Почему в организме не накапливается глюкоза а накапливается крахмал и гликоген кратко

Обновлено: 06.07.2024

Что такое гликоген?

Практически с каждым приемом пищи организм получает углеводы, которые поступают в кровь в виде глюкозы. Но порой ее количество превышает потребности организма и тогда глюкозные излишки накапливаются в форме гликогена, который при надобности расщепляется и обогащает тело дополнительной энергией.

Где хранятся запасы

Запасы гликогена в форме мельчайших гранул хранятся в печени и мышечной ткани. Также этот полисахарид есть в клетках нервной системы, почек, аорты, эпителия, мозга, в эмбриональных тканях и в слизистой оболочке матки. В теле здорового взрослого человека обычно есть около 400 г вещества. Но, кстати, при повышенных физических нагрузках организм преимущественно использует гликоген из мышц. Поэтому культуристы примерно за 2 часа до тренировки должны дополнительно насытить себя высокоуглеводной пищей, дабы восстановить запасы вещества.

Биохимические свойства

Роль гликогена

В основном гликоген концентрируется в клетках печени и мышц. И следует понимать, что эти два источника резервной энергии обладают разными функциями. Полисахарид из печени поставляет глюкозу для организма в целом. То есть отвечает за стабильность уровня сахара в крови. При чрезмерной активности или между приемами пищи уровень глюкозы в плазме снижается. И дабы избежать гипогликемии гликоген, содержащийся в клетках печени, расщепляется и попадает в кровоток, выравнивая глюкозный показатель. Регуляторную функцию печени в этом плане нельзя недооценивать, поскольку изменение уровня сахара в любую сторону чревато серьезными проблемами, вплоть до летального исхода.

Мышечные запасы необходимы для поддержания работы опорно-двигательной системы. Сердце также является мышцей, в которой есть запасы гликогена. Зная об этом, становится понятно, почему у большинства людей после длительного голодания или при анорексии возникают проблемы с сердцем.

Помимо этого, гликоген необходим для катаболизма сложных углеводов, участвует в обменных процессах в организме.

Синтезирование

Гликоген – это стратегический запас энергии, который синтезируется в организме из углеводов.

Гликогеноз и другие нарушения

Потребность организма в гликогене

Но в некоторых случаях расщепление гликогена не происходит. В результате гликоген накапливается в клетках всех органов и тканей. Обычно подобное нарушение наблюдают у людей с генетическими нарушениями (дисфункция ферментов, необходимых для расщепления вещества). Такое состояние называют термином гликогеноз и относят его к списку аутосомно-рецессивных патологий. На сегодня в медицине известны 12 типов этого заболевания, но пока достаточно изученной является только половина из них.

Но это не единственная патология, связанная с животным крахмалом. В число гликогеновых заболеваний также входит агликогеноз – нарушение, сопровождающееся полным отсутствием фермента, отвечающего за синтез гликогена. Симптомы болезни – ярко выраженные гипогликемии и судороги. Наличие агликогеноза определяют путем биопсии печени.

Потребность организма в гликогене

Гликоген, как запасной источник энергии, важно регулярно восстанавливать. Так, по крайней мере, утверждают ученые. Повышенная физическая активность может привести к тотальному истощению углеводных запасов в печени и мышцах, что в результате скажется на жизненной активности и работоспособности человека. В результате длительной безуглеводной диеты запасы гликогена в печени снижаются почти к нулю. Мышечные резервы истощаются во время интенсивных силовых тренировок.

Минимальная суточная доза гликогена составляет от 100 г и выше. Но эту цифру важно увеличить при:

Напротив, осторожно к пище, богатой углеводами, стоит отнестись лицам с дисфункцией печени, недостатком ферментов.

Пища для накопления гликогена

Как утверждают исследователи, для адекватного накопления гликогена примерно 65 % калорий организм должен получать из углеводных продуктов. В частности, для восстановления запасов животного крахмала важно ввести в рацион хлебобулочные изделия, каши, злаки, разные фрукты и овощи.

Лучшие источники гликогена: сахар, мед, шоколад, мармелад, варенье, финики, изюм, инжир, бананы, арбуз, хурма, сладкая выпечка, соки из фруктов.

Влияние гликогена на вес тела

Гликоген и вес тела

Ученые определили, что во взрослом организме может накопиться около 400 граммов гликогена. Но также ученые определили и то, что каждый грамм резервной глюкозы связывает примерно 4 грамма воды. Вот и получается, что 400 г полисахарида – это примерно 2 кг гликогенного водного раствора. Этим объясняется обильное потоотделение во время тренировок: организм расходует гликоген и при этом теряет в 4 раза больше жидкости.

Этим свойством гликогена объясняется и быстрый результат экспресс-диет для похудения. Безуглеводные диеты провоцируют интенсивное расходование гликогена, а с ним – жидкости из организма. Один литр воды, как известно, – это 1 кг веса. Но как только человек возвращается к обычному рациону с содержанием углеводов, запасы животного крахмала восстанавливаются, а с ними и потерянная за период диеты жидкость. В этом и кроется причина недолгосрочности результата экспресс-похудения.

Для по-настоящему эффективного похудения врачи советуют не только пересматривать рацион (отдавать предпочтение протеинам), но и усиливать физические нагрузки, которые ведут к быстрому израсходованию гликогена. Кстати, исследователи рассчитали, что 2-8 минут интенсивных кардиотренировок достаточно для использования запасов гликогена и потери лишнего веса. Но эта формула подходит исключительно лицам, не имеющим кардиологических проблем.

Дефицит и излишек: как определить

Организм, в котором, содержатся лишние порции гликогена, скорее всего, сообщит об этом сгущением крови и нарушениями работы печени. У людей с чрезмерными запасами этого полисахарида также случаются сбои в работе кишечника, увеличивается вес тела.

Но и нехватка гликогена не проходит для организма бесследно. Дефицит животного крахмала может послужить причиной эмоционально-психических нарушений. Возникают апатии, депрессивные состояния. Также заподозрить истощение энергетических резервов можно у людей с ослабленным иммунитетом, плохой памятью и после резкой потери мышечной массы.

Гликоген – важный резервный источник энергии для организма. Его недостаток – это не только снижение тонуса и упадок жизненных сил. Дефицит вещества скажется на качестве волос, кожи. И даже потеря блеска в глазах – это также результат нехватки гликогена. Если вы заметили у себя симптомы недостатка полисахарида, самое время подумать об усовершенствовании своего рациона.

Специальность: терапевт, врач-рентгенолог, диетолог .

Общий стаж: 20 лет .

Место работы: ООО “СЛ Медикал Груп” г. Майкоп .

Образование: 1990-1996, Северо-Осетинская государственная медицинская академия .


Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Биология.

1. Что из перечисленного относится к внутренней среде организма:

А) кровь; Б) плазма; В) лимфа; Г) вода; Д) тканевая жидкость.

2. Из чего образуется лимфа:

А) кровь; Б) плазма; В) вода; Г) тканевая жидкость.

3. Как называется жидкая часть крови:

А) плазма; Б) вода; В) лимфа; Г) тканевая жидкость.

4. Сколько процентов от массы тела составляет кровь:

А) 7; Б) 10; В) 15; Г) 20.

5. Сколько процентов от массы крови составляет плазма:

А) 40; Б) 60; В) 70; Г) 80.

6. Какая защитная реакция предохраняет организм от потери крови:

А) фагоцитоз; Б) иммунитет; В) свёртывание; Г) воспаление.

7. Какие клетки переносят кислород:

А) эритроциты; Б) лейкоциты; В) тромбоциты; Г) лимфоциты.

8. Что входит в состав плазмы:

А) вода; Б) соли; В) эритроциты; Г) фибриноген.

9. Где образуются эритроциты:

А) печень; Б) красный костный мозг; В) селезёнка; Г) лимфатические узлы.

10. Где образуются лейкоциты:

А) печень; Б) красный костный мозг; В) селезёнка; Г) лимфатические узлы.

11. Какие форменные элементы крови имеют ядро:

А) эритроциты; Б) лейкоциты; В) тромбоциты; Г) лимфоциты.

12. Какие форменные элементы крови участвуют в её свёртывании:

А) эритроциты; Б) лейкоциты; В) тромбоциты; Г) лимфоциты.

13. Какие форменные элементы крови вырабатывают антитела:

А) эритроциты; Б) лейкоциты; В) тромбоциты; Г) лимфоциты.

14. Какие клетки способны самостоятельно передвигаться:

А) эритроциты; Б) лейкоциты; В) тромбоциты; Г) мышечные.

15. Как называется способность организма защищать себя от чужеродных веществ:

Все знают о пользе, а теперь уже и о вреде, углеводов. Но как происходит усвоение их организмом, какие процессы протекают при расщеплении углеводов в организме человека и как происходит выделение той самой энергии, которая так нужна для нашей жизни? Мы рассмотрим один из биохимических процессов – процесс выделения и поглощения энергии из углеводов. Исторически этот процесс получил название брожения. Актуальность биохимических исследований обусловлена выживанием и комфортом человека в природе: это лекарства, продукты питания, красители, и т д. Задачей настоящей работы являлось изучение литературных данных о природе углеводов, их роли в жизни человека, изучение химизма расщепления углеводов с целью понимания процессов энергетического обмена, происходящих в клетках живых организмов и человека.


5. Шеховцева Т.Н. Ферменты: их использование в химическом анализе // Соросовский образовательный журнал. 2000. Т. 6. № 1. С. 44–48.

6. Московченко Н.Я., Савина Г.А. Ходатайство о награждении Н.Н. Семенова орденом Ленина // Физики о себе. Л.: Наука, 1990. С. 89.

Все биологические процессы, происходящие в окружающем мире, по своей сути являются химическими реакциями. Первую химическую реакцию человек осуществил, когда разжег костер – это реакция горения. Первое антибактериальное применение продуктов брожения и величайшее открытие в области медицины совершил Нострадамус. Большинство из нас знает его как предсказателя, но его основная заслуга состоит в том, что он нашел способ борьбы с чумой с помощью уксусной кислоты. История свидетельствует, чума лишила Нострадамуса и первой семьи, и друзей. С тех пор он искал средство борьбы от страшной болезни. Найдя чудо-лекарство, исследователь переезжал из города в город, где появлялась чума, спасая множество жизней [1].

Первым биохимиком была клетка, которая научилась энергетическому обмену: научилась поглощать свет и выделять энергию, необходимую для жизнеобеспечения. Таким образом, первый биохимик – это и есть сама жизнь. Все процессы, которые протекают в клетках живого организма, – это биохимические реакции.

Все углеводы можно разделить на четыре больших класса.

Моносахариды – это гетерофункциональные соединения, содержащие оксогруппу и несколько гидроксильных групп. Они не могут быть гидролизованы до более простых форм углеводов и являются структурной единицей любых углеводов, например, глюкоза, фруктоза, рибулоза, рамноза. Содержатся в различных продуктах: фрукты, мёд, некоторые виды вина, шоколад.

Олигосахариды – это соединения, построенные из нескольких остатков моносахаридов, связанных между собой гликозидной связью. Они делятся по числу моносахаридов в молекуле на дисахариды, трисахариды и т.д. К биологически активным производным олигосахаридов относятся некоторые антибиотики, сердечные гликозиды.

Дисахариды – это углеводы, которые при гидролизе дают две одинаковые или различные молекулы моносахарида и связаны между собой гликозидной связью, например, лактоза, сахароза, мальтоза. При гидролизе из дисахаридов образуется глюкоза.

Полисахариды – имеют общий принцип строения с олигосахаридами, за исключением моносахаридных остатков – полисахариды могут содержать их сотни и даже тысячи. Примеры: крахмал, гликоген, хитин, целлюлоза [2].

Для лучшего понимания реакций расщепления углеводов в организме, рассмотрим более подробно глюкозу, участвующую в этих процессах.

Глюкоза является одним из самых распространенных углеводов в природе, моносахарид, или гексоза С6Н12О6. Второе её название – виноградный сахар. Это растворимое в воде вещество белого цвета, сладкое на вкус. В молекуле глюкозы имеется четыре неравноценных асимметрических атома углерода (рис. 1):

naum1.tif

Рис. 1. Строение молекулы глюкозы

Для такого соединения возможно 24 = 16 стереоизомеров, которые образуют 8 пар зеркальных оптических антиподов. Каждое из восьми соединений представляет собой диастереомер (диа – двойной) с присущими только ему физическими свойствами (растворимость, температура плавления и т.д.).

Глюкоза содержится в растительных и живых организмах. Велико ее содержание в виноградном соке, в меде, фруктах и ягодах, в семенах, листьях крапивы. Глюкоза повышает работоспособность мозга, благотворно влияет на нервную систему человека. Именно поэтому в стрессовых ситуациях люди иногда хотят чего-нибудь сладкого. Помимо этого, глюкоза применяется в медицине для приготовления лечебных препаратов, консервирования крови, внутривенного вливания и т.д. Она широко применяется в кондитерском производстве, производстве зеркал и игрушек (серебрение). Ее используют при окраске тканей и кож.

Биохимические реакции расщепления углеводов в организме человека

Для поддержания жизнедеятельности организма используется энергия, скрытая в химических связях продуктов питания. Во многих продуктах питания содержится значительное количество углеводов в виде полисахаридов (сахар, крахмал, клетчатка) и моноз (глюкоза, фруктоза, лактоза и др.). К примеру, в картофеле содержание крахмала составляет до 16 %, в рисе – 78 %, а в белом хлебе – 51 %.

Уже во рту человека начинается процесс расщепления углеводов. Происходит гидролиз крахмала под действием биологического катализатора – фермента амилазы, который содержится в слюне. Под действием амилазы молекула крахмала расщепляется на довольно короткие цепочки, которые состоят из глюкозных звеньев. После этого углеводы попадают в желудок. Далее под действием желудочного сока заканчивается кислотный гидролиз крахмала. Крахмал распадается до отдельных глюкозных звеньев. Глюкоза попадает в кишечник и через стенки кишок поступает в кровь, разносящую её по всему человеческому организму.

Содержание глюкозы в крови поддерживается на постоянном уровне при помощи гормона инсулина, который выделяется поджелудочной железой. Инсулин полимеризует избыточную глюкозу в животный крахмал – гликоген, который откладывается в печени. Часть гликогена в печени может гидролизоваться в глюкозу, далее поступающую обратно в кровь. Это происходит при понижении содержания глюкозы в крови. Если поджелудочная железа не может вырабатывать инсулин, содержание глюкозы в крови повышается, что приводит к диабету. Именно поэтому людям, болеющим сахарным диабетом, необходимо регулярно вводить в кровь инсулин.

naum2.tif

Рис. 2. Структура аденозинтрифосфорной кислоты

АТФ в клетках – универсальная энергетическая валюта. Множество ферментов умеют вести химические реакции, осуществляющиеся с затратой энергии, за счет гидролитического отщепления одного или двух остатков фосфорной кислоты от молекулы АТФ (этот процесс сопровождается выделением энергии), или наоборот, умеют использовать энергию, которая высвобождается в реакциях с выделением энергии для того, чтобы АТФ образовалась. Расщепляя АТФ, клетка использует высвобождаемую энергию на биосинтез различных соединений, а окисляя углеводы – синтезирует АТФ.

naum3.tif

Рис. 3. Взаимодействие глюкозы с АТФ

naum4.tif

Рис. 4. Взаимодействие глюкозо-6-фосфата и фермента изомеразы

После второго фосфорилирования уже под действием другого фермента – фосфорфруктокиназы – получается в итоге фруктозо-1,6-дифосфат (C6H14O12P2 ) (рис.5):

naum5.tif

Рис. 5. Взаимодействие фруктозо-6-фосфата и 6-фосфоруктокиназы

Фруктозо-1,6-дифосфат распадается на две части. Получается дигидроксиацетонфосфат ( C3H7O6P ) и глицеральдегид-3-фосфат ( C3H7O6P) (рис. 6).

naum6.tif

Рис. 6. Распад Фруктозо-1,6-дифосфата

Клетке нужен только второй продукт, и она с помощью фермента изомеразы превращает первый фосфат во второй (чтобы не было отходов производства) (рис. 7).

naum7.tif

Рис. 7. Превращение диоксиацетон-фосфата в глицеральдегид-3-фосфат

На данной стадии в реакцию вступают два соединения: глутатион – соединение, несущее меркаптогруппу SН и никотинамидаденинуклеотид (НАД). НАД легко присоединяет водород: НАД-Н2.

Далее развивается процесс, мало изученный в деталях, но описать его можно пока следующим образом. Под действием НАД и его восстановленной формы, фермента дегидрогеназы и фосфорной кислоты, глицеральдегид-3-фосфат превращается в смешанный ангидрид 3-фосфоглицериновой и фосфорной кислот (рис. 8).

naum8.tif

Рис. 8. Превращение глицеральдегид-3-фосфата в смешанный ангидрид 3-фосфоглицериновой и фосфорной кислот

Всё это время энергия только поглощалась, так как АТФ переходил в АДФ. Теперь в реакции будет вступать АДФ, а в продуктах появится АТФ, и энергия будет выделяться. Так, под действием АДФ и фермента фосфоглицераткиназы образуется 3-фосфоглицериновая кислота (рис. 9).

naum9.tif

Рис. 9. Образование 3-фосфоглицерата

naum10.tif

Рис. 10. Превращение 3-фосфоглицерата в 2-фосфоглицерат

На полученный продукт воздействует фермент енолаза и АДФ – получается пировиноградная кислота (рис. 11, 12).

naum11.tif

Рис. 11. Дегидратация 2-фосфоглицерата

naum12.tif

Рис. 12. Перенос фосфорильной группы с фосфоенолпирувата на АДФ. Образование пирувата

Процесс превращения глюкозы в пировиноградную кислоту в клетке называется гликолизом [3]. В результате гликолиза клетка получает из одной молекулы глюкозы восемь молекул АТФ и две молекулы пировиноградной кислоты. Превращение глюкозы в пировиноградную кислоту является первой стадией, общей для нескольких процессов. То же самое происходит под действием дрожжей на раствор сахара. Но реакция не закачивается получением пировиноградной кислоты. От этой кислоты отщепляется (под действием фермента декарбоксилазы) молекула диоксида углерода и образуется уксусный альдегид, который, в свою очередь, атакуется ферментом дегидрогеназой и НАД-Н2. В результате при отсутствии кислорода получается этиловый спирт.

На самом деле уравнение этого сложного процесса выглядит довольно просто:

С6Н12О6 à 2С2Н5ОН + 2СО2

Это и есть процесс брожения. В мышцах НАД-Н2 восстанавливает пировиноградную кислоту в молочную. Это происходит при большой нагрузке, когда кровь не успевает подводить кислород в нужном количестве. Поэтому у спортсменов, пробежавших дистанцию, резко увеличивается в крови количество молочной кислоты [4].

Ферменты – это биологические катализаторы, имеющие белковую природу, помогающие ускорить химические реакции как в живых организмах, так и вне их. Ферменты обладают высокой каталитической активностью. К примеру, чтобы расщепить молекулу полиуглевода (крахмал, целлюлозу) или какой – либо белок на составные части, их нужно несколько часов кипятить с крепкими растворами щелочей либо кислот. А ферменты пищеварительных соков (пепсин, протеаза, амилаза) способны гидролизовать эти вещества буквально за несколько секунд при температуре 37 °С. Помимо этого, ферменты обладают избирательностью своего действия в отношении структуры субстрата, условий проведения реакции и её типа (фермент превращает только данный тип субстратов в определенных реакциях и условиях). Ферменты катализируют огромное количество реакций, протекающих в живой клетке при размножении, дыхании, обмене веществ и т.д. [5].

В современном понимании биохимическое расщепление углеводов – это метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического субстрата могут служить одновременно и донорами, и акцепторами водорода. Огромную роль в биохимических процессах играют микроорганизмы, ферменты и катализаторы. Считается, что анаэробный гликолиз (расщепление углеводов) был первым источником энергии для общих предков всех живых организмов до того, как концентрация кислорода в атмосфере стала достаточно высокой, и поэтому эта форма генерации энергии в клетках – более древняя. За очень редкими исключениями она существует и у всех ныне живущих клеток.

В настоящее время ученые считают, что все реакции биохимического расщепления углеводов на начальной стадии имеют общую схему вплоть до образования пировиноградной кислоты. Затем, в зависимости от условий и качества ферментов, из пировиноградной кислоты образуются конечные продукты реакции: спирты, кислоты (уксусная, лимонная, молочная, яблочная, масляная и т.д.), альдегиды, углекислый газ, водород, вода и пр.

Изучение биохимических реакций расщепления углеводов в организме человека и анализ использованных источников позволили сделать следующие выводы:

1. В общем виде схему механизма расщепления углеводов можно представить следующим образом: сложный углевод (дисахарид, полисахарид) à глюкоза à эфиры фосфорных кислот à глицериновый альдегид à глицериновая кислота à пировиноградная кислота à далее возможны любые упомянутые выше направления.

2. Биохимические реакции углеводов лежат в основе жизнедеятельности клеток живых организмов, в том числе и человека.

3. Биохимические процессы расщепления углеводов, которые изображаются простыми, на первый взгляд, уравнениями начальных и конечных продуктов, на самом деле представляют собой сложные и многоступенчатые процессы.

4. Для осуществления биохимических процессов необходимы ферменты и катализаторы, которые ускоряют реакции расщепления углеводов в тысячи раз.

Углеводы — это органические соединения, образованные тремя химическими элемента­ ми — углеродом, водородом и кислородом. Некоторые содержат также азот или серу. Общая формула углеводов — Сm(H2O)n.

Их делят на три основных класса: моносахариды, олигосахариды(дисахариды) и полисахариды.



Моносахариды — это простейшие углеводы, имеющие 3–10 атомов углерода. Большинство атомов углерода в молекуле моносахарида связано со спиртовыми группами, а один — с аль­дегидной или кетогруппой.

Глюкоза (виноградный сахар) встречается во всех организмах, в том числе в крови человека, поскольку является энергетическим резервом, входит в состав саха­розы, лактозы, мальтозы, крахмала, целлюлозы и других углеводов. Фруктоза (плодовый сахар) в наибольших кон­ центрациях содержится в плодах, меде, корнеплодах са­харной свеклы. Она не только принимает активное участие в процессах обмена веществ, но и входит в состав сахарозы.

Моносахариды — кристаллические вещества, сладкие на вкус и хорошо растворимые в воде.

К олигосахаридам относят углеводы, образованные не­ сколькими остатками моносахаридов. Они в основном так­ же кристаллические, хорошо растворимы в воде и сладки на вкус. В зависимости от количества этих остатков разли­ чают дисахариды (два остатка моносахаридов), трисахари­ ды (три) и т.д.

К дисахаридам относятся сахароза, лактоза и мальтоза. Сахароза (свекловичный или тростниковый са­ хар) состоит из остатков глюкозы и фруктозы , она в стречается в запасающих органах некоторых растений. Особенно много сахарозы в корне­ плодах сахарной свеклы и сахарного тростника, откуда их получают промышленным спосо­бом. Лактоза, или молочный сахар, образована остатками глюкозы и галактозы, содержится в материнском и коровьем молоке. Мальтоза (солодовый сахар) состоит из двух остатков глюкозы. Она образуется в процессе рас­щепления крахмала в семенах растений и в пи­щеварительной системе человека.

Полисахариды — это биополимеры, мономе­ рами которых являются остатки моносахаридов. К ним относятся крахмал, гликоген, целлюло­ за, хитин и др. Мономером этих полисахаридов является глюкоза.

Крахмал является основ­ ным запасным веществом растений, которое накапливается в семенах, плодах, клубнях, корневищах и других запасающих органах. Качественной реакцией на крахмал является реакция с йодом, при которой крахмал окрашивается в сине­фиолетовый цвет.

Гликоген (животный крахмал) — это запасной полисахарид животных и грибов, кото­рый у человека в наибольших количествах накапливается в мышцах и печени. Молекулы гликогена имеют более высокую степень ветвления, чем молекулы крахмала.

Целлюлоза, или клетчатка, — основной опорный полисахарид растений. Неразветвленные молекулы целлюлозы образуют пучки, которые входят в состав клеточ­ных стенок растений. Она используется в производстве тканей, бумаги, спирта и других органических веществ.

Хитин — это полисахарид, мономером которого является азотсодержащий моносахарид на основе глюкозы. Он входит в состав клеточных стенок грибов и панцирей членистоногих.

Полисахариды представляют собой порошкообразные вещества, которые несладки на вкус и нерастворимы в воде.

Видео YouTube

Читайте также: