет место и у гермафродитных животных (дождевых червей и устриц) без дифференциации на два пола и без уменьшения разнообразия вариантов. Следовательно, этим биологический смысл разделения на два пола объяснить нельзя.
Попытаемся проанализировать роль полов в процессе воспроизводства, то есть выяснить их отношение к основным критериям производства – количеству, качеству и ассортименту продукции. Ибо всякое производство характеризуется прежде всего этими тремя параметрами.


Сопоставляя эти соображения с выводами о том, что потеря самцов не влияет на количество потомства, но способствует изменению его качества в нужном направлении и что редкие варианты самцов имеют большее информационное значение, чем редкие варианты самок, то есть самцы являются основными переносчиками информации от среды к популяции, - приходим к заключению, что кривые распределения признаков для самцов должны отличаться от соответствующих кривых для самок большей дисперсией. Это значит, что самцы по всем признакам должны отличаться большим разнообразием, чем самки.
Иначе говоря, если объединить всех самцов популяции в мужскую команду, а всех самок – в женскую и устроить личные и командные соревнования, то чемпионами в личном первенстве по всем видам программ будут самцы, а в командном зачете победят самки.
Такие соотношения устойчивости дают возможность виду за новую информацию расплачиваться в основном самцами, потеря которых способствует сдвигу качества потомства, не отражаясь на его численности.
Итак, более высокая смертность мужского пола целесообразна для сохранения вида.



В качестве наглядного примера можно привести также известную картину онтогенетического и филогенетического появления рогов у самцов и самок оленей. Можно проследить четкую связь между степенью рогатости вида, с одной стороны, и возрастом появления рогов у самцов и самок – с другой. Чем сильнее выражена рогатость, тем в более раннем возрасте появляются рога сначала у самцов, а затем у самок.
Очевидно, что предлагаемое правило можно применить как инструмент для исследования некоторых конкретных проблем эволюции. Не забывая, конечно, что эта общая тенденция может иногда перекрываться другими.

Справка:

Геодакян Виген Артаваздович, кандидат технических наук (физико-химик) и доктор биологических наук (биолог теоретик), работал в ФИАН, институтах Молекулярной биологии, Биофизики, Общей генетики, Биологии развития, Институте человека. С 1990 г. ведущий научный сотрудник Лаборатории биоакустики Института эволюционной морфологии и экологии животных РАН им. А.Н. Северцова (Москва). Автор эволюционных теорий пола, полового диморфизма, гоносом и ”номадических” генов, асимметрии организмов, функциональной асимметрии мозга, парных органов и др.
Научные интересы - связанные с полом проблемы эволюции, генетики, экологии, асимметрии мозга и психологии, а также вопросы информации и организации систем.
E-mail: [email protected]

Отношения полов заняли такое необычайно значимое место в человеческой культуре — в повседневной жизни, искусстве, религии и даже политике, — что мы редко задумываемся о биологическом смысле пола вообще. А то и вовсе вдаемся в дискуссии о том, не является ли пол вопросом личного самоопределения. Вместе с тем природа установила разделение по полам задолго до возникновения человека и даже позвоночных. Правда, о том, как и зачем это произошло, ученые спорят до сих пор.

Протосекс прокариот

Как происходит конъюгация

Двойная цена

Перетасовываем гены

Более того, половое размножение потребовало появления специального механизма создания гамет — половых клеток с одинарным (гаплоидным) набором хромосом. Этот механизм называется мейозом. Если при простом делении — митозе — родительские хромосомы полностью копируются в новую клетку, то в мейозе происходят дивные вещи. В процессе мейоза гомологичные (функционально схожие) хромосомы соединяются друг с другом и происходит кроссинговер — обмен участками. В результате трех фаз мейоза появляется гамета — половая клетка с гаплоидным набором хромосом, который из-за рекомбинации в ходе кроссинговера уже не является точной копией ни одного из наборов диплоидной клетки. Затем в процессе оплодотворения гаметы соединяются и восстанавливают диплоидность.

Как происходит мейоз

Без такого сложного биологического процесса, как мейоз, половое размножение было бы невозможным, однако само возникновение мейоза являет собой пока недостаточно решенную научную загадку. На сей счет существуют разные теории. Одна из них сводится к тому, что мейоз есть непосредственное развитие горизонтального переноса генов у прокариот, а точнее — явления гомологичной рекомбинации. В этом случае, как уже говорилось, принятый извне фрагмент ДНК соединяется с гомологичным участком генома реципиента, после чего начинается обмен генетической информацией между ними. Процесс рекомбинации, как при горизонтальном переносе, так и при мейозе, стимулируется специальными ферментами, которые в том и в другом случае имеют схожие функции. Более того, есть предположение о том, что основной набор генов, управляющих мейозом, присутствовал уже в геноме прокариот, которые дали потом начало эукариотам. Отдельно подчеркивается, что как трансформация с рекомбинацией, так и рекомбинация в мейозе могут быть этапами эволюции древнего механизма репарации ДНК, который заменяет поврежденные участки ДНК гомологичными участками из других хромосом. Другая широко обсуждаемая точка зрения заключается в том, что мейоз непосредственно происходит от митоза, так как в них задействованы схожие молекулярные механизмы.

Когда нужны самцы?

Стоит заметить, что половым размножением в биологии считается не только размножение в популяциях, где потомство происходит от слияния женских и мужских половых клеток разных организмов. К половому размножению относится и партеногенез (развитие потомства из неоплодотворенной материнской половой клетки), и самооплодотворение у животных-гермафродитов, которых немало, например, среди кишечнополостных. Эти существа имеют возможность производить как мужские, так и женские гаметы, которые при слиянии дают начало потомству. Причем нельзя сказать, что это потомство, как при бесполом размножении, будет точной генетической копией родительского организма, — не забудем, что гаметы прошли фазу рекомбинации родительских хромосом. Но такая экзотика поддерживается отбором лишь в определенных нишах. Подавляющее большинство эукариот — животных, растений, грибов и проч. — размножаются путем слияния мужских и женских клеток разных особей. Всевозможные переходные варианты лишь рассказывают нам, какими непростыми путями движется эволюция. Примитивные черви — коловратки класса Monogononta — имеют возможность размножаться партеногенетически, то есть без участия самца. Коловратки откладывают яйца, из которых выводятся только самки, и эти самки продолжают род дальше. Но лишь до поры до времени. Как только плотность популяции увеличивается до определенного значения, часть самок начинает производить яйца, из которых выводятся самцы. Самцы значительно мельче самок и из всех внутренних органов имеют только гонаду, то есть орган производства половых клеток, — понятно, что эти существа исполняют чисто вспомогательную функцию. Их задача — за свою короткую жизнь оплодотворить самок (у самцов нет даже пищеварительной системы). Из оплодотворенных яиц снова выведутся. самки.

Этот пример ярко демонстрирует, что половое размножение может работать как стратегия быстрого увеличения генетического разнообразия в популяции в ответ на изменения в окружающей среде. Если плотность популяции выросла, значит, предстоит борьба за выживание, и, возможно, новые комбинации генов дадут шанс потомству, произведенному нормальным половым путем.

Бегом от паразитов?

Возможность накопления в одном организме положительных мутаций, возникших в разных предковых линиях, — это лишь одна сторона медали. Половое размножение также дает шанс избавиться и от вредных мутаций. Ведь существует вероятность, что ген с вредными свойствами будет отсеян отбором. Причем при половом размножении подобная вероятность намного выше, чем в условиях горизонтального переноса генов. Особенно если учесть, что в половом процессе принимает участие весь геном, а при горизонтальном переносе геном бактерии взаимодействует лишь с фрагментом принесенной извне ДНК.

Возникновение полового размножения, вероятно, связано с очень древними механизмами обмена генетической информацией, которые появились еще до зарождения живой клетки.

Одним из важных последствий разделения живых существ на мужской и женский пол стало развитие разнообразных форм полового поведения. Если передача потомству своего генетического материала возможна лишь с помощью организма противоположного пола, то необходимо завоевать партнера или добиться его внимания. С усложнением мира живого, развитием нервной системы половое поведение принимало все более разнообразные и временами причудливые формы, пока не привело к развитию человеческой сексуальности, играющей огромную роль в эмоциональной и интеллектуальной жизни человека. Соотношение между чисто природными механизмами полового размножения и работой сознания, связанного с взаимоотношением между полами, наверно, навсегда останется для нас сложной проблемой философского характера.

Пол — дорогое удовольствие. Вдумайтесь, сколько энергии ушло на создание роскошного веерообразного хвоста павлина, необходимого для привлечения самок. Кроме того, пол попросту неэффективен, так как позволяет передавать только 50% генов, а половина популяции каждого вида (то есть самцы) вообще лишена способности производить потомство. Эволюция не склонна к сантиментам, поэтому все недостатки должны чем-то компенсироваться. О том, как это происходит, рассказывает журнал Nautilus.

Принято считать, что смешивание генов позволяет создать новые генетические комбинации, сохраняя полезные мутации, устраняя вредные и оставляя в генофонде гены, которые могут помочь будущим поколениям в борьбе с эпидемиями и паразитами.

Однако у этой теории есть один недостаток: преимущества полового размножения становятся заметны лишь через много поколений, а огромные затраты энергии необходимы прямо сейчас.

Чтобы понять пол, мы должны вернуться во времена первичного бульона и изучить угрозы, с которыми сталкивались первые сложные организмы.

Эволюционный биолог из Австралии Дэмьен Даулинг и его коллеги Джастин Хавирд и Мэтью Холл в прошлом году выдвинули интересную гипотезу. Они обратили внимание на то, что у одноклеточных бактерий и архей (прокариотов) отсутствует половое размножение. Им свойственно схожее с половым поведение, в том числе телесный контакт при обмене генами, который иногда называют бактериальным сексом, но размножаются они не половым путем, а делением.

Пол — это привилегия более сложных организмов, таких как эукариоты.

Самые разные организмы, от амеб до броненосцев, размножаются, распределяя хромосомы между гаметами — сперматозоидами и яйцеклетками, — которые затем соединяются, чтобы создать новый организм. Первые известные нам организмы, размножающиеся половым путем, — красные водоросли, древнейшие эукариоты, возраст которых оценивается в 1,2 млрд лет.

Отличительный признак эукариотов — строгая структура клеток, которые содержат не только ядро, но и органеллы — прежде всего митохондрии , биологические батарейки, обеспечивающие необходимую для жизни энергию.

Дело в том, что митохондрии — это не просто энергетические станции клеток. Много миллиардов лет назад они были отдельными организмами.

Человеческое тело — не полностью человеческое. В нашем кишечнике живут триллионы бактериальных клеток; в нашей ДНК присутствуют следы прежних вирусов; и даже наши клетки частично состоят из первичного бульона.

Ученые всё яснее осознают, что многие болезни — это не результат внешних угроз, а следствие нарушения баланса в нашей внутренней экосистеме.


Митохондриальная ДНК мутирует быстрее, чем регуляторные гены в ядре клетки. Это может иметь негативные последствия для организма. По мнению Даулинга, пол возник для того, чтобы ядро поспевало за изменениями митохондрий.

Дэмьен Даулинг, эволюционный биолог:

Пол позволяет создавать новые генотипы в каждом поколении, благодаря чему ядро может реагировать на возникающие проблемы.

Другими словами, это средство восстановления баланса. И, в отличие от остальных преимуществ пола, данное преимущество было не менее важным для первых эукариотов, чем для современных организмов.

Примерно 2 миллиарда лет назад между двумя прокариотами — двумя бактериями, барахтавшимися в первичном бульоне, — произошло некое подобие полового акта. Одна бактерия поглотила другую, но обе выжили. Они соединились и сформировали нечто совершенно новое.

Поглощенная бактерия через несколько миллионов лет превратилась в маленькую, но мощную митохондрию. Вторая бактерия — в большое ядро.

Недавнее исследование, проведенное Нильсом-Гораном Ларссоном из Института биологии старения Общества Макса Планка, подтверждает, что митохондриальная репликация неизбежно приводит к ошибкам.

Большое число митохондриальных мутаций наблюдается у многих современных биологических видов. Как и у других животных, у людей митохондрии делятся на протяжении всей жизни, вследствие чего их гены мутируют в 10–100 раз быстрее, чем гены ядра.

Каждая клетка содержит тысячи митохондрий, а каждая митохондрия содержит многочисленные копии собственной ДНК. Количество изменений огромно.

В ходе эволюции большая часть генов переместилась из митохондрий в более стабильное ядро. Митохондрии современных животных содержат всего 37 генов, и все они занимаются производством энергии. Их работа регулируется тысячей генов в ДНК ядра. Но такое решение имеет свои недостатки: случись что с этими 37 генами, весь механизм остановится. Если регулирующие их гены ядра не смогут адаптироваться, клетка может умереть.

В 2007 году Даулинг и его коллеги решили проверить, что произойдет, если два набора генов будут преследовать разные цели.

В ходе одного из своих экспериментов они скрестили 23 поколения пяти разных видов жуков Callosobruchus maculatus. В некоторых штаммах митохондриальная и ядерная ДНК были подобраны так, чтобы работать вместе. Когда же исследователи пересадили митохондрии другим штаммам, это привело к снижению жизнеспособности сперматозоидов.

Даулинг и его коллеги повторили свой эксперимент на дрозофилах. Самки почти не пострадали: только семь генов ядра снизили активность. У самцов же изменениям подверглись целых 1172 гена ядра, то есть почти 10% генома.

Разница между последствиями для самцов и самок объясняется тем, что митохондрии передаются только от матери. Поэтому самки с вредными митохондриальными мутациями умирают прежде, чем успевают произвести потомство, тем самым устраняя эти мутации из генофонда. Но если мутация сказывается на самцах, то может сохраниться в дальнейшем.

Несоответствие геномов также отражается на людях.

Эволюционный генетик Дан Мишмар из Университета имени Бен-Гуриона в Израиле обнаружил, что конфликт митохондрий повышает риск развития диабета 2-го типа у ашкеназов, которые являются носителями определенных генетических вариантов. А одна-единственная мутация митохондрий, по словам Яна Виллема Таанмана из Университетского колледжа Лондона, ответственна за наследственную глухоту в арабо-израильских и испанских семьях.

Однако у некоторых людей, унаследовавших мутацию, варианты ядерных генов помогают устранить проблему.


Именно пол стал решением проблемы несоответствия геномов, так как половое размножение обеспечивает смешение генов и позволяет создать новые варианты, помогающие адаптироваться к любым изменениям, как внутренним, так и внешним.

Кроме того, пол делает возможным новый путь эволюции.

Особи отсеиваются не только в результате естественного отбора, но и в ходе соперничества за партнеров, которому на микроскопическом уровне соответствует соперничество между сперматозоидами. Для митохондрий это настоящее испытание огнем, устраняющее даже малейшие несоответствия.

Мэтью Кейдж, биолог из Университета Восточной Англии в Норидже:

Подтверждение своей теории Даулинг находит у самых разных видов. Частота митохондриальных мутаций очень сильно отличается у разных организмов — от водорослей и тюльпанов до кораллов.

Другие ученые сомневаются в этом.

Дэвид Рой Смит, биолог из Университета Западного Онтарио:

Микроспоридии — один из видов, о которых Куйпер хотел бы узнать больше. Эти крошечные паразиты относятся к эукариотам, но они утратили митохондрии в процессе эволюции. Еще один — это коловратки Bdelloidea , маленькие водяные существа, которые обладают митохондриями, но не практикуют половое размножение. Теоретический биолог из Университета Британской Колумбии Сара Отто опасается, что эти пиявкоподобные организмы — исключение, опровергающее теорию. Тем не менее она допускает, что Даулинг прав и половое размножение возникло вследствие слияния существ, превратившихся в эукариотов.

Эволюция показывает, что объединение организмов стимулируют перемены.

Что касается радикальных перемен, то половое размножение с сопутствующими ему энергозатратными ритуалами ухаживания и роскошными оперениями обеспечивает их сполна. Вполне возможно, что все эти затраты энергии — всего лишь способ избежать проблем, которые может спровоцировать группка из 37 генов.

Биологический смысл разделения животных на два пола состоит в том, что потомство в этом случае приобретает гены как матери, так и отца, что ведет к ускорению эволюционного развития и кроме того, легко усваиваются генетические мутации.

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Читайте также: