Почему двигательный анализатор является древнейшим из анализаторов кратко

Обновлено: 08.07.2024

совокупность чувствительных нервных образований, воспринимающих, анализирующих и синтезирующих импульсы, идущие от мышечно-суставного аппарата. Термин введён И. П. Павловым. Д. а., как и другие Анализаторы, состоит из цепи нервных клеток, начинающейся с рецепторов сухожилий, суставов и др. проприорецепторов (См. Проприорецепторы) и кончающейся группами нервных клеток в коре больших полушарий головного мозга. От проприорецепторов импульсы идут к первым нейронам Д. а., находящимся в межпозвонковых нервных узлах, далее — в спинной мозг и по его задним столбам — в продолговатый мозг, где расположены вторые нейроны Д. а. Волокна, выходящие из ядер продолговатого мозга, переходят на противоположную сторону, образуя перекрест, подымаются к зрительным буграм, где расположены третьи нейроны, и достигают коры головного мозга. Помимо этого пути, сигналы от опорно-двигательного аппарата могут достигать коры головного мозга и через ретикулярную формацию (См. Ретикулярная формация) и Мозжечок. Д. а. принадлежит ведущая роль в формировании и проявлении движений, он играет существенную роль в высшей нервной деятельности (См. Высшая нервная деятельность).

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое "Двигательный анализатор" в других словарях:

Двигательный Анализатор — нейрофизиологическая система, за счет работы которой осуществляется анализ и синтез сигналов, идущих от органов движения . Включает в себя: периферический отдел, состоящий из проприорецепторов, специфические проводящие нервные волокна, несущие… … Психологический словарь

двигательный анализатор — Категория. Вид анализатора. Специфика. Нейрофизиологическая система, за счет работы которой осуществляется анализ и синтез сигналов, идущих от органов движения. Поддерживает постоянный тонус мышц тела и обеспечивает координацию движений.… … Большая психологическая энциклопедия

Двигательный анализатор — нейрофизиологическая система, осуществляющая анализ и синтез сигналов, возникающих в органах движения. Состоит Д. а. из периферического отдела, специфических нервных волокон (чувствительных нервов, несущих нервные импульсы к головному мозгу),… … Словарь дрессировщика

ДВИГАТЕЛЬНЫЙ АНАЛИЗАТОР — нейрофизиологическая система, осуществляющая анализ и синтез сигналов, возникающих в органах движения человека. Д. а. состоит из периферического отдела, специфических нервных волокон, несущих нервные импульсы к головному мозгу, и соответствующих… … Энциклопедический словарь по психологии и педагогике

анализатор — нервный аппарат, осуществляющий функцию анализа и синтеза раздражителей, исходящих из внешней и внутренней среды организма. Понятие А. введено И. П. Павловым. А. состоит из трех частей: 1) периферический отдел рецепторы, преобразующие… … Большая психологическая энциклопедия

ДВИГАТЕЛЬНЫЙ (КИНЕСТЕЗИЧЕСКИЙ) АНАЛИЗАТОР — (англ. kinesthetic system) полимодальная сенсорная система, осуществляющая анализ и синтез рецепторной информации о движениях и положении тела и его частей; интегрирует сигналы от проприоцепторов, кожных рецепторов, вестибулярного аппарата (см … Большая психологическая энциклопедия

анализатор двигательный — нейрофизиологическая система, за счет работы коей ведется анализ и синтез сигналов, идущих от органов движения. Принимает участие в поддержании постоянного тонуса мышц тела и координации движений. Включает в себя: 1) периферический отдел,… … Большая психологическая энциклопедия

АНАЛИЗАТОР — (от греч. analysis – разложение, расчленение). Термин, введенный И. П. Павловым, для обозначения целостного нервного механизма, осуществляющего прием и анализ сенсорной информации. Орган, обеспечивающий образование ощущений и восприятий. Состоит… … Новый словарь методических терминов и понятий (теория и практика обучения языкам)

Анализатор — ( греч. analysis разложение, расчленение) орган чувствительности, который образуют а) периферические рецепторы, воспринимающие конфигурации энергии внутренних и внешних стимулов; б) проводящие центростремительные (или афферентные) нервные пути,… … Энциклопедический словарь по психологии и педагогике

АНАЛИЗАТОР КИНЕСТЕТИЧЕСКИЙ — [от греч. kinesis движение] сенсорный (чувствительный) отдел двигательного анализатора (см. Анализатор двигательный) … Психомоторика: cловарь-справочник

Двигательный анализатор является древнейшим потому что процессе исторического развития животного мира нервные и мышечные клетки образовались почти одновременно.

Двигательный анализатор является древнейшем из анализаторов потому что нервные и мышечные клетки образовались почти одновременно

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Мир человека наполнен звуками. Слушая и воспринимая звуки, человек узнаёт о том, что вокруг него происходит, общается с людьми, чувствует опасность, оценивает расстояния, наслаждается музыкой. Человек также постоянно ощущает своё положение в пространстве.

СТРОЕНИЕ ОРГАНА СЛУХА. Звук – это колебания воздуха. Наш орган слуха улавливает колебания частотой 16–20 тыс. в секунду. Путь, который проходит звук в ухе, значительно сложнее, чем путь луча света в глазу.

Орган слуха подразделяют на наружное, среднее и внутреннее ухо.

Наружное ухо включает ушную раковину и наружный слуховой проход. Ушная раковина приспособлена для улавливания звуков, у человека она неподвижная. Слуховой проход соединяет ушную раковину со средним ухом. Наружное ухо отделено от среднего барабанной перепонкой, которая преобразует звуковые волны в механические колебания и передаёт их в среднее ухо.

Среднее ухо находится в толще височной кости и представляет собой узкую полость (1–2 см 3 ), в которой расположены три слуховые косточки. Полость среднего уха (барабанная полость) продолжается в слуховую трубу, которая открывается в глотку. Это позволяет уравнивать давление в полости среднего уха с атмосферным, благодаря чему барабанная перепонка не искажает звуковые колебания.

Слуховые косточки – молоточек, наковальня и стремечко – самые маленькие косточки нашего тела, их масса всего около 0,5 г. Они образуют систему рычагов, которая в 50 раз усиливает слабые колебания барабанной перепонки и передаёт их во внутреннее ухо.

Положение чувствительных клеток и покровной мембраны

Внутреннее ухо представляет собой сложную систему тонких изогнутых каналов и полостей, расположенных в толще височных костей. Внутри этого костного лабиринта заключён перепончатый лабиринт, повторяющий форму костного. Все полости лабиринта заполнены жидкостью. В лабиринте находится сразу два органа: орган слуха и орган равновесия – вестибулярный аппарат. Функцию слуха выполняет улитка – спирально завитая часть лабиринта. Другая его часть – костное преддверие и три полукружных канала – отвечает за равновесие, определяет положение тела в пространстве.

Улитка представляет собой спирально закрученный костный канал длиной 3,5 см, образующий 2,5 оборота. Две мембраны, идущие вдоль всей улитки, делят её полость на три параллельных канала. Нижнюю мембрану называют основной, на ней находится кортиев орган – рецепторные клетки с многочисленными чувствительными волосками. Волоски выступают в средний канал улитки, заполненный жидкостью – эндолимфой. Над ними в виде карниза нависает идущая вдоль улитки вторая мембрана – покровная. В двух других каналах улитки (верхнем и нижнем) находится перилимфа – жидкость, сходная по составу с лимфой и плазмой крови.

Её колебания вызывают движение жидкости в улитке, она, в свою очередь, заставляет колебаться базальную мембрану. При движении волоконец волоски рецепторных клеток касаются покровной мембраны. В рецепторах возникает возбуждение, которое по слуховому нерву в конечном итоге передаётся в головной мозг, где через средний мозг и промежуточный мозг возбуждение попадает в слуховую зону коры больших полушарий, расположенную в височных долях. Здесь происходит окончательное различение характера звука, его тона, ритма, силы, высоты и, наконец, его смысла.

ОРГАН РАВНОВЕСИЯ. Большинство животных имеют специальные органы равновесия. Они могут быть простыми, как у некоторых раков. Эту функцию у них выполняет отолитовый орган; находящиеся в нём песчинки раздражают чувствительные клетки, и благодаря этому рак ощущает положение своего тела в пространстве.

У человека функцию органа равновесия (его ещё называют вестибулярным аппаратом) выполняет часть внутреннего уха – это два маленьких мешочка (преддверие) и три полукружных канала. Каналы представляют собой кольцевидно изогнутые трубки, лежащие в трёх взаимно перпендикулярных плоскостях. Полости преддверия и полукружных каналов заполнены жидкостью.

В стенках полостей полукружных каналов располагаются рецепторы, их строение сходно с чувствительными волосковыми рецепторами органа слуха. В стенках мешочков преддверия находятся мелкие кристаллики углекислого кальция.

В конце каждого полукружного канала есть расширение (ампула), в котором находится ампулярный гребешок – вырост, в состав которого входят чувствительные волосковые клетки.

Механизм работы вестибулярного аппарата довольно прост. Когда голова человека находится в вертикальном положении, кристаллики, расположенные в зоне рецепторов преддверия внутреннего уха, определённым образом давят на волоски чувствительных клеток. При повороте головы вправо или влево ампулярные гребешки в полукружных каналах смещаются, соответственно меняется и давление на чувствительные клетки – то с правой стороны, то с левой.

Давление кристалликов и наклон гребешков вызывают возбуждение рецепторов. Возникшие нервные импульсы проводятся в головной мозг (средний мозг, мозжечок, кору полушарий большого мозга). Из мозга ответные импульсы поступают к различным группам скелетных мышц. Происходит их рефлекторное сокращение, и равновесие тела, если оно было нарушено, восстанавливается.

Вестибулярный аппарат постоянно информирует центральную нервную систему о положении тела (головы) в пространстве.

Орган слуха состоит из наружного, среднего и внутреннего уха. Наружное ухо улавливает звуковые колебания и направляет их в среднее ухо. Система слуховых косточек передаёт звуковые колебания дальше – во внутреннее ухо. Колебания жидкости в улитке вызывают колебания базальной мембраны и касания волосковых клеток покровной мембраны, что приводит к раздражению соприкасающихся с ней рецепторов.

Возникшее возбуждение передаётся в слуховую зону полушарий головного мозга, где происходит различение звука.

Часть внутреннего уха – вестибулярный аппарат выполняет функцию органа равновесия.

Кожно-мышечная чувствительность. Обоняние. Вкус

МЫШЕЧНОЕ ЧУВСТВО. Закройте глаза, сосредоточьтесь. Теперь опишите, в каком состоянии находится ваше тело. Да, вы чувствуете, что стоите или лежите, вытянута или согнута ваша рука или нога. С закрытыми глазами вы можете коснуться рукой любой части вашего тела. Всё дело в том, что от рецепторов мышц, сухожилий, суставных капсул, связок постоянно идут импульсы, информирующие головной мозг о состоянии органов опорно-двигательного аппарата. При сокращении или растяжении мышц в специальных рецепторах возникает возбуждение, которое через средний и промежуточный отделы головного мозга поступает в двигательную зону коры больших полушарий, а именно в переднюю центральную извилину лобной доли. Двигательный анализатор – древнейший из анализаторов, так как нервные и мышечные клетки развивались у животных почти одновременно.

ТАКТИЛЬНЫЙ АНАЛИЗАТОР. Осязание – это комплекс ощущений, возникающих при раздражении рецепторов кожи. Рецепторы прикосновения (тактильные) бывают двух видов: одни из них очень чувствительны и возбуждаются при вдавливании кожи на руке всего на 0,1 мкм, другие – лишь при значительном давлении. В среднем на 1 см 2 приходится около 25 тактильных рецепторов. Они разбросаны по телу очень неравномерно: например, в коже, покрывающей голень, на 1 см 2 находится около 10 рецепторов, а на такой же площади кожи большого пальца – около 120 таких рецепторов. Очень много рецепторов прикосновения на языке и ладонях. Кроме того, к прикосновениям чувствительны волоски, покрывающие 95 % нашего тела. У основания каждого волоска находится тактильный рецептор. Информация от всех этих рецепторов собирается в спинном мозге и по проводящим путям белого вещества поступает в ядра таламуса, а оттуда – в высший центр тактильной чувствительности – область задней центральной извилины коры больших полушарий.

Рецепторы давления и рецепторы, расположенные в мышцах и сухожилиях, помогают нам ориентироваться в пространстве

Кожные рецепторы и соответствующие ощущения

Кроме рецепторов прикосновения, в коже расположены рецепторы, чувствительные к холоду и теплу. Холодовых рецепторов на теле человека около 250 тыс., тепловых гораздо меньше – около 30 тыс. Эти рецепторы обладают избирательностью: они способны различать только тот сигнал, на который настроены, т. е. или тепло, или холод. Как и другие ощущения, осязание формируется у человека не сразу. Прикосновение горячим или острым предметом младенец чувствует с первых дней жизни, но, по-видимому это – болевое ощущение. А вот на слабое прикосновение к коже он начинает реагировать только через несколько недель.

ОБОНЯТЕЛЬНЫЙ АНАЛИЗАТОР. Обоняние обеспечивает восприятие запахов. Обонятельные рецепторные клетки расположены в слизистой оболочке верхней части носовой полости. Их около 100 млн. Каждая из этих клеток имеет множество коротких обонятельных волосков, которые выходят в полость носа. Именно с поверхностью этих волосков и взаимодействуют молекулы пахучих веществ. Общая площадь, занимаемая обонятельными рецепторами, составляет у человека 3–5 см 2 (для сравнения: у собаки – около 65 см 2 , у акулы – 130 см 2 ). Чувствительность обонятельных волосков у человека не очень велика. Считается, что обоняние собаки приблизительно в 15–20 раз острее, чем у человека.

Передача обонятельных и вкусовых раздражений в головной мозг

ВКУСОВОЙ АНАЛИЗАТОР. Периферический отдел вкусового анализатора – это вкусовые рецепторные клетки. Большая часть их расположена в эпителии языка. Кроме того, вкусовые рецепторы расположены на задней стенке глотки, мягком нёбе и надгортаннике. Рецепторные клетки объединены во вкусовые почки, которые собраны в три вида сосочков: грибовидные, желобовидные и листовидные.

Вкусовая почка имеет форму луковицы и состоит из опорных и рецепторных клеток. Почки не достигают поверхности слизистой оболочки, они заглублены и связаны с ротовой полостью небольшим каналом – вкусовой порой. Непосредственно под порой находится небольшая камера, в которую выступают микроворсинки рецепторных клеток. Вкусовые рецепторы реагируют только на растворённые в воде вещества, нерастворимые вещества вкуса не имеют. Человек различает четыре вида вкусовых ощущений: солёное, кислое, горькое, сладкое. Больше всего рецепторов, восприимчивых к кислому и солёному вкусу, расположено по бокам языка, к сладкому – на кончике языка, к горькому – на корне языка. Каждая рецепторная клетка наиболее чувствительна к определённому вкусу.

Вкусовые зоны языка

Когда пища оказывается во рту, она растворяется в слюне, и этот раствор попадает в полость камеры, воздействуя на рецепторы. Если рецепторная клетка реагирует на данное вещество, она возбуждается. От рецепторов информация о вкусовых раздражителях в виде нервных импульсов по волокнам языкоглоточного и частично лицевого и блуждающего нервов поступает в средний мозг, ядра таламуса и, наконец, на внутреннюю поверхность височных долей коры больших полушарий, где расположены высшие центры вкусового анализатора.

В определении вкуса, помимо вкусовых ощущений, участвуют обонятельные, температурные, тактильные, а иногда даже и болевые рецепторы (если в рот попадёт едкое вещество). Совокупность всех этих ощущений и определяет вкус пищи.

Рядом со вкусовыми сосочками находятся железы, выделяющие жидкость, которая постоянно омывает сосочки. Поэтому вкусовые ощущения сохраняются недолго, и вскоре человек способен воспринимать новые ощущения.

• Часть нервных импульсов от обонятельного эпителия поступает не в височные доли коры, а в миндалины – ядра, расположенные в глубине височных долей и являющиеся частью лимбической системы. В этих структурах находятся также центры тревоги и страха. Обнаружены такие вещества, запах которых способен вызывать у людей ужас, запах же лаванды, напротив, успокаивает, делая людей на время более добродушными. Вообще, любой незнакомый запах должен вызывать неосознанную тревогу, ведь для наших далёких предков это мог быть запах человека-врага или хищного животного. Вот нам и передалась по наследству такая способность – реагировать на запахи эмоциями. Запахи прекрасно запоминаются и способны пробуждать эмоции давно забытых дней, как приятные, так и неприятные.

• Признаки того, что младенец способен различать запах, начинают проявляться к концу первого месяца жизни, но какого-либо предпочтения определённым ароматам малыш сначала не оказывает.

• Вкусовые ощущения формируются у человека раньше всех других. Даже новорождённый младенец способен отличить материнское молоко от воды.

• Вкусовые рецепторы – самые короткоживущие чувствительные клетки организма. Продолжительность жизни каждой из них – около 10 дней. После гибели рецепторной клетки из базальной клетки почки формируется новый рецептор. У взрослого человека 9–10 тыс. вкусовых почек. С возрастом часть их отмирает.

• Боль – это неприятные ощущения, которые свидетельствуют о повреждении организма или об угрозе этого вследствие травмы или болезни. Боль воспринимается разветвлёнными окончаниями особых нервов. Таких окончаний в коже человека не менее миллиона. Кроме того, запредельно сильное воздействие на любой рецептор (зрительный, слуховой, тактильный и др.) приводит к формированию в головном мозге болевого ощущения. Высший болевой центр находится в таламусе, и именно там формируется ощущение боли. Если стукнуть молотком по пальцу, то сигнал от болевых окончаний и других рецепторов направится в ядра таламуса, в них боль возникнет и будет спроецирована на то место, по которому стукнул молоток. Формирование болевых ощущений очень сильно зависит от эмоционального состояния и уровня интеллекта человека. Например, люди пожилого и среднего возраста легче переносят боль, чем молодые и тем более дети. Интеллигентные люди всегда более сдержанны во внешнем проявлении боли. По-разному относятся к страданиям и люди различных рас и народов. Так, жители Средиземноморья реагируют на болевые воздействия гораздо сильнее, чем немцы или голландцы.

Оценивать силу боли вряд ли можно объективно: уж очень различается чувствительность к боли у разных людей. Она может быть повышенной, пониженной и даже совсем отсутствовать. Вопреки преобладающему мнению, мужчины гораздо терпеливее женщин. Повышенная болевая чувствительность женщин определяется теми гормонами, которые вырабатывает их организм. Но в период беременности, особенно в её конце, болевая чувствительность значительно снижается для того, чтобы женщина меньше страдала в процессе родов.

• В настоящее время в арсенале медиков имеются очень хорошие длительно действующие обезболивающие лекарства – анальгетики. Местные анальгетики надо ввести туда, где возникает боль, например в область удаляемого зуба. Такие лекарства блокируют проведение импульсов по болевым путям в мозг, но действуют они не очень долго. Для общей анестезии приходится погружать человека в бессознательное состояние при помощи особых веществ. Самыми лучшими блокаторами боли являются вещества, сходные с морфином. Но, к сожалению, их использование не может быть широким, так как все они приводят к возникновению наркотической зависимости.

Проверьте свои знания

1. Что такое мышечное чувство? Почему двигательный анализатор является древнейшим из анализаторов?

2. Почему при нарушении мышечного чувства человек не может передвигаться с закрытыми глазами?

3. Какую информацию мы получаем с помощью осязания? В какой части тела осязательных рецепторов особенно много?

4. Почему человек ощупывает предмет руками, чтобы лучше изучить его?

5. В каком состоянии должно находиться вещество, чтобы человек почувствовал его вкус; запах?

6. Где расположен орган обоняния? Как возникает ощущение запаха?

7. Каковы функции органа вкуса? Как возникает ощущение вкуса?

8. Где расположены вкусовые рецепторы? Почему, дотронувшись до пищи только кончиком языка, невозможно определить её вкус?

9. Почему во время сильного насморка пища кажется безвкусной?

При помощи мышечного чувства человек ощущает положение частей своего тела в пространстве. Вкусовой анализатор защищает человека от наличия в пище вредных веществ. Обонятельный анализатор принимает участие в определении качества пищи, воды, воздуха.

Строение двигательного анализатора. У человека периферичес­кий отдел анализаторов представлен нервно-мышечными веретена­ми, сухожильными рецепторами Гольджи и различными чувстви­тельными окончаниями связок, суставных сумок и фасций мышц.

Нервно-мышечное веретено состоит из нескольких мышечных волокон (от 2 до 12), которые покрыты соединительнотканной капсулой (рис. 75, А). длина веретена колеблется от 4 до 11 мм, диаметр — от 80 до 200 мкм. Число веретен в различных мышцах неодинаково, также различно количество их в одной и той же мышце разных организмов. Некоторые мышцы содержат более ста мышечных веретен. Мышцы с очень большой функциональной ак­тивностью обладают большим числом веретен (например, мелкие мышцы кисти). Веретена прикрепляются одним концом к волок­нам мышц, в которых они расположены, а другим — к сухожилию. Волокна мышечных веретен называют интрафузальными, в то время как волокна скелетных мышц получили название экстрафузальных. Интрафузальное мышечное волокно состоит из центральной расширенной части, которая называется ядерной сумкой и двух прилегающих к ней с обеих сторон полярных участков (рис. 75). В области ядерной сумки находится скопле­ние ядер. Полярные участки обладают поперечной ис-черченностью, как и экстрафузальные волокна. Переход­ную часть интрафузального волокна, в которой посте­пенно исчезает поперечная исчерченность, называют областью миотрубки. Вокруг ядерной сумки спирально закручиваются чувствительные нервные волокна, назы­ваемые первичными афферентами.

Волокна мышечных веретен обладают двигательной иннервацией. Моторные нервные волокна, идущие к мы­шечным веретенам, имеют малый диаметр (4—8 мкм). Они являются отростками у-мотонейронов спинного мозга. Число их составляет примерно '/3 от общего ко­личества эфферентных волокон, содержащихся в переднем корешке (рис. 76).



Рис. 75. Периферический отдел двигательного анализатора:

А — строение мышечного веретена: 1 — капсула; 2 — лимфатическое пространство; 3 — пучок интрафузальных волокон; 4 — вторичное нервное окончание; 5 — первичное нервное окончание; Б — структура интрафузального мышечного волокна: 1 — полярная область; 2 — экваториальная область; 3 — область миотрубки; 4 — ядерная сумка; 5 — экстрафузальное мышечное волокно.

Сухожильные рецепторы Гольджи по преимуществу расположены на сухожиль­ных концах мышц и обра­зованы нервными оконча­ниями афферентных воло­кон, относящихся к груп­пе Ар. Помимо мышечных веретен и сухожильных ре­цепторов Гольджи в мышце, в суставных сумках и связ­ках расположены рецепторы в форме пластинок, древо­видных разветвлений, сво­бодных окончаний аффе­рентных волокон.

Проводниковый отдел двигательного анализатора представлен волокнами, иду­щими в составе тех же пу­тей, что и от кожных рецеп­торов. Кроме того, рецептор-

ные образования двигательного аппарата связывают с головным мозгом спинно-мозжечковые пути, имеющие дополнительные пере­ключения в мозжечке. Корковый конец двигательного анализатора расположен в лобной и теменной долях, в передней и задней цент­ральных извилинах (соматосенсорная зона) и центральной борозде.

Функциональное значение двигательного анализатора.Мышеч­ные веретена расположены параллельно волокнам скелетных мышц. Этим объясняется тот факт, что в афферентах веретен электри­ческая активность возникает при растяжении мышцы. При растяже­нии мышцы на 10—100 мкм в первичных нервных окончаниях веретен возникает генераторный потенциал, который служит при­чиной возникновения распространяющегося возбуждения в соответ­ствующем афферентном волокне. Частота разряда импульсов, воз­растает с увеличением степени растяжения мышцы.

Установлено, что мышечные веретена обладают спонтанной активностью. В афферентах регистрируется электрическая актив­ность и при отсутствии растяжения. При сокращении мышцы эта активность исчезает (рис. 77). Время отсутствия активности при


Рис. 76. Эфферентная иннервация скелетной мышцы:

1 — сухожилие мышцы; 2 — сухожильные рецепторы Гольджи; 3 — свободные окончания; 4 — тельца Фатера-Пачини; 5 — аф­ферентные волокна; 6 — эфферентные во­локна; 7— мышечное веретено; 8— оконча­ния афферентных волокон.




Импульсы, возникающие в первичных афферентах, при сокра­щении интрафузальных волокон, имеют большое значение в под­держании тонуса нейронов спинного мозга и в осуществлении различных рефлекторных реакций. Они повышают возбудимость центров собственной мышцы и центров всех мышц-синергистов. В то же время они тормозят центры мышц-антагонистов. Так, при сильном сокращении мышцы-сгибателя вследствие растяжения мышцы-разгибателя усиливается активность ее веретен. Вслед­ствие этого меняется возбудимость мотонейронов: для сгибателей она понижается, а для разгибателей повышается. Так, в резуль­тате наличия обратной связи может уменьшаться интенсивность реакции, если она была чрезвычайно большой.

Сухожильные рецепторы Гольджи приходят в состояние воз­буждения и при растяжении мышцы, и при ее сокращении. Им­пульсы, приходящие от них в центральную нервную систему, ока­зывают тормозящее действие на мотонейроны мышцы, в которой они расположены (аутогенное торможение), и в то же время по­вышают возбудимость мотонейронов мышц-антагонистов.

Импульсы, поступающие в центральную нервную систему от всех рецепторных образований двигательного аппарата, несут информацию о степени сокращения и растяжения мышц, о вза­имном расположении костных рычагов, что необходимо для коорди­нированной мышечной деятельности, для оценки пространства.

отчетливо выявляется при заболе­ваниях, связанных с поражением чувствительных путей. В этом случае расстраивается коорди­нация движений, теряется способ­ность поддерживать определенное положение тела. Выпадение фун­кции двигательного анализатора частично восполняется деятельно­стью других анализаторов, глав­ным образом зрительного. Если больной с пораженным двигатель­ным аппаратом закроет глаза, он не сможет сохранять вертикальное положение.


Рис. 77. Характер импульсации при растяжении и сокращении мышцы:

/ — реакция сухожильного рецептора; 2 — реак­ция веретен; 3 — исходная величина растяже­ния мышцы; 4 — увеличение степени растяжения мышцы;, 5,7 — восстановление исходной длины мышцы; 6 — сокращения экстрафузальных во­локон.

Строение двигательного анализатора. У человека периферичес­кий отдел анализаторов представлен нервно-мышечными веретена­ми, сухожильными рецепторами Гольджи и различными чувстви­тельными окончаниями связок, суставных сумок и фасций мышц.

Нервно-мышечное веретено состоит из нескольких мышечных волокон (от 2 до 12), которые покрыты соединительнотканной капсулой (рис. 75, А). длина веретена колеблется от 4 до 11 мм, диаметр — от 80 до 200 мкм. Число веретен в различных мышцах неодинаково, также различно количество их в одной и той же мышце разных организмов. Некоторые мышцы содержат более ста мышечных веретен. Мышцы с очень большой функциональной ак­тивностью обладают большим числом веретен (например, мелкие мышцы кисти). Веретена прикрепляются одним концом к волок­нам мышц, в которых они расположены, а другим — к сухожилию. Волокна мышечных веретен называют интрафузальными, в то время как волокна скелетных мышц получили название экстрафузальных. Интрафузальное мышечное волокно состоит из центральной расширенной части, которая называется ядерной сумкой и двух прилегающих к ней с обеих сторон полярных участков (рис. 75). В области ядерной сумки находится скопле­ние ядер. Полярные участки обладают поперечной ис-черченностью, как и экстрафузальные волокна. Переход­ную часть интрафузального волокна, в которой посте­пенно исчезает поперечная исчерченность, называют областью миотрубки. Вокруг ядерной сумки спирально закручиваются чувствительные нервные волокна, назы­ваемые первичными афферентами.

Волокна мышечных веретен обладают двигательной иннервацией. Моторные нервные волокна, идущие к мы­шечным веретенам, имеют малый диаметр (4—8 мкм). Они являются отростками у-мотонейронов спинного мозга. Число их составляет примерно '/3 от общего ко­личества эфферентных волокон, содержащихся в переднем корешке (рис. 76).



Рис. 75. Периферический отдел двигательного анализатора:

А — строение мышечного веретена: 1 — капсула; 2 — лимфатическое пространство; 3 — пучок интрафузальных волокон; 4 — вторичное нервное окончание; 5 — первичное нервное окончание; Б — структура интрафузального мышечного волокна: 1 — полярная область; 2 — экваториальная область; 3 — область миотрубки; 4 — ядерная сумка; 5 — экстрафузальное мышечное волокно.

Сухожильные рецепторы Гольджи по преимуществу расположены на сухожиль­ных концах мышц и обра­зованы нервными оконча­ниями афферентных воло­кон, относящихся к груп­пе Ар. Помимо мышечных веретен и сухожильных ре­цепторов Гольджи в мышце, в суставных сумках и связ­ках расположены рецепторы в форме пластинок, древо­видных разветвлений, сво­бодных окончаний аффе­рентных волокон.

Проводниковый отдел двигательного анализатора представлен волокнами, иду­щими в составе тех же пу­тей, что и от кожных рецеп­торов. Кроме того, рецептор-

ные образования двигательного аппарата связывают с головным мозгом спинно-мозжечковые пути, имеющие дополнительные пере­ключения в мозжечке. Корковый конец двигательного анализатора расположен в лобной и теменной долях, в передней и задней цент­ральных извилинах (соматосенсорная зона) и центральной борозде.

Функциональное значение двигательного анализатора.Мышеч­ные веретена расположены параллельно волокнам скелетных мышц. Этим объясняется тот факт, что в афферентах веретен электри­ческая активность возникает при растяжении мышцы. При растяже­нии мышцы на 10—100 мкм в первичных нервных окончаниях веретен возникает генераторный потенциал, который служит при­чиной возникновения распространяющегося возбуждения в соответ­ствующем афферентном волокне. Частота разряда импульсов, воз­растает с увеличением степени растяжения мышцы.

Установлено, что мышечные веретена обладают спонтанной активностью. В афферентах регистрируется электрическая актив­ность и при отсутствии растяжения. При сокращении мышцы эта активность исчезает (рис. 77). Время отсутствия активности при


Рис. 76. Эфферентная иннервация скелетной мышцы:

1 — сухожилие мышцы; 2 — сухожильные рецепторы Гольджи; 3 — свободные окончания; 4 — тельца Фатера-Пачини; 5 — аф­ферентные волокна; 6 — эфферентные во­локна; 7— мышечное веретено; 8— оконча­ния афферентных волокон.

Импульсы, возникающие в первичных афферентах, при сокра­щении интрафузальных волокон, имеют большое значение в под­держании тонуса нейронов спинного мозга и в осуществлении различных рефлекторных реакций. Они повышают возбудимость центров собственной мышцы и центров всех мышц-синергистов. В то же время они тормозят центры мышц-антагонистов. Так, при сильном сокращении мышцы-сгибателя вследствие растяжения мышцы-разгибателя усиливается активность ее веретен. Вслед­ствие этого меняется возбудимость мотонейронов: для сгибателей она понижается, а для разгибателей повышается. Так, в резуль­тате наличия обратной связи может уменьшаться интенсивность реакции, если она была чрезвычайно большой.

Сухожильные рецепторы Гольджи приходят в состояние воз­буждения и при растяжении мышцы, и при ее сокращении. Им­пульсы, приходящие от них в центральную нервную систему, ока­зывают тормозящее действие на мотонейроны мышцы, в которой они расположены (аутогенное торможение), и в то же время по­вышают возбудимость мотонейронов мышц-антагонистов.

Импульсы, поступающие в центральную нервную систему от всех рецепторных образований двигательного аппарата, несут информацию о степени сокращения и растяжения мышц, о вза­имном расположении костных рычагов, что необходимо для коорди­нированной мышечной деятельности, для оценки пространства.

отчетливо выявляется при заболе­ваниях, связанных с поражением чувствительных путей. В этом случае расстраивается коорди­нация движений, теряется способ­ность поддерживать определенное положение тела. Выпадение фун­кции двигательного анализатора частично восполняется деятельно­стью других анализаторов, глав­ным образом зрительного. Если больной с пораженным двигатель­ным аппаратом закроет глаза, он не сможет сохранять вертикальное положение.


Рис. 77. Характер импульсации при растяжении и сокращении мышцы:

/ — реакция сухожильного рецептора; 2 — реак­ция веретен; 3 — исходная величина растяже­ния мышцы; 4 — увеличение степени растяжения мышцы;, 5,7 — восстановление исходной длины мышцы; 6 — сокращения экстрафузальных во­локон.

Читайте также: