По какой формуле можно определить объем тела кратко

Обновлено: 02.07.2024

Раньше для определения объемов геометрических тел традиционно использовались интегралы. Сегодня есть и другие подходы, которые подробно представлены в учебниках нашей корпорации. В одном из вебинаров Алексей Доронин рассказал о методах определения объема разных геометрических тел с помощью принципа Кавальери и других аксиом.

Объемы геометрических тел

Определение объема

Объем можно определить как функцию V на множестве многогранников, удовлетворяющую следующим аксиомам:

  • V сохраняется при движениях.
  • V удовлетворяет принципу Кавальери.
  • Если внутренности многогранников M и N не пересекаются, то V(M ∪ N) = V(M) + V(N).
  • Объем прямоугольного параллелепипеда V = abc.

Принцип Кавальери (итальянского математика, ученика Галилея). Если при пересечении двух тел плоскостями, параллельными одной и той же плоскости, в сечениях этих тел любой из плоскостей получаются фигуры, площади которых относятся как m : n, то объемы данных тел относятся как m : n.

В открытом банке заданий ЕГЭ есть много задач для отработки этого способа определения объема.

Примеры

Задача 1. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины.

Рисунок 1

Задача 2. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Рисунок 2

Задача 3. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Рисунок 3

Разберем, как можно вычислять объемы изучаемых в школе фигур.

Объем призмы

Рисунок 4

В представленном случае известны площадь основания и высота призмы. Чтобы найти объем, используем принцип Кавальери. Рядом с призмой (Ф2) поместим прямоугольный параллелепипед (Ф1), в основании которого — прямоугольник с такой же площадью, как у основания призмы. Высота у параллелепипеда такая же, как у наклонного ребра призмы. Обозначим третью плоскость (α) и рассмотрим сечение. В сечении виден прямоугольник с площадью S и, во втором случае, многоугольник тоже с площадью S. Далее вычисляем по формуле:


V Sосн h

Математика. Геометрия. Углублённый уровень. 11 класс. Задачник.

Задачник является Частью УМК для 10-11 классов, предназначенного для изучения предмета на углубленном уровне, и содержит более 1000 задач разной степени трудности, помогающих изучению и усвоению материала, изложенного в учебнике. Пособие соответствует Федеральному государственному образовательному стандарту среднего (полного) общего образования.

Объем пирамиды

Лемма: две треугольные пирамиды с равновеликими основаниями и равными высотами равновелики. Докажем это, используя принцип Кавальери.

Рисунок 5

Возьмем две пирамиды одинаковой высоты и заключим их между двумя параллельными плоскостями α и β. Обозначим также секущую плоскость и треугольники в сечениях. Заметим, что отношения площадей этих треугольников связаны непосредственно с отношением оснований.


V 1/V2 = 1 V1 = V2

Известно, что объем любой пирамиды равен одной трети произведения площади основания на высоту. Данной теоремой апеллируют довольно часто. Однако откуда в формуле объема пирамиды появляется коэффициент 1/3? Чтобы понять это, возьмем призму и разобьем ее на 3 треугольные пирамиды:

Рисунок 6

Vпризмы S h = 3V

Объем цилиндра

Рисунок 7

Возьмем прямой круговой цилиндр, в котором известны радиус основания и высота. Рядом поместим прямоугольный параллелепипед, в основании которого лежит квадрат. Рассмотрим:


Vцил = πh × R 2

Объем конуса

Рисунок 8

Конус лучше всего сравнивать с пирамидой. Например, с правильной четырехугольной пирамидой с квадратом в основании. Две фигуры с равными высотами заключаем в две параллельные плоскости. Обозначив третью плоскость, в сечении получаем круг и квадрат. Представления о подобиях приводят к числу π.

SФ1/SФ2 = π


Vконуса = 1/3 πR 2 h

Объем шара

Объем шара — одна из наиболее сложных тем. Если предыдущие фигуры можно продуктивно разобрать за один урок, то шар лучше отложить на последующее занятие.

Заключаем геометрические фигуры в две параллельные плоскости и смотрим, что получается в сечении. У цилиндра — круг с площадью πR 2 . Как известно, если внутренности геометрических тел не пересекаются, то объем их объединения равен сумме объемов. Пусть в конусе и в половине шара расстояние до плоскости сечения будет x. Радиус — тоже x. Тогда площадь сечения конуса — π ∙ x 2 . Расстояние от середины верха половины шара к краю сечения — R. Площадь сечения половины шара: π(R 2 — x 2 ).

Заметим, что: πR 2 + πR 2 — πR 2 = πR 2

Vцил = πR 2 × R = πR 3 = 1/3 R 3 π + Vшара

Vшара = 4/3 πR 3

Итак, чтобы найти объем нового, не изученного геометрического тела, нужно сравнить его с тем телом, которое наиболее на него похоже. Многочисленные примеры заданий из открытого банка задач показывают, что в работе с фигурами имеет смысл использовать представленные формулы и аксиомы.

- количественная характеристика пространства, занимаемого телом или веществом. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Объем куба

Куб

Объем куба равен кубу длины его грани.

Формула объема куба:

Объем призмы

призма

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

Объем параллелепипеда

параллелепипед

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

Объем прямоугольного параллелепипеда

прямоугольный параллелепипед

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

Объем пирамиды

пирамида

Объем пирамиды равен трети от произведения площади ее основания на высоту.

Формула объема пирамиды:

Объем правильного тетраэдра

правильный тетраэдр

Формула объема правильного тетраэдра:

Объем цилиндра

цилиндр

Объем цилиндра равен произведению площади его основания на высоту.

Формулы объема цилиндра:

где V - объем цилиндра,
So - площадь основания цилиндра,
R - радиус цилиндра,
h - высота цилиндра,
π = 3.141592.

Объем конуса

конус

Объем конуса равен трети от произведению площади его основания на высоту.

Формулы объема конуса:

где V - объем конуса,
So - площадь основания конуса,
R - радиус основания конуса,
h - высота конуса,
π = 3.141592.

Объем шара

шар

Объем шара равен четырем третьим от его радиуса в кубе помноженного на число пи.

Формула объема шара:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Объём — это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении тел трёхмерного евклидова пространства. Первые точные определения были даны Пеано (1887) и Жорданом (1892). Впоследствии понятие было обобщено Лебегом на более широкий класс множеств.

Все формулы объема геометрических тел

Объем куба

Куб

Объем куба равен кубу длины его грани.

Формула объема куба:

V = a 3

V - объем куба,
a - длина грани куба.

Объем призмы

Призма

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

V- объем призмы,
So - площадь основания призмы,
h - высота призмы.

Объем параллелепипеда

Параллелепипед

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

V- объем параллелепипеда,
So - площадь основания,
h - длина высоты.

Объем пирамиды

Пирамида

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

Формула объема пирамиды:

V - объем пирамиды,
So - площадь основания пирамиды,
h - длина высоты пирамиды.

Объем усеченной пирамиды

Усеченная пирамида

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

Формула объема усеченной пирамиды:

S1 - площадь верхнего основания усеченной пирамиды,
S2 - площадь нижнего основания усеченной пирамиды,
h - высота усеченной пирамиды.

Объем цилиндра

Цилиндр

Объем цилиндра равен произведению площади его основания на высоту.

Формула объема цилиндра:

V= π R 2 h

V= Sоh

V - объем цилиндра,
So - площадь основания цилиндра,
R - радиус цилиндра,
h - высота цилиндра,
π = 3.141592

Объем правильной треугольной пирамиды

Правильная треугольная пирамида

Объем правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC) на высоту h (OS).

Формула объема правильной треугольной пирамиды:

V - объем пирамиды;
h - высота пирамиды;
a - сторона основания пирамиды.

Объем конуса

Конус

Объем круглого конуса равен трети произведения площади основания S на высоту H.

Формула объема конуса:

Объем конуса

V - объем конуса;
R - радиус основания;
H - высота конуса;
I - длина образующей;
S - площадь боковой поверхности конуса.

Объем усеченного конуса

Усеченный конус

Объем усеченного конуса равен разности объемов двух полных конусов.

Формула объема усеченного конуса:

Объем усеченного конуса

V - объем усеченного конуса;
H - высота усеченного конуса;
R и R 2 - радиусы нижнего и верхнего оснований.

Объем тетраэдра

Тетраэдр

Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.

Формула тетраэдра:

V - объем тетраэдра;
a - ребро тетраэдра.

Объем шара

Шар

Объем шара равен четырем третьим от его радиуса в кубе перемноженного на число пи.

Формула объема шара:

V - объем шара;
R - радиус шара;
S - площадь сферы.

Объем шарового сегмента и сектора

Шаровой сегмент

Шаровой сектор


Шаровый сегмент - это часть шара отсеченная плоскостью. В данном примере, плоскостью ABCD.

Формула объема шарового сегмента:

Шаровый сегмент

R - радиус шара
H - высота сегмента
π ≈ 3,14

Формула объема шарового сектора:

h - высота сегмента
R - радиус шара
π ≈ 3,14

Объем прямоугольного параллелепипеда

Параллелепипед

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

V - объем прямоугольного параллелепипеда,
a - длина,
b - ширина,
h - высота.

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 27 человек(а).

Количество источников, использованных в этой статье: 11. Вы найдете их список внизу страницы.

Объем – это количество занимаемого телом пространства, а плотность равна массе тела, поделенной на его объем. [1] X Источник информации Прежде чем вычислить плотность тела, необходимо найти его объем. Если тело имеет правильную геометрическую форму, его объем можно рассчитать при помощи простой формулы. Объем измеряется обычно в кубических сантиметрах (см 3 ) или кубических метрах (м 3 ). Используя найденный объем тела, легко рассчитать его плотность. Для измерения плотности служат граммы на кубический сантиметр (г/см 3 ) или граммы на миллилитр (г/мл).

Читайте также: