Почему физика наука экспериментальная кратко

Обновлено: 03.07.2024

Физика – это область естествознания, это наука о простейших и наиболее общих природных законах, о материи, ее движении и структуре. В основе всего естествознания лежат законы физики.

Предмет и значение физики в современном мире

Физика – это наука о естествознании, в общем смысле слова является частью природоведения. Предметом ее изучения является материя, в виде полей и вещества, а также общие формы ее движения. Также к предмету изучения физики можно отнести фундаментальные природные взаимодействия, которые управляют движением материи.

Общими для всех материальных систем являются некоторые закономерности, которые называются физическими законами. Часто физику называют фундаментальной наукой, поскольку иные естественные науки (биология, химия, геология) описывают только конкретные классы материальных систем, которые подчиняются физическим законам.

Предмет изучения химии – атомы, вещества, что состоят из них, а также превращение одних веществ в другие. Химические свойства любого вещества определяются физическими свойствами молекул и атомов, которые описываются в таких разделах физики, как электромагнетизм, термодинамика и квантовая физика.

Физика тесно связывается с математикой, поскольку она представляет механизм, при помощи которого физические законы могут формулироваться максимально точно. Все физические законы практически всегда формулируются в виде уравнений. Причем в данном случае используются наиболее сложные разделы математики, нежели в других науках. И наоборот, потребностями физической науки стимулировалось развитие большинства областей математики.

Готовые работы на аналогичную тему

Значение физики в современном мире очень велико. Все, чем отличается нынешнее общество от общества прошлых столетий, возникло в результате применения физических открытий.

Исследования в сфере электромагнетизма привели к возникновению стационарных и мобильных телефонов. Благодаря открытиям термодинамики получилось создать автомобиль, а развитие электроники спровоцировало возникновение компьютерной техники. Фотоника дает возможность создать принципиально новые компьютеры и фотонную технику, которые стремительно замещают современную электронную технику и приспособления. А развитие газодинамики дало рождение самолетам и вертолетам.

Знание физических процессов, которые постоянно происходят в природе, углубляются и расширяются. Большая часть новых и современных открытий получает технико-экономическое применение, зачастую в промышленности.

Перед современными исследователями регулярно возникают новые задачи и загадки – всплывают явления, для объяснения которых необходимо разрабатывать новые физические теории. Несмотря на большой опыт приобретенных знаний, современная физика еще далека от того, чтобы объяснить все природные явления.

Общие научные основы методов физики разрабатываются в методологии науки и в теории познания.

Экспериментальная и теоретическая физика

В своей основе физика является экспериментальной наукой: все ее теории и законы опираются и основаны на опытных данных. Но, несмотря на это, именно новые теории – основная причина проведения новых экспериментов, в результате осуществления которых лежат новые открытия. Поэтому принято различать теоретическую и экспериментальную физику.

В основе экспериментальной физики лежит исследование явлений природы в тех условиях, которые были подготовлены заранее. В задачи данного вида физики входит обнаружение явлений, которые не были известны ранее, а также опровержение или подтверждение физических теорий. В физике большинство достижений были сделаны благодаря экспериментальному обнаружению физических явлений, которые не описываются существующими теориями.

Экспериментальное изучение фотографического эффекта стало одной из предпосылок создания квантовой механики.

Хотя научным рождением квантовой механики считается появление гипотезы Планка, который выдвинул ее для разрешения ультрафиолетовой катастрофы, что была парадоксом классической теоретической физикой излучения.

Задачами теоретической физики являются формулировка общих природных законов, объяснение их на основе различных природных явлений, а также прогнозирование неизведанных до сих пор процессов. Достоверность физической теории можно проверить экспериментально: если его результаты совпадают с прогнозами теории, то она считается адекватной и точно описывающей конкретное явление. При изучении каждого явления или процесса одинаково важны и теоретическая, и экспериментальная физика.

Прикладная физика

Физика с самого своего рождения имела огромное прикладное значение, она развивалась вместе с механизмами, машинами, которые человечество использовало для своих нужд. Физика часто применяется в инженерных науках, большинство физиков были изобретателями. Механика, как раздел физики, была тесно связана с сопротивлением материалов и с теоретической механикой, как с главными инженерными науками.

Термодинамика связана с конструированием тепловых двигателей и теплотехникой. Электричество напрямую связано с электроникой и электротехникой, для развития и становления которой были важны исследования в сфере физики твердого тела. Благодаря достижениям ядерной физики возникла ядерная энергия. Данный список можно продолжать долго.

Также физика имеет широкие междисциплинарные связи. На границе химии, физики и инженерных наук возникает и быстро развивается такая отрасль, как материаловедение. Химией используются инструменты и методы, что приводит к становлению двух исследовательских направлений: химической физики и физической химии.

Широких оборотов набирает биофизика, которая является областью исследований на границе между физикой и биологией, в которой все биологические процессы рассматриваются из атомарной структуры органических веществ. Геофизика изучает геологические явления и их физическую природу. Медицина применяет такие методы, как ультразвуковое исследование и рентгеновское облучение. Ядерный магнитный резонанс используется для диагностики, лазеры – для лечения глазных заболеваний, а ядерное облучение – в онкологии.

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 15 мая 2011.

Эксперимента́льная фи́зика — способ познания природы, заключающийся в изучении природных явлений в специально приготовленных условиях. В отличие от теоретической физики, которая исследует математические модели природы, экспериментальная физика призвана исследовать саму природу.

Именно несогласие с результатом эксперимента является критерием ошибочности физической теории, или более точно, неприменимости теории к нашему миру. Обратное утверждение не верно: согласие с экспериментом не может быть доказательством правильности (применимости) теории. То есть главным критерием жизнеспособности физической теории является проверка экспериментом.

В идеале, экспериментальная физика должна давать только описание результатов эксперимента, без какой-либо их интерпретации. Однако на практике это недостижимо. Интерпретация результатов более-менее сложного эксперимента неизбежно опирается на то, что у нас есть понимание, как ведут себя все элементы экспериментальной установки. Такое понимание, в свою очередь, не может не опираться на какие-либо теории. Так, эксперименты в ускорительной физике элементарных частиц — одни из самых сложных во всей экспериментальной физике — могут трактоваться как настоящее изучение свойств элементарных частиц лишь после того, как детально поняты (с помощью соответствующих теорий) механические и упругие свойства всех элементов детектора, их отклик на электрические и магнитные поля, свойства остаточных газов в вакуумной камере, распределение электрического поля и дрейф ионов в пропорциональных камерах, процессы ионизации вещества и т. д.1


теоретической физики, которая исследует математические модели природы, экспериментальная физика занимается исследованием самой природы.

Любое несогласие с результатом эксперимента является критерием ошибочности выводов физической теории, или неприменимости выдвинутой теории к нашему миру. Обратное утверждение не правильное: согласие с экспериментом не может быть доказательством правильности (применимости) теории. То есть главным критерием жизнеспособности физической теории является проверка экспериментом. Другими словами процесс познания — от простого созерцания к абстрактному мышлению и от него к практике [1] .

В идеале, экспериментальная физика должна давать только описание результатов эксперимента, без какой-либо их интерпретации. Однако на практике это недостижимо. Интерпретация результатов более-менее сложного эксперимента неизбежно опирается на то, что у нас есть понимание, как ведут себя все элементы экспериментальной установки. Такое понимание, в свою очередь, не может не опираться на какие-либо теории. Так, эксперименты в ускорительной физике элементарных частиц — одни из самых сложных во всей экспериментальной физике — могут трактоваться как настоящее изучение свойств элементарных частиц лишь после того, как детально поняты (с помощью соответствующих теорий!) механические и упругие свойства всех элементов детектора, их отклик на электрические и магнитные поля, свойства остаточных газов в вакуумной камере, распределение электрического поля и дрейф ионов в пропорциональных камерах, процессы ионизации вещества и т. д.

Содержание

Текущие эксперименты

Некоторые примеры важных экспериментальных проектов физики:

  • Тяжелый Коллайдер Иона - ускоритель, который исследует тяжелые ионы, типа золотых ионов (это - первый тяжелый коллайдер иона) и протонов при столкновении с электронами или позитронами и протонами. это расположено в инфракрасной области. Главными целями использования JWST будут исследования для понимания начальных стадий образования вселенной, формирования галактики так же как формирований звезд и планет и происхождения жизни.

Методы экспериментов

Экспериментальная физика использует два главных метода экспериментального исследования:

Физика — экспериментальная наука. В трудах Галилея, Ньютона и других исследователей утвердился ее основной метод: любое предсказание теории должно быть подтверждено опытом. В XVII, XVIII и XIX вв. одни и те же люди и проводили теоретический анализ, и сами проверяли свои выводы на опыте. Но в XX в. стремительное накопление знаний, развитие техники, все, что носит название научно-технической революции, привели к тому, что одному человеку стало не под силу и создавать теории, и ставить эксперименты.

Произошло разделение физиков на теоретиков и экспериментаторов (см. Теоретическая физика). Конечно, нет правил без исключений, и иногда теоретики ставят опыты, а экспериментаторы занимаются теорией. Но с каждым годом таких исключений становится все меньше.

Сейчас в руках экспериментаторов имеется сложная и мощная техника: ускорители, ядер-ные реакторы, техника сверхвысокого вакуума, глубокого охлаждения и, конечно, электроника. Она совершенно преобразила возможности опыта, и это можно проиллюстрировать на таком примере.

В начале нашего века Э. Резерфорд и его сотрудники регистрировали в своих экспериментах альфа-частицы с помощью экрана из сернистого цинка и микроскопа (см. Ядро атомное). При попадании каждой частицы на экран последний давал слабую вспышку света, которую можно было разглядеть в микроскоп. Перед началом опыта исследователям приходилось часами сидеть в темноте для обострения чувствительности глаз. Максимальное число импульсов, которое удавалось сосчитать, - было два-три в секунду. Через несколько минут глаза уставали.

А сейчас специальные электронные приборы — фотоумножители — в состоянии различить и превратить в электрические импульсы гораздо более слабые световые вспышки. Они успевают сосчитать десятки и сотни тысяч импульсов в секунду. И не только сосчитать. Специальные схемы, используя форму электрического импульса (повторяющего световой), дают информацию об энергии, заряде, даже о типе частицы. Эта информация запоминается и обрабатывается быстродействующими вычислительными машинами.

Следует отметить, что у экспериментальной физики двоякие отношения с техникой. С одной стороны, физика, открывая неизвестные еще области, такие, как электричество, атомная энергия, лазеры, постепенно осваивает их и передает в руки инженеров. С другой стороны, после того как техника создала соответствующие приборы и даже новые отрасли промышленности, экспериментальная физика начинает использовать эти приборы при постановке опытов. И это позволяет ей все глубже проникать в тайны материи.

Современные средства проведения эксперимента требуют участия уже целого коллектива экспериментаторов.

Экспериментальное исследование можно условно разбить на три части: подготовка, измерение, обработка разультатов.

Когда рождается идея опыта, на повестку дня становится возможность его осуществления, создания новой установки или переделки старой. На этой стадии необходимо проявить максимальную предусмотрительность.

«Я всегда придавал очень большое значение тому, как был задуман и поставлен опыт. Конечно, надо исходить из определенной, заранее продуманной идеи; но каждый раз, когда это только возможно, опыт должен оставлять максимальное число открытых окон для того, чтобы можно было наблюдать непредусмотренное явление, - писал выдающийся французский физик Ф. Жолио-Кюри.

При конструировании и изготовлении установки на помощь эскпериментатору приходят специализированные конструкторские бюро, мастерские, иногда и большие заводы. Широко используются готовые приборы и блоки. Тем не менее на долю физиков выпадает самая ответственная работа: создание тех узлов, которые являются уникальными и которые порой никогда и нигде еще не применялись. Поэтому выдающиеся физики-экспериментаторы всегда были и очень хорошими инженерами.

Когда установка собрана, приходит время проведения контрольных экспериментов. Их результаты служат для проверки работоспособности аппаратуры и снятия ее характеристик.

А потом начинаются основные измерения, которые иногда могут продолжаться очень долго. Своеобразный рекорд был поставлен при регистрации солнечных нейтрино — измерения продолжались 15 лет.

Обработка результатов тоже далеко не простое дело. Существуют области экспериментальной физики, в которых на обработке сосредоточен центр тяжести всего опыта, например на обработке снимков, полученных в пузырьковой камере. Камеры установлены на пути пучков крупнейших в мире ускорителей. В них на следе пролетевшей частицы образуется цепочка пузырьков. След становится видным и может быть сфотографирован. Камера "выдает" десятки тысяч фотографий в сутки.

Советским экспериментаторам есть чем гордиться. Перед революцией в России насчитывалось всего несколько десятков серьезно работающих физиков. Большинство из них проводили исследования в неприспособленных помещениях и с самодельными приборами. Поэтому открытия мирового класса, сделанные П. Н. Лебедевым (давление света), А. Г. Столетовым (исследования фотоэффекта), можно назвать настоящим подвигом.

Наша экспериментальная физика была заложена в трудных условиях первых лет Советской власти. Она создавалась усилиями таких ученых, как А. Ф. Иоффе, С. И. Вавилов и ряд других. Они были экспериментаторами, учителями, организаторами науки. Их ученики и ученики их учеников прославили отечественную физику. Излучение Вавилова — Черенкова (см. Вавилова—Черенкова эффект), сверхтекучесть, комбинационное рассеяние света, лазеры — перечисление только крупнейших открытий советских ученых может занять много страниц.

Развитие экспериментальной физики не похоже на гладкую и накатанную дорогу. Трудом многих людей накапливаются наблюдения, производятся опыты и расчеты. Но вот рано или поздно постепенный рост наших знаний претерпевает резкий скачок. Происходит открытие. Многое из того, к чему все так привыкли, представляется совсем в ином свете. И надо дополнять, переделывать, иногда создавать заново теорию, спешно производить новые эксперименты.

Поэтому многие выдающиеся ученые сравнивали путь науки с дорогой в горах. Она идет далеко не по прямой, заставляет путников подниматься по крутым склонам, иногда отступать назад, чтобы в конце концов достигнуть вершины. И тогда с побежденной высоты открываются новые вершины и новые пути.

Читайте также: