Почему развитие науки о клетках цитологии связано с развитием оптического приборостроения кратко

Обновлено: 02.07.2024

Все живые организмы состоят из клеток – из одной (одноклеточные организмы) или многих (многоклеточные).

Наука, изучающая строение, химический состав, процессы жизнедеятельности и размножения клеток, называется цитология (от греч. сytos – клетка, logos – наука).

Предметом цитологии является клетка многоклеточных грибов, растений и животных, а также одноклеточные организмы (бактерии, одноклеточные грибы и водоросли, простейшие).

Цитология занимается изучением строения, химического состава и функций клеток, функций внутриклеточных структур, размножения и развития клеток, приспособление клеток к условиям внешней среды.

Современная цитология – комплексная наука. Она очень тесно связаны с другими биологическими науками: физиологией, ботаникой, зоологией, физиологией, эволюционным учением.

Существует общая и частная цитология.

Предметом исследования общей цитологии являются общие для большинства клеток элементы: их структура, функции, процессы метаболизма, реакция на повреждения и патологические изменения, приспособление к окружающим условиям.

В частной цитологии исследует особенности каждого типа клеток в зависимости от их специализации (многоклеточные организмы) или эволюционной адаптации к внешней среде (бактерии).

Чёткие грани между цитологией, биохимией, биологией развития, молекулярной биологией и молекулярной биофизикой стёрлись благодаря новым методам изучения компонентов клетки, развитию и усовершенствованию исследований цитохимии, особенно ферментов, использованию при изучении процессов синтеза макромолекул клетки радиоактивных изотопов, внедрению методов электронной цитохимии, применению для изучения локализации индивидуальных белков клетки с помощью люминесцентного анализа меченых флюорохромами антител, методам препаративного и аналитического цинтрифугирования.

Готовые работы на аналогичную тему

Современная цитология из суто морфологической науки смогла развиться в экспериментальную дисциплину, изучающую основные принципы деятельности клетки и, соответственно, основы жизни организмов.

При диагностике заболеваний человека и животных существенное значение имеют именно цитологические исследования.

Благодаря разработке Б.Гердоном методов пересадки ядер в клетки, соматической гибридизации клеток Х. Харрисом, Дж.Барски и Б. Эфрусси стало возможным изучение закономерностей реактивации генов, определение локализации многих генов в хромосомах человека. Стало также возможным приблизиться к решению ряда практических заданий медицины и народного хозяйства (создание новых сельскохозяйственных культур). Методом гибридизации клеток создано технологию получения стационарных антител гибридных клеток, вырабатывающих специфические антитела (моноклональные антитела). Они используются с целью определения ряда теоретических вопросов микробиологии, иммунологии, и вирусологии.

Сейчас стали примененять эти клоны для усовершенствования диагностики и лечения заболеваний человека. Цитологический анализ клеток больных (часто после их культивирования вне организма) важен при диагностировании некоторых наследственных болезней (пигментная ксеродерма, гликогенозы) и изучения их природы. В перспективе предвидится так же использование цитологических достижений при лечении генетических заболеваний человека, профилактике наследственной патологии, созданияи новых высокопродуктивных штаммов бактерий, повышении урожайности растений.

Благодаря многогранности проблем исследования клетки, специфике и разнообразию методов её изучения, в цитологии сформировались шесть основных направлений:

  • Цитоморфологии, которая изучает особенности структурной организации клетки, основными методами исследования которой являются различные способы микроскопии, как фиксированной (светооптическая, электронная, поляризационная), так и живой клетки (темнопольний конденсор, фазово-контрастная и люминесцентная микроскопия);
  • Цитофизиологии, которая изучает жизнедеятельность клетки как единой живой системы, а также функционирование и взаимодействие её внутренних структур; для решения этих заданий используют различные экспериментальные приёмы вместе с методами культуры клеток и тканей, микрокиносъёмки;*
  • Цитохимии, которая исследует молекулярную организацию клетки и химические изменения во время процессов обмена веществ и функционирования клетк. Проводят цитохимические исследования светомикроскопическим и электронно-микроскопическим методами, методами ультрафиолетовой и интерференционной микроскопии, цитофотометрии, фракционного центрифугирования.
  • Цитогенетики, которая изучает функциональную и структурную и организацию хромосом эукариотов;
  • Цитоэкологии, которая исследует реакции клетки на влияние факторов окружающей среды и механизмы адаптации к ним;
  • Цитопатологии, которая изучает патологические процессы в клетке.*

Наряду с традиционными направлениями цитологии развиваются и новые, такие как цитопатология вирусов, ультраструктурная патология клеток, цитофармакология, онкологическая цитология и др.

Цитология преподаётся как самостоятельный раздел в курсе гистологии и биологии в медицинских и других высших учебных заведениях.

История развития учения о клетке

История изучения клетки связана с именами таких учёных, как Роберт Гук (впервые применил микроскоп для исследования тканей и на срезе пробки и сердцевины бузины увидел ячейки, которые назвал клетками), Антони ван Левенгук (впервые увидел клетки при увеличении в 270 раз и открыл одноклеточные организмы), Матиас Шлейден и Теодор Шванн (они стали творцами клеточной теории).

Клеточная теория получила дальнейшее развитие в работах учёных второй половины ХІХ столетия. Было открыто деление клетки и сформулировано положение о том, что каждая новая клетка образуется от такой же начальной клетки в результате её деления (Рудольф Вирхов, 1858). Академик Российской Академии наук Карл Бер открыл яйцеклетку млекопитающих и установил, что все многочисленные организмы начинают своё развитие из одной клетки и этой клеткой является зигота. Открытие К. Бера показало, что клетка – не только единица строения, но и единица развития всех живых организмов.

После работ Роберта Гука микроскоп начали широко использовать для научных исследований в биологии.

Исторически развитие цитологии тесно связано с созданием микроскопа и его усовершенствованием, развитием гистологических методов исследования.

В ХVII ст. наблюдения Р. Гука подтвердились и были развиты М. Мальпиги, Н. Грю, А. Левенгуком.

В процессе научно-технической революции середины ХХ ст. цитология бурно развивалась и ряд её представлений были пересмотрены.

Электронная микроскопия дала возможность изучить строение и много в чём раскрыть функции уже известных ранеее органоидов клетки. Связаны эти открытия с именами К. Портера, Дж. Пелейда, Х. Риса, В. Бернхарда, К. де Дюва и других известных учёных.

В результате изучения ультраструктуры клетки весь живой органический мир был разделён на прокариот и эукариот. Исследования молекулярной биологии показали единство для всех организмов (включая вирусы) механизмов синтеза белка и генетического кода.

Изучение химической организации клетки привело к заключению, что в основе её жизни лежат именно химические процессы, что клетки всех организмов подобны по химическому составу, у них однотипно происходят основные процессы обмена веществ. Единство всего органического мира подтвердили данные о подобности химического состава клеток.

2. Ченцов Ю.С. Основы цитологии. Учебник М. Изд. Моск. ун-та. 1984, 344с.

3. Хэм А, Кормак Д. Гистология в 5 томах. М.Мир,1982-83. Т.1.

4. Рябов К.П. Гистология с основами эмбриологии. Мн.,1990, 3-е издание

Цитология ( от греч.kytos – ячейка, клетка) – наука о клетке, наука о клеточном уровне организации живой материи.

Во второй половине прошлого столетия цитология из описательной превратилась в экспериментальную науку, изучающую физиологию клетки, ее основные функции и свойства, ее биологию. Современная цитология – это физиология клетки.

Клеточная теория – это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Появлению и формулированию отдельных положений клеточной теории предшествовал трехсотлетний период изучения различных одно – и многоклеточных организмов растений и животных. Этот период связан с развитием применением и усовершенствованием различных оптических методов исследований.

Первый микроскоп был сконструирован голландским оптиком З.Янсеном в 1590 году.В 1612 году микроскоп был изготовлен Г.Галилеем. Но эти первые микроскопы не обратили на себя внимания. Только в 1659году английский физик Х.Гюйгенс сконструировал окуляр, которым воспользовался его соотечественник Роберт Гук(1665 г) и применил к микроскопу для исследования тонкого строения пробки. Микроскоп Гука увеличивал в 100-140 раз. Изучая срезы пробки Гук обнаружил, что они состоят из очень мелких, отделенных друг от друга стенками ячеек, которые он и назвал клетками. И хотя Гук исследовал ткань мертвую и на срезах видел не клетки, а их оболочки, его работой было положено начало микроскопическим исследованиям растений.




А.Левенгук (1696) первый открыл мир одноклеточных организмов и впервые увидел клетки животных (эритроциты). Позднее клетки животных описал Ф.Фонтана (1781). Но эти и другие многочисленные исследования не привели к правильным представлениям о том, что же представляет собой клетка.

Прогресс в изучении клетки был связан с развитием микроскопирования в 19 в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а содержимое клетки – протоплазма. В протоплазме было открыто Брауном ядро (1883). Его нашли в яйце курицы и дали ему название зародышевого пузырька.

К 30-м годам 19 века накопился значительный фактический материал по микроскопическому строению растений и животных. Но еще не существовало ясного представления о значении клетки в организме, ничего не было известно о том, как она размножается.

1) клетка растений и животных сходны между собой (гомологичны)

2) клетки развиваются из цитобластемы.

3)жизнь организма основана на жизни клеток.

На этом основании Шлейден и Шванн считаются основоположниками клеточной теории. Дальнейшее развитие эти представления получили в работах русского ученого Р.Вирхова (1858). Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы.

Со второй половины 19 в. при университетах Харькова, Москвы, Казани, Томска, Петербурна, Киева начали создаваться кафедры цитологии и гистологии, а при кафедрах лаборатории.

Большой вклад в развитие цитологии внесли российские и советские ученые Н.М.Якубович (1817-1879), Ф.В.Овсянников (1827-1906), А.И.Бабухин (1835-1891), К.А.Арнштейн, Н.И.Перемежко (1823-1893), И.М.Мечников (1845-1916), А.А.Заварзин, Н.Г.Хлопин, А.А.Шабадаш, Г.И.Роскин и др.

Наряду с развитием цитологии за рубежом она успешно развивалась и развивается в России, Советском Союзе, странах СНГ, в том числе и в Беларуси.

Современная цитология изучает:

1) строение клеток, их функционирование как элементарных живых систем.

2) Исследует функции отдельных клеточных компонентов.

3) Процессы воспроизведения клеток, их репарацию.

4) Приспособление к условиям внешней среды.

5) Особенности специализированных клеток.

Современная цитология тесно связана с научными и методическими достижениями биохимии, биофизики, молекулярной биологии и генетики. Эта взаимосвязь является основанием для углубленного изучения общих свойств клетки, для изучения ее функционирования уже с позиций этих наук. Всё вместе взятое стало основанием для появления нового раздела биологии - биологии клетки или, как её еще называют, клеточной биологии. Она применяет как морфологические, так и молекулярно-биологические методы изучения, поэтому считают, что термины цитология и биология клетки совпадают, т.к. их предметом изучения является клетка, имеющая свои собственные закономерности организации и функционирования.

Современная цитологияили биология клетки имеет важнейшее значение для развития множества других биологических наук, таких как физиология, генетика, молекулярная биология, медицина, ветеринария и др..

Изучение клетки и накопление о ней знаний привело к формулированию важного теоретического обобщения - клеточной теории, имеющей огромное общебиологическое значение.

ЦИТОЛОГИЯ И ГИСТОЛОГИЯ

Список литературы

Гибель клеток: некроз и апоптоз

Механизмы клеточного деления

Цитоплазма

Строение клеточного ядра

Методы цитологии

Предмет цитологии и краткая история её развития

ОГЛАВЛЕНИЕ

ЦИТОЛОГИЯ

Роль ядра в жизни клетки.Значение в переносе инф.ДНК к белку

Структура и функ.взаимосвязь всех компарментов вакуолярной системы.

1. Клеточная теория

2.1. Световая микроскопия

2.2. Витальное (прижизненное) изучение клеток

2.3. Изучение фиксированных клеток

2.4. Электронная микроскопия

2.5. Специальные методы

3.1. Центральная догма молекулярной биологии

3.2. Морфология ядерных структур

3.2.1. Структура и химия хроматина

3.2.2. Ядерный белковый матрикс

3.2.3. Общая организация митотических хромосом

3.3. Ядерные транскрипты и их транспорт

3.3.1. Ядрышко – источник рибосом

3.3.2. Нерибосомные продукты клеточного ядра

3.4. Ядерная оболочка

4.1. Гиалоплазма и органеллы

4.2. Общие свойства биологических мембран

4.2.1. Плазматическая мембрана

4.2.2. Специальные межклеточные соединения

4.2.3. Клеточная стенка (оболочка) растений

4.2.4. Клеточные оболочки бактерий

4.3. Вакуолярная система внутриклеточного транспорта

4.3.1. Гранулярный эндоплазматический ретикулум

4.3.2. Аппарат Гольджи

4.3.4. Гладкий ретикулум

4.3.5. Вакуоли растительных клеток

4.3.6. Пероксисомы (микротельца)

4.4. Секреция белков и образование мембран у бактерий

4.5. Цитоплазма: системы энергообеспечения клетки

4.5.1. Митохондрии – строение и функции

4.6. Цитоплазма: опорно-двигательная система (цитоскелет)

4.6.1. Промежуточные филаменты

4.6.4. Клеточный центр

4.6.5. Базальные тельца, строение и движение ресничек и жгутиков

4.6.6. Двигательный аппарат бактерий

5.1. Митотическое деление клеток

5.1.2. Митоз растительной клетки

5.2. Деление бактериальных клеток

5.4. Регуляция клеточного цикла

Лабораторных работ _____часов

Основная литература:

1.Ченцов Ю.С. Введение в клеточную биологию. М.Академкнига. 2004 г. 495 с

2. Ченцов Ю.С. Основы цитологии. Учебник М. Изд. Моск. ун-та. 1984, 344с.

3. Хэм А, Кормак Д. Гистология в 5 томах. М.Мир,1982-83. Т.1.

4. Рябов К.П. Гистология с основами эмбриологии. Мн.,1990, 3-е издание

Цитология ( от греч.kytos – ячейка, клетка) – наука о клетке, наука о клеточном уровне организации живой материи.

Во второй половине прошлого столетия цитология из описательной превратилась в экспериментальную науку, изучающую физиологию клетки, ее основные функции и свойства, ее биологию. Современная цитология – это физиология клетки.

Клеточная теория – это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Появлению и формулированию отдельных положений клеточной теории предшествовал трехсотлетний период изучения различных одно – и многоклеточных организмов растений и животных. Этот период связан с развитием применением и усовершенствованием различных оптических методов исследований.

Первый микроскоп был сконструирован голландским оптиком З.Янсеном в 1590 году.В 1612 году микроскоп был изготовлен Г.Галилеем. Но эти первые микроскопы не обратили на себя внимания. Только в 1659году английский физик Х.Гюйгенс сконструировал окуляр, которым воспользовался его соотечественник Роберт Гук(1665 г) и применил к микроскопу для исследования тонкого строения пробки. Микроскоп Гука увеличивал в 100-140 раз. Изучая срезы пробки Гук обнаружил, что они состоят из очень мелких, отделенных друг от друга стенками ячеек, которые он и назвал клетками. И хотя Гук исследовал ткань мертвую и на срезах видел не клетки, а их оболочки, его работой было положено начало микроскопическим исследованиям растений.

А.Левенгук (1696) первый открыл мир одноклеточных организмов и впервые увидел клетки животных (эритроциты). Позднее клетки животных описал Ф.Фонтана (1781). Но эти и другие многочисленные исследования не привели к правильным представлениям о том, что же представляет собой клетка.

Прогресс в изучении клетки был связан с развитием микроскопирования в 19 в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а содержимое клетки – протоплазма. В протоплазме было открыто Брауном ядро (1883). Его нашли в яйце курицы и дали ему название зародышевого пузырька.

К 30-м годам 19 века накопился значительный фактический материал по микроскопическому строению растений и животных. Но еще не существовало ясного представления о значении клетки в организме, ничего не было известно о том, как она размножается.

1) клетка растений и животных сходны между собой (гомологичны)

2) клетки развиваются из цитобластемы.

3)жизнь организма основана на жизни клеток.

На этом основании Шлейден и Шванн считаются основоположниками клеточной теории. Дальнейшее развитие эти представления получили в работах русского ученого Р.Вирхова (1858). Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы.

Со второй половины 19 в. при университетах Харькова, Москвы, Казани, Томска, Петербурна, Киева начали создаваться кафедры цитологии и гистологии, а при кафедрах лаборатории.

Большой вклад в развитие цитологии внесли российские и советские ученые Н.М.Якубович (1817-1879), Ф.В.Овсянников (1827-1906), А.И.Бабухин (1835-1891), К.А.Арнштейн, Н.И.Перемежко (1823-1893), И.М.Мечников (1845-1916), А.А.Заварзин, Н.Г.Хлопин, А.А.Шабадаш, Г.И.Роскин и др.

Наряду с развитием цитологии за рубежом она успешно развивалась и развивается в России, Советском Союзе, странах СНГ, в том числе и в Беларуси.

Современная цитология изучает:

1) строение клеток, их функционирование как элементарных живых систем.

2) Исследует функции отдельных клеточных компонентов.

3) Процессы воспроизведения клеток, их репарацию.

4) Приспособление к условиям внешней среды.

5) Особенности специализированных клеток.

Современная цитология тесно связана с научными и методическими достижениями биохимии, биофизики, молекулярной биологии и генетики. Эта взаимосвязь является основанием для углубленного изучения общих свойств клетки, для изучения ее функционирования уже с позиций этих наук. Всё вместе взятое стало основанием для появления нового раздела биологии - биологии клетки или, как её еще называют, клеточной биологии. Она применяет как морфологические, так и молекулярно-биологические методы изучения, поэтому считают, что термины цитология и биология клетки совпадают, т.к. их предметом изучения является клетка, имеющая свои собственные закономерности организации и функционирования.

Современная цитологияили биология клетки имеет важнейшее значение для развития множества других биологических наук, таких как физиология, генетика, молекулярная биология, медицина, ветеринария и др..

Изучение клетки и накопление о ней знаний привело к формулированию важного теоретического обобщения - клеточной теории, имеющей огромное общебиологическое значение.

редпосылкой для открытия клетки явилось изобретение микроскопа и его использование для исследования биологических объектов.

Первый световой микроскоп сконструировали в Голландии в 1590 году два брата, Ганс и Захариус Янссены, шлифовальщики линз. Долгое время микроскоп использовался как забава, игрушка для развлечения знатных особ.

Важнейшим дополнением клеточной теории явилось утверждение знаменитого немецкого натуралиста Рудольфа Вирхова, что каждая клетка образуется в результате деления другой клетки.

В 1870-х годах были открыты два способа деления клетки эукариот, впоследствии названные митоз и мейоз. Уже через 10 лет после этого удалось установить главные для генетики особенности этих типов деления. Было установлено, что перед митозом происходит удвоение хромосом и их равномерное распределение между дочерними клетками, так что в дочерних клетках сохраняется прежнее число хромосом. Перед мейозом число хромосом также удваивается, но в первом (редукционном) делении к полюсам клетки расходятся двухроматидные хромосомы, так что формируются клетки с гаплоидным набором, число хромосом в них в два раза меньше, чем в материнской клетке. Было установлено, что число, форма и размеры хромосом — кариотип — одинаково во всех соматических клетках животных данного вида, а число хромосом в гаметах в два раза меньше. Впоследствии эти цитологические открытия легли в основу хромосомной теории наследственности.

ЦИТОЛОГИЯ, наука о клетках – структурных и функциональных единицах почти всех живых организмов. В многоклеточном организме все сложные проявления жизни возникают в результате координированной активности составляющих его клеток. Задача цитолога – установить, как построена живая клетка и как она выполняет свои нормальные функции. Изучением клеток занимаются также патоморфологи, но их интересуют изменения, происходящие в клетках во время болезни или после смерти. Несмотря на то что учеными давно уже было накоплено немало данных о развитии и строении животных и растений, только в 1839 были сформулированы основные концепции клеточной теории и началось развитие современной цитологии.

Открытие клетки.

Создание клеточной теории.

Открытие протоплазмы.

Основные свойства живых клеток.

Изучение живых клеток пролило свет на их жизненно важные функции. Было установлено, что последние можно разбить на четыре категории: подвижность, раздражимость, метаболизм и размножение.

Подвижность проявляется в различных формах: 1) внутриклеточная циркуляция содержимого клетки; 2) перетекание, обеспечивающее перемещение клеток (например, клеток крови); 3) биение крошечных протоплазматических выростов – ресничек и жгутиков; 4) сократимость, наиболее развитая у мышечных клеток.

Раздражимость выражается в способности клеток воспринимать стимул и реагировать на него импульсом, или волной возбуждения. Эта активность выражена в наивысшей степени у нервных клеток.

Метаболизм включает все превращения вещества и энергии, протекающие в клетках.

Размножение обеспечивается способностью клетки к делению и образованию дочерних клеток. Именно способность воспроизводить самих себя и позволяет считать клетки мельчайшими единицами живого. Однако многие высокодифференцированные клетки эту способность утратили.

ЦИТОЛОГИЯ КАК НАУКА

В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли как важнейших единиц, обеспечивающих физическую основу наследственности и процесса развития.

Развитие новых методов.

Вначале при изучении деталей строения клеток приходилось полагаться главным образом на визуальное исследование мертвого, а не живого материала. Необходимы были методы, которые позволяли бы сохранять протоплазму, не повреждая ее, изготавливать достаточно тонкие срезы ткани, проходящие и через клеточные компоненты, а также окрашивать срезы, чтобы выявлять детали клеточного строения. Такие методы создавались и совершенствовались в течение всей второй половины 19 в. Совершенствовался и сам микроскоп. К числу важных достижений в его устройстве следует отнести: осветитель, расположенный под столиком, для фокусировки пучка света; апохроматический объектив для корректировки недостатков окрашивания, искажающих изображение; иммерсионный объектив, дающий более четкое изображение и увеличение в 1000 раз и более.

Закон генетической непрерывности.

В 1865 было установлено, что мужская половая клетка (сперматозоид, или спермий) представляет собой полноценную, хотя и высокоспециализированную клетку, а спустя 10 лет О.Гертвиг проследил путь сперматозоида в процессе оплодотворения яйцеклетки. И наконец, в 1884 Э. ван Бенеден показал, что в процессе образования как сперматозоида, так и яйцеклетки происходит модифицированное клеточное деление (мейоз), в результате которого они получают по одному набору хромосом вместо двух. Таким образом, каждый зрелый сперматозоид и каждая зрелая яйцеклетка содержат лишь половинное число хромосом по сравнению с остальными клетками данного организма, и при оплодотворении происходит просто восстановление нормального числа хромосом. В итоге оплодотворенная яйцеклетка содержит по одному набору хромосом от каждого из родителей, что является основой для наследования признаков и по отцовской, и по материнской линии. Кроме того, оплодотворение стимулирует начало дробления яйцеклетки и развитие нового индивида.

Представление о том, что хромосомы сохраняют свою идентичность и поддерживают генетическую непрерывность от одного поколения клеток к другому, окончательно сформировалось в 1885 (Рабль). Вскоре было установлено, что хромосомы качественно отличаются друг от друга по своему влиянию на развитие (Т.Бовери, 1888). Начали появляться также экспериментальные данные в пользу высказанной ранее гипотезы В.Ру (1883), согласно которой даже отдельные части хромосом влияют на развитие, структуру и функционирование организма.

Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое – что существует механизм передачи наследственных признаков, который находится в ядре, а точнее – в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.

Законы наследственности.

ДОСТИЖЕНИЯ СОВРЕМЕННОЙ ЦИТОЛОГИИ

Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь огромных успехов в изучении строения клетки. В разработке единой концепции физико-химических аспектов жизни цитология все больше сближается с другими биологическими дисциплинами. При этом ее классические методы, основанные на фиксации, окрашивании и изучении клеток под микроскопом, по-прежнему сохраняют практическое значение.

Цитологические методы используются, в частности, в селекции растений для определения хромосомного состава растительных клеток. Такие исследования оказывают большую помощь в планировании экспериментальных скрещиваний и оценке полученных результатов. Аналогичный цитологический анализ проводится и на клетках человека: он позволяет выявить некоторые наследственные заболевания, связанные с изменением числа и формы хромосом. Такой анализ в сочетании с биохимическими тестами используют, например, при амниоцентезе для диагностики наследственных дефектов плода. См. также ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ; НАСЛЕДСТВЕННОСТЬ.

Однако самое важное применение цитологических методов в медицине – это диагностика злокачественных новообразований. В раковых клетках, особенно в их ядрах, возникают специфические изменения, распознаваемые опытными патоморфологами. См. также РАК.

Читайте также: