План урока постулаты бора

Обновлено: 08.07.2024

Тип урока: изучение нового материала.

Цели урока:

  • развитие естественнонаучного миропонимания о строении вещества;
  • изучение механизма излучения и поглощения света атомами на основе теории строения атома Резерфорда–Бора;
  • создать необходимые и достаточные условия для проведения виртуального эксперимента: для исследования механизма излучения и поглощения энергии атомами;
  • показать историческую роль противоречия между моделями атомов Резерфорда, Бора и опытными фактами.

Задачи урока:

Предлагает составить синквейн.

Составляют синквейн по образцу

Актуализация знаний: слайд 1

  1. Что представляет собой планетарная модель атома?
  2. Назови элементы атома, обозначенные на рисунке стрелками.
  3. Атом какого химического элемента изображен на рисунке?
  4. В чем сущность гипотезы Макса Планка?
  5. Чем определяется энергия атома?

Теоретическое обоснование постулатов Бора.

Планетарная модель атома, предложенная Резерфордом, – это попытка применения классических представлений о движении тел к явлениям атомных масштабов. Эта попытка оказалась несостоятельной. Классический атом неустойчив. Электроны, движущиеся по орбите с ускорением, должны неизбежно упасть на ядро, растратив всю энергию на излучение электромагнитных волн (слайд 2),

Однако планетарная модель атома натолкнулась на принципиальные трудности:

  1. Согласно классической электродинамике, заряженная частица, движущаяся с ускорением, непрерывно излучает электромагнитную энергию. Поэтому электроны, двигаясь вокруг ядра, т. е. ускоренно, должны были бы непрерывно терять энергию на излучение. При этом они за ничтожную долю секунды потеряли бы всю свою кинетическую энергию и упали бы на ядро (приложение 1).
  2. Другая трудность, связанная также с излучением, состояла в следующем: если принять (в соответствии с классической электродинамикой), что частота излучаемого электроном света равна частоте колебаний электрона в атоме (т. е. числу оборотов, совершаемых им по своей орбите в одну секунду) или имеет кратное ей значение, то излучаемый свет по мере приближения электрона к ядру должен был бы непрерывно изменять свою частоту, и спектр излучаемого им света должен быть сплошным. Но это противоречит опыту. Атом излучает световые волны вполне определённых частот, типичных для данного химического элемента, и характеризуется спектром, состоящим из отдельных спектральных линий - линейчатым спектром. В линейчатых спектрах элементов был экспериментально установлен ряд закономерностей, первая из которых была открыта швейцарским учёным И. Бальмером (1885) в спектре водорода.

Следующий шаг в развитии представлений об устройстве атома сделал в 1913 году выдающийся датский физик Н. Бор. Проанализировав всю совокупность опытных фактов, Бор пришел к выводу, что при описании поведения атомных систем следует отказаться от многих представлений классической физики. Он сформулировал постулаты, которым должна удовлетворять новая теория о строении атомов.

Первый постулат Бора (постулат стационарных состояний) гласит: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает.

ВложениеРазмер
urok_11_kl.zip 1.12 МБ

Предварительный просмотр:

Конспект урока в 11 классе по теме:

Учитель физики МБОУ СОШ №36 Сергеева Е.Н.

Образовательная – организовать деятельность учащихся по изучению постулатов Бора, описывающих основные свойства атомов; раскрыть пути выхода из кризиса классической физики.

Развивающая – содействовать развитию у школьников умений использовать научные методы познания (наблюдение, гипотеза, эксперимент).

Воспитательная – познакомить с личностью Нильса Бора, его смелыми и революционными работами, положившими начало новой физической теории.

Тип урока: урок формирования новых знаний.

Вид урока: комбинированный урок.

1 Организация начала занятий.

2. Повторение изученного материала.

1. Какие физические явления подтверждают сложную структуру атома?

2. Опишите модель атома Томсона. Почему эта модель оказалась несостоятельной?

3. Расскажите о планетарной модели атома Резерфорда. Какие эксперименты послужили доказательством этой модели, в чем ее недостатки.

3. Изложение нового материала .

Материал урока будем оформлять в тетрадях, заполняя таблицу:

Опыты по рассеянию α-частиц показывают, что атом состоит из ядра и вращающихся вокруг него электронов. Данные электродинамики свидетельствуют, что движущиеся ускоренно заряды испускают электромагнитные волны, теряя энергию. Однако даже повседневные наблюдения говорят, что атомы устойчивы и, как правило, не излучают энергии. Возникло противоречие одних фактов другим.

Это противоречие устранил Н. Бор (1913г.), создав неклассическую модель атома, базирующуюся на следующих постулатах:

  1. Существуют особые стационарные состояния атома, находясь в которых атом не излучает энергию, при этом электроны в атоме движутся с ускорением. Каждому стационарному состоянию соответствует определенная энергия .
  2. Излучение света происходит при переходе атома из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией . Энергия излученного фотона равна разности энергий стационарных состояний:

На основе перечисленных фактов построена теоретическая модель водородоподобного атома. Для наглядного представления возможных энергетических состояний атомов используются энергетические диаграммы, на которых каждое стационарное состояние атома отмечается горизонтальной линией, называемой энергетическим уровнем. Состояние с минимальной энергией Е 1 называют основным состоянием. Все остальные состояния атома с энергиями Е 2 , Е 3 , ……, Е N называются возбужденными состояниями. Отрицательная энергия состояний атома водорода физически означает, что атом устойчив и для его разрушения (удаления электрона от ядра на расстояние, при котором взаимодействием с ядром можно пренебречь) необходимо совершить работу. Значение Е > 0 соответствует электрону, проходящему мимо ядра и уходящему в бесконечность. Атом поглощает энергию при переходе из низших энергетических состояний в высшие.

Переходы атома на второй энергетический уровень с верхних уровней образуют серию Бальмера, которая дает видимые частоты излучения (частота излучения соответствует частоте видимого света).

Объясняет планетарную модель Резерфорда.

Одним из следствий модели атома Бора является то, что при внешних воздействиях атомы могут получать не произвольные, а лишь вполне определенные значения энергии .

Частота излучения или поглощения равна: .

Радиусы орбит меняются дискретно числам n=1,2,… (правило

  • Эксперимент
  1. Экспериментальное исследование, непосредственно доказывающее существование стационарных состояний атомов осуществили Франк и Герц. Использовалась установка, схематически изображенная на рис. Стеклянный балон заполнен парами ртути при низком давлении и содержит катод, сетку,анод. Без ртути анодный ток растет непрерывно. При заполнении балона парами ртути на кривой появляются несколько максимумов и минимумов. Классическая физика не в состоянии объяснить этот экспериментальный факт.

Резкое уменьшение силы тока в цепи при достижении напряжения 4,9 В между катодом и сеткой заставляет сделать вывод, что электроны теряют кинетическую энергию равную 4,9 эВ в результате столкновения с атомами ртути. При меньших значениях энергии происходят только упругие столкновения электронов с атомами ртути, при которых электроны не передают им энергию.

Исходя из этих результатов можно сделать вывод, что разность энергий возбужденного стационарного состояния и основного стационарного состояния равнв 4,9 эВ. Этот вывод подтверждается еще одним эффектом. Пока напряжение между катодом и сеткой меньше 4,9 В, пары ртути не излучают. При достижении напряжения 4,9 В пары ртути испускают ультрафиолетовое излучение с частотой: ν = =1,2 ∙ 10 15 Гц.

  1. В видимой области спектра водорода находятся только четыре линии серии Бальмера, что подтверждается экспериментом.

Спектроскопические исследования в ультрафиолетовой и инфракрасной областях спектра обнаружили серии линий Лаймана, Пашена, Брэкета, Пфунда и ультрафиолетовую часть серии линий Бальмера. Значит теория Бора верно предсказывает реальные факты.

Ограниченность теории Бора .

Теория Бора водородоподобного атома прекрасно согласуется с экспериментом. Она показала неприменимость классической физики к внутриатомным явлениям: в микромире определяющими являются квантовые законы. Однако эта теория не отменяет классическую физику.

Н. Бором в 1923 г. был сформулирован принцип соответствия, согласно которому законы квантовой физики включают в себя законы классической физики.

По теории Бора электрон, движущийся по орбите не излучает электромагнитную волну; излучение происходит при переходе электрона с одной орбиты на другую.

Сближение результатов квантовой и классической теории происходит при больших значениях квантового числа n. В этом случае уровни энергий стационарных состояний сближаются настолько, что переход атома из одного квантового состояния в соседнее становится неотличим от процесса непрерывного излучения энергии.

Однако эксперимент показывает, что закономерности оптических спектров любого атома, в котором более чем один электрон, не могут быть получены, как следствия теории Бора. Правило квантования применимо не всегда. Представление об определенных орбитах, по которым движутся электроны в атоме, оказалось условным.

К недостаткам теории Бора относится ее противоречивость: эта теория и не классическая, и не квантовая, а то и другое вместе; она представляет собой переходный этап от классической к квантовой физике.

4. Закрепление изученного материала:

1. В каком состоянии энергия электрона меньше: в основном или в возбужденном?

2. Определите наименьшую энергию, которую надо сообщить атому водорода, чтобы перевести его в ионизированное состояние.

3. Сколько квантов с различной энергией может испустить атом водорода, если он находится в третьем энергетическом состоянии?

4. Какие новые закономерности микромира открыл Н. Бор? Почему они были сформулированы в виде постулатов? Чем они противоречат классическим представлениям?

5.Домашнее задание: § 94, 95.

1.Разумовский В.Г., Майер В.В. Физика в школе. Научный метод познания и обучение. М. : Гуманитар. изд. Центр ВЛАДОС, 2007.

2. Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика: Учеб. Для общеобразов. Учреждений 11 класс. М.: Просвещение, 2009.

3. Физика: Учебн. Для 11 кл. шк. и кл. с углубл. изуч. Физики /А.Т. Глазунов, О.Ф. Кабардин, А.Н. Малинин и др.; Под ред. А.А. Пинского. М.: Просвещение, 2000.

4. Сауров Ю.А. Физика. Поурочные разработки. 11 класс: пособие для учителей общеобразоват. учреждений. М.: просвещение, 2010.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Урок №70 Дата проведения 11___________

Цель урока: изучить квантовые постулаты Бора, модель атома водорода Бора, показать значение теории Бора в развитии физической науки.

1. Организационный момент.

2. Проверка домашнего задания и актуализация изучаемой темы.

Выберите один правильный ответ из предложенных вариантов

1. Принятая в настоящий момент в науке модель структуры атома обоснована опытами по.

растворению и плавлению твердых тел

химическому получению новых веществ

2.В опыте Резерфорда a-частицы рассеиваются.

электростатическим полем ядра атом

электронной оболочкой атомов мишени

гравитационным полем ядра атома

3.На рисунке показаны траектории a-частиц при рассеянии их на атоме, состоящем из тяжелого положительно заряженного ядра Z + и легкого облака электронов е - . Какая из траекторий является правильной?

hello_html_m18b37574.jpg

Ответ: 2

4.Какое утверждение соответствует планетарной модели атома?

hello_html_m32af99c2.jpg

hello_html_m32af99c2.jpg

hello_html_m32af99c2.jpg

hello_html_m32af99c2.jpg

5.На рисунке изображены схемы четырех атомов. Черными точками обозначены электроны. Атому соответствует схема.

6.Сравните массы частиц, фигурирующих в объяснении опыта Резерфорда: масса a-частицы – Мa, масса ядра атома золота МAu, масса электрона – Ме

Фронтальный опрос

– Какова была цель опыта Резерфорда? Опишите установку Резерфорда, ход эксперимента.

– Какие результаты получил Резерфорд?(Подавляющая часть альфа частиц проходила сквозь фольгу практически без отклонения или с отклонением на малые углы по отношению к направлению своего первоначального полёта. Но небольшая часть частиц отклонялась на значительные углы, достигающие почти 180°. Применив методы теории вероятностей, Резерфорд показал, что такие отклонения не могут быть следствием многократных столкновений альфа частиц с атомами, поэтому объяснить этот результат на основе модели атома Томсона невозможно.)

- Какие выводы сделал Резерфорд из опыта? (Существует атомное ядро, в котором сконцентрирована почти вся масса атома и весь положительный заряд. Вокруг ядра по замкнутым орбитам вращаются отрицательные частицы электроны.)

3.Изучение нового материала

Постулаты Бора.

Первым решился на это признание выдающийся физик XX в. датский ученый Нильс Бор. В 1913 г. он с помощью гениальной интуиции сформулировал в виде постулатов основные положения новой теории.

Изучая противоречия модели атома Резерфорда и законами классической физики, Нильс Бор выдвигает постулаты, определяющие строение атома и условия испускания и поглощения им электромагнитного излучения.

Постулаты Бора показали, что атомы подчиняются законам микромира.

I постулат (постулат стационарных состояний).

Атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает энергию, при этом электроны в атомах движутся с ускорением.

Атом может находиться в стационарном состоянии сколь угодно долго.

Стационарные состояния отличаются друг от друга различными орбитами, по которым движутся электроны в атоме. Набор электронных орбит, по сути, определяет стационарные состояния электрона в атоме. Стационарные состояния можно пронумеровать, присвоив им порядковый номер n=1, 2, 3, . причем каждое состояние обладает своей фиксированной энергией Еn

II постулат (правило частот).

Излучение света происходит при переходе атома из стационарного состояния с большей энергией E k в стационарное состояние с меньшей энергией E n . Энергия излучённого фотона равна разности энергий стационарных состояний:

Отсюда можно выразить частоту излучения:

hello_html_m743a4be3.jpg

При поглощении света, атом переходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией. При излучении атом переходит из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией.

hello_html_m582df29d.jpg

Второй постулат противоречит электродинамике Максвелла, т.к. частота излученного света свидетельствует не об особенностях движения электрона, а лишь об изменении энергии атома.

Модель атома водорода по Бору

Используя законы механики Ньютона и правило квантования, на основе которого определяются возможные стационарные состояния атома. Бор смог вычислить радиусы орбит электрона и энергии стационарных состояний атома. Минимальный радиус орбиты определяет размеры атома.

hello_html_m6f23ade9.jpg
hello_html_4cca4074.jpg

Обычно атом находится в основном состоянии (в этом состоянии атома электрон движется по первой стационарной орбите) с наименьшим значением энергии, равны:

hello_html_7b0767d.jpg

Второй постулат Бора позволяет вычислить (по известным значениям энергий стационарных состояний) частоты излучений атома водорода.

Теория Бора приводит к количественному согласию с экспериментом для значений этих частот. Все частоты излучений атома водорода составляют в своей совокупности ряд серий, каждая из которых образуется при переходах атома в одно из энергетических состояний со всех верхних энергетических состояний (состояний с большей энергией).

Переходы в первое возбужденное состояние (на второй энергетический уровень) с верхних уровней образуют серию, названную по имени швейцарского учёного серией И. Бальмера. Эти переходы изображены стрелками: красная, зеленая и две синие линии в видимой части спектра водорода (рис. V, 3 на цветной вклейке в учебнике) соответствуют переходам:Е3 - Е2 , Е4 - Е2 , Е5 - Е2 , Е6 - Е2.)

hello_html_m53d4ba45.jpg

И. Бальмер еще в 1885 г. на основе экспериментальных данных вывел простую формулу для определения частот видимой части спектра водорода.

R =109737, 31 (1/ см) – постоянная Ридберга.

Поглощение света — процесс, обратный излучению. Атом, поглощая свет, переходит из низших энергетических состояний в высшие состояния. При этом он поглощает излучение той же самой частоты, которую излучает, переходя из высших энергетических состояний в низшие.

Значение постулатов Бора

На основе двух постулатов и правила квантования Бор определил радиус атома водорода и энергии стационарных состояний атома. Это позволило вычислить частоты излучаемых и поглощаемых атомом водорода электромагнитных волн. Теория Бора позволяет описать не только атом водорода, но и ионизированные атомы (ионы) других элементов, вокруг ядер которых, как и в атоме водорода, вращается один электрон. Такие ионы называются водородоподобными. Примерами водородоподобных ионов могут служить однократно ионизированный атом гелия (Не+), двукратно ионизированный атом лития (Li + +) и т. д.

Теория Бора явилась важным этапом в развитии квантовых представлений, введение которых в физику требовало кардинальной перестройки механики и электродинамики. Такая перестройка была осуществлена в 20-е – 30-е годы XX века, когда были созданы новые физические теории квантовая механика и квантовая электродинамика.

Однако надо помнить то, что для атомов с большим числом электронов (больше 1) расчеты по теории Бора неприменимы. Представление Бора об определенных орбитах, по которым движутся электроны в атоме, оказалось весьма условным. На самом деле движение электрона в атоме очень мало похоже на движение планет или спутников. Физический смысл имеет только вероятность нахождения электрона в том или ином месте окрестности ядра.

hello_html_7053cf87.jpg

В настоящее время с помощью квантовой механики можно ответить практически на любой вопрос, относящийся к строению и свойствам электронных оболочек атомов. С количественным описанием электронных оболочек атомов вы познакомились в курсе химии.

4.Закрепление нового материала

- Какие затруднения вызвала модель Резерфорда для объяснения процессов излучения энергии атомами? ( Ядерная модель Резерфорда просто обосновывала экспериментальные данные, но не позволяла объяснить устройство атома исходя из классических законов физики).

- Сформулируйте первый постулат Бора.

- Сформулируйте и запишите второй постулат Бора.

- В чём заключаются противоречия между постулатами Бора и законами классической механики и классической электродинамики? (Как следует из постулатов, вопреки классической электродинамике электроны движутся по замкнутым орбитам и электромагнитные волны при этом не излучают.)

- При каком условии происходит излучение, а при каком условии происходит поглощение энергии атомом? (При поглощении света, атом переходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией. При излучении атом переходит из стационарного состояния с большей энергией, в стационарное состояние с меньшей энергией.)

- Каково значение теории Бора в развитии физической науки? (Теория Бора явилась важным этапом в развитии квантовых представлений о строении атома. Бор определил радиус атома водорода и энергии стационарных состояний атома. Это позволило вычислить частоты излучаемых и поглощаемых атомом водорода электромагнитных волн. Теория Бора позволяет описать не только атом водорода, но и водородоподобные ионы других элементов.)

Работа с учебником: найдите в учебнике на стр.278 изображение диаграммы энергетических уровней атома водорода. Вопросы:

- На рисунке12.4,стр278 изображена диаграмма энергетических уровней атома водорода. Энергия ионизации атома равна: а)0; б)3.4эВ; в)0.54эВ; г)13.6эВ ( 13.6эВ. Энергия ионизации - энергия, которую нужно затратить для перевода электрона из основного состояния в состояние с нулевой энергией. Исходя из диаграммы, в основном состоянии электрон имеет энергию Е = -13.6эВ.)

- Сколько квантов (с различной энергией) может испускать атом водорода, если электрон находится на третьем возбужденном уровне. (Рис12.4,стр278) (атом водорода может испускать кванты с тремя различными энергиями .Возможные переходы: n=3 ---n=1,n=2--- n=1, n=3--- n=2.)

Конспект урока по физике

Образовательная – организовать деятельность учащихся по изучению постулатов Бора, описывающих основные свойства атомов; раскрыть пути выхода из кризиса классической физики.

Развивающая – содействовать развитию у школьников умений использовать научные методы познания (наблюдение, гипотеза, эксперимент).

Воспитательная – познакомить с личностью Нильса Бора, его смелыми и революционными работами, положившими начало новой физической теории.

Тип урока: урок формирования новых знаний.

Вид урока: комбинированный.

1. Организация начала занятий.

2. Повторение изученного материала.

1. Какие физические явления подтверждают сложную структуру атома?

2. Опишите модель атома Томсона. Почему эта модель оказалась несостоятельной?

3. Расскажите о планетарной модели атома Резерфорда. Какие эксперименты послужили доказательством этой модели, в чем ее недостатки.

3. Изложение нового материала .

Опыты по рассеянию α-частиц показывают, что атом состоит из ядра и вращающихся вокруг него электронов. Данные электродинамики свидетельствуют, что движущиеся ускоренно заряды испускают электромагнитные волны, теряя энергию. Однако даже повседневные наблюдения говорят, что атомы устойчивы и, как правило, не излучают энергии. Возникло противоречие одних фактов другим.

Это противоречие устранил Н. Бор (1913г.), создав неклассическую модель атома, базирующуюся на следующих постулатах:


I. Существуют особые стационарные состояния атома, находясь в которых атом не излучает энергию, при этом электроны в атоме движутся с ускорением. Каждому стационарному состоянию соответствует определенная энергия .

II. Излучение света происходит при переходе атома из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией . Энергия излученного фотона равна разности энергий стационарных состояний:

-

На основе перечисленных фактов построена теоретическая модель водородоподобного атома. Для наглядного представления возможных энергетических состояний атомов используются энергетические диаграммы, на которых каждое стационарное состояние атома отмечается горизонтальной линией, называемой энергетическим уровнем. Состояние с минимальной энергией Е1 называют основным состоянием. Все остальные состояния атома с энергиями Е2, Е3, ……, Е N называются возбужденными состояниями. Отрицательная энергия состояний атома водорода физически означает, что атом устойчив и для его разрушения (удаления электрона от ядра на расстояние, при котором взаимодействием с ядром можно пренебречь) необходимо совершить работу. Значение Е > 0 соответствует электрону, проходящему мимо ядра и уходящему в бесконечность. Атом поглощает энергию при переходе из низших энергетических состояний в высшие.

Переходы атома на второй энергетический уровень с верхних уровней образуют серию Бальмера, которая дает видимые частоты излучения (частота излучения соответствует частоте видимого света).

Объясняет планетарную модель Резерфорда.


Одним из следствий модели атома Бора является то, что при внешних воздействиях атомы могут получать не произвольные, а лишь вполне определенные значения энергии .


Частота излучения или поглощения равна: .

Радиусы орбит меняются дискретно числам n =1,2,… (правило квантования).

Ограниченность теории Бора .

Теория Бора водородоподобного атома прекрасно согласуется с экспериментом. Она показала неприменимость классической физики к внутриатомным явлениям: в микромире определяющими являются квантовые законы. Однако эта теория не отменяет классическую физику.

Н. Бором в 1923 г. был сформулирован принцип соответствия, согласно которому законы квантовой физики включают в себя законы классической физики.

По теории Бора электрон, движущийся по орбите не излучает электромагнитную волну; излучение происходит при переходе электрона с одной орбиты на другую.

Сближение результатов квантовой и классической теории происходит при больших значениях квантового числа n . В этом случае уровни энергий стационарных состояний сближаются настолько, что переход атома из одного квантового состояния в соседнее становится неотличим от процесса непрерывного излучения энергии.

Однако эксперимент показывает, что закономерности оптических спектров любого атома, в котором более чем один электрон, не могут быть получены, как следствия теории Бора. Правило квантования применимо не всегда. Представление об определенных орбитах, по которым движутся электроны в атоме, оказалось условным.

К недостаткам теории Бора относится ее противоречивость: эта теория и не классическая, и не квантовая, а то и другое вместе; она представляет собой переходный этап от классической к квантовой физике.

4. Закрепление изученного материала:

1. В каком состоянии энергия электрона меньше: в основном или в возбужденном?

2. Определите наименьшую энергию, которую надо сообщить атому водорода, чтобы перевести его в ионизированное состояние.

3. Сколько квантов с различной энергией может испустить атом водорода, если он находится в третьем энергетическом состоянии?

4. Какие новые закономерности микромира открыл Н. Бор? Почему они были сформулированы в виде постулатов? Чем они противоречат классическим представлениям?

Читайте также: