От чего зависит период свободных колебаний в контуре кратко

Обновлено: 04.07.2024

При колебаниях происходит непрерывный процесс превращения энергии системы из одной формы в другую. В случае колебаний электромагнитного поля обмен может идти только между электрической и магнитной составляющей этого поля. Простейшей системой, где может происходить этот процесс, является колебательный контур.

  • Идеальный колебательный контур (LC-контур) — электрическая цепь, состоящая из катушки индуктивностью L и конденсатора емкостью C.

В отличие от реального колебательного контура, который обладает электрическим сопротивлением R, электрическое сопротивление идеального контура всегда равна нулю. Следовательно, идеальный колебательный контур является упрощенной моделью реального контура.

На рисунке 1 изображена схема идеального колебательного контура.


Энергии контура

Полная энергия колебательного контура


где We — энергия электрического поля колебательного контура в данный момент времени, С — электроемкость конденсатора, u — значение напряжения на конденсаторе в данный момент времени, q — значение заряда конденсатора в данный момент времени, Wm — энергия магнитного поля колебательного контура в данный момент времени, L — индуктивность катушки, i —значение силы тока в катушке в данный момент времени.

Процессы в колебательном контуре

Рассмотрим процессы, которые возникают в колебательном контуре.

Для выведения контура из положения равновесия зарядим конденсатор так, что на его обкладках будет заряд Qm (рис. 2, положение 1). С учетом уравнения \(U_=\dfrac\) находим значение напряжения на конденсаторе. Тока в цепи в этом момент времени нет, т.е. i = 0.

После замыкания ключа под действием электрического поля конденсатора в цепи появится электрический ток, сила тока i которого будет увеличиваться с течением времени. Конденсатор в это время начнет разряжаться, т.к. электроны, создающие ток, (Напоминаю, что за направление тока принято направление движения положительных зарядов) уходят с отрицательной обкладки конденсатора и приходят на положительную (см. рис. 2, положение 2). Вместе с зарядом q будет уменьшаться и напряжение u \(\left(u = \dfrac \right).\) При увеличении силы тока через катушку возникнет ЭДС самоиндукции, препятствующая изменению силы тока. Вследствие этого, сила тока в колебательном контуре будет возрастать от нуля до некоторого максимального значения не мгновенно, а в течение некоторого промежутка времени, определяемого индуктивностью катушки.

Заряд конденсатора q уменьшается и в некоторый момент времени становится равным нулю (q = 0, u = 0), сила тока в катушке достигнет некоторого значения Im (см. рис. 2, положение 3).

Далее сила тока становится равной нулю, а заряд конденсатора достигнет максимального значения Qm (Um) (см. рис. 2, положение 5).

И снова под действием электрического поля конденсатора в цепи появится электрический ток, но направленный в противоположную сторону, сила тока i которого будет увеличиваться с течением времени. А конденсатор в это время будет разряжаться (см. рис. 2, положение 6)до нуля (см. рис. 2, положение 7). И так далее.

Так как заряд на конденсаторе q (и напряжение u) определяет его энергию электрического поля We \(\left(W_=\dfrac>=\dfrac> \right),\) а сила тока в катушке i — энергию магнитного поля Wm \(\left(W_=\dfrac \right),\) то вместе с изменениями заряда, напряжения и силы тока, будут изменяться и энергии.


В этом уроке мы вспомним, какие колебания называются электромагнитными. Узнаем, какие электромагнитные колебания являются гармоническими. Выясним, от чего зависит период свободных колебаний в идеальном колебательном контуре. А также узнаем, как связаны между собой амплитуды колебаний заряда и тока при разрядке конденсатора через катушку.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Идеальный колебательный контур. Формула Томсона"

На прошлом уроке мы с вами познакомились с электромагнитными колебаниями. Напомним, что так называют периодические изменения со временем электрических и магнитных величин в электрической цепи.

Рассмотрев качественную сторону теории процессов в колебательном контуре, перейдём к её количественной стороне. Для этого рассмотрим идеальный колебательный контур, то есть контур, активное сопротивление которого пренебрежимо мало.

В таком контуре, как мы показали ранее, полная электромагнитная энергия в любой момент времени равна сумме энергий электрического и магнитного полей, и она не меняется с течением времени:


А раз энергия контура неизменная, то производная полной энергии по времени равна нулю:


Напомним, что в записанной формуле заряд и сила тока в цепи являются функцией времени.

Чтобы понять физический смысл этого уравнения, перепишем его так:


Из такой записи видно, что скорость изменения магнитного поля по модулю равна скорости изменения энергии электрического поля. А знак минус в формуле показывает на то, что увеличение энергии магнитного поля происходит за счёт убыли энергии поля электрического.

Вычислим производные в записанном уравнении, воспользовавшись для этого формулой вычисления производной сложной функции.


А теперь вспомним, что производная заряда по времени есть сила мгновенного тока (то есть сила тока в данный момент времени):


Поэтому предыдущее уравнение можно переписать так, как показано на экране:


Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому, как производная скорости по времени (то есть ускорение) есть вторая производная координаты по времени:


Перепишем предыдущее равенство с учётом этой поправки:



Данное уравнение аналогично уравнению, описывающему гармонические механические колебания:


Отсюда видно, что величина, обратная квадратному корню из произведения индуктивности и ёмкости, является циклической частотой свободных электрических колебаний:


Зная циклическую частоту колебаний, нетрудно найти и их период, то есть минимальный промежуток времени, через который процесс в колебательном контуре полностью повторяется:


Эта формула впервые была получена английским физиком Уильямом Томсоном 1853 году, и в настоящее время носит его имя.

Из формулы видно, что период колебательного контура определяется параметрами составляющих его элементов: индуктивностью катушки и ёмкостью конденсатора. Из формулы Томсона также следует, что, например, при уменьшении ёмкости или индуктивности период колебаний должен уменьшиться, а их частота — увеличиться и наоборот.

Но вернёмся к уравнению свободных электромагнитных колебаний в идеальном колебательном контуре. Его решением является уравнение, выражающее зависимость заряда конденсатора от времени:


В записанной формуле qm — это начальное (или амплитудное) значение заряда, сообщённому конденсатору. Из этой формулы следует, что заряд на конденсаторе изменяется со временем по гармоническому закону.

Если взять первую производную заряда конденсатора по времени, то мы получим уравнение, описывающее изменение силы тока в контуре:


Величина, равная произведению максимального заряда конденсатора и циклической частоты колебаний, является амплитудным значением силы тока:


Перепишем уравнение для силы тока с учётом последнего равенства, а также воспользовавшись формулой приведения:


Из такой записи хорошо видно, что сила тока в колебательном контуре также совершает гармонические колебания с той же частотой, но по фазе она смещена на π/2 относительно колебаний заряда.

Для закрепления материала, решим с вами такую задачу. Конденсатор ёмкостью 2 мкФ зарядили до напряжения 100 В, а затем замкнули на катушку с индуктивностью 5 мГн. Определите заряд конденсатора через 0,025π мс после замыкания.


В заключение отметим, что в реальных колебательных контурах всегда имеется активное сопротивление, поэтому часть энергии контура всегда превращается во внутреннюю проводников, которая выделяется в виде излучения. Кроме того, часть энергии теряется на перемагничивание сердечника и изменение поляризации диэлектрика. Поэтому полная энергия контура с течением времени уменьшается, в результате уменьшается и амплитуда колебаний. Следовательно, реальные электромагнитные колебания в контуре являются затухающими.

Колебательный контур — это электрическая цепь, содержащая индуктивность L , емкость С и сопротивление R , в которой могут возбуждаться электрические колебания .

Колебательный контур — это электрическая цепь, содержащая индуктивность L, емкость С и сопротивление R, в которой могут возбуждаться электрические колебания.

Колебательный контур — один из основных элементов радиотехнических систем. Различают линейные и нелинейные колебательные контуры. Параметры R, L и С линейного колебательного контура не зависят от интенсивности колебаний, а период колебаний не зависит от амплитуды.

При отсутствии потерь (R = 0) в линейном колебательном контуре происходят свободные гармонические колебания.

Для возбуждения колебаний в контуре конденсатор предвари­тельно заряжают от батареи аккумуляторов, сообщив ему энергию Wp, и переводят переключатель в положение 2.

Свободные электромагнитные колебания в колебательном контуре

После замыкания цепи конденсатор начнет разряжаться через катушку индуктивности, теряя энергию. В цепи появится ток, вызывающий переменное магнитное поле. Переменное магнитное поле, в свою очередь приводит к созданию вихревого электрического поля, пре­пятствующего току, в результате чего изменение тока происходит постепенно. По мере увеличения тока через катушку возрастает энергия магнитного поля Wм. Полная энергия W электромагнитного поля контура остается постоянной (при отсутствии сопротивления) и равной сумме энергий магнитного и электрического полей. Пол­ная энергия, в силу закона сохранения энергии, равна максимальной энергии электрического или магнитного поля:

Свободные электромагнитные колебания в колебательном контуре

,

где L — индуктивность катушки, I и Im — сила тока и ее максимальное значение, q и qm — заряд конденсатора и его максимальное значение, С — емкость конденсатора.

Процесс перекачки энергии в колебательном контуре между электрическим полем конденса­тора при его разрядке и магнитным полем, сосредоточенным в катушке, полностью аналогичен процессу превращения потенциальной энергии растянутой пружины или поднятого груза матема­тического маятника в кинетическую энергию при механических колебаниях последних.

Свободные электромагнитные колебания в колебательном контуре

Ниже приводится соответствие между механическими и электрическими величинами при колебательных процессах.

Колебательный контур — это устройство, в котором могут происходить свободные электромагнитные колебания.

Колебательный контур состоит из конденсатора и катушки индуктивности. Электроёмкость конденсатора — \(C\), индуктивность катушки — \(L\).

В колебательном контуре периодически происходит переход энергии электрического поля в энергию магнитного поля и наоборот.

На некоторое время с помощью переключателя зарядим конденсатор, замкнув его на источник тока ( рис. А ). Затем наш заряженный конденсатор подсоединим к катушке ( рис. Б ).

Зарядка.jpg

1 четверть.jpg

t 1 = T 4 . Заряженный конденсатор, подключённый к катушке, начнёт через неё разряжаться. Нижняя обкладка заряжена положительно. Разрядный ток, проходящий по катушке, создаст вокруг неё магнитное поле. Явление самоиндукции будет препятствовать резкому возрастанию тока через катушку, поэтому ток растёт постепенно и через некоторое время приобретает максимальное значение. В этот момент конденсатор будет полностью разряжен. Произошло превращение энергии электрического поля в энергию магнитного поля.

2 четверть.jpg

2t 1 = T 2 . Так как конденсатор разряжен, то в следующий момент времени ток должен мгновенно исчезнуть, но в результате самоиндукции, которая препятствует убыванию тока, он некоторое время поддерживается в цепи. Индукционный ток сонаправлен с уходящим током цепи и благодаря этому конденсатор заряжается, только заряд на обкладках поменяется на противоположный знак. Энергия магнитного поля перешла в энергию электрического поля.

Если рассматривать идеальную модель колебательного контура, который не имеет сопротивления, то энергия в нём не потратится, и конденсатор вновь зарядится до максимального значения. В реальности такого не бывает, потому что часть энергия уйдёт на преодоление сопротивления проводников и превратится в тепловую энергию. В реальном колебательном контуре в этот момент времени конденсатор зарядится уже не полностью.

3 четверть.jpg

4 четверть.jpg

За промежуток времени 4t 1 произошло одно полное колебание. Значит, 4t 1 \(=T\) , где \(T\) — период колебаний.

Уравнение, описывающее процессы в колебательном контуре

Есть колебательный контур, сопротивлением R которого можно пренебречь.


Уравнение, описывающее свободные электрические колебания в контуре, можно получить с помощью закона сохранения энергии.
Полная электромагнитная энергия W контура в любой момент времени равна сумме его энергий магнитного и электрического полей:


Полная энергия не меняется с течением времени, если сопротивление R контура равно нулю, тогда производная полной энергии по времени равна нулю.
Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:


После вычисления производных в уравнении, получается


Производная заряда по времени представляет собой силу тока в данный момент времени:



Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому как производная скорости по времени (ускорение) есть вторая производная координаты по времени.
Тогда основное уравнение, описывающее свободные электрические колебания в контуре:


Полученное уравнение ничем, кроме обозначений, не отличается от уравнения, описывающего колебания пружинного маятника.

Период свободных колебаний в контуре


Формула Томсона
В основном уравнении коэффициент представляет собой квадрат циклической частоты для свободных электрических колебаний:


Период свободных колебаний в контуре, таким образом, равен:


Эта формула называется формулой Томсона в честь английского физика У. Томсона (Кельвина), который ее впервые вывел.

Период свободных колебаний зависит от L и С.
При увеличении индуктивности L ток медленнее нарастает со временем и медленнее падает до нуля.
А чем больше емкость С, тем большее время требуется для перезарядки конденсатора.

Гармонические колебания заряда и тока.

Координата при механических колебаниях изменяется со временем по гармоническому закону:

Заряд конденсатора меняется с течением времени по такому же закону:

где
qm — амплитуда колебаний заряда.

Сила тока также совершает гармонические колебания:



где
Im = qmω0 — амплитуда колебаний силы тока.
Колебания силы тока опережают по фазе на колебания заряда.



Точно так же колебания скорости тела в случае пружинного или математического маятника опережают на колебания координаты (смещения) этого тела.

В действительности, из-за неизбежного наличия сопротивления электрической цепи, колебания будут затухающими.
Сопротивление R также будет влиять и на период колебаний, чем больше сопротивление, тем бо́льшим будет период колебаний.
При достаточно большом сопротивлении колебания совсем не возникнут.
Конденсатор разрядится, но перезарядки его не произойдет, энергия электрического и магнитного полей перейдет в тепло.

Электромагнитные колебания. Физика, учебник для 11 класса - Класс!ная физика

Читайте также: