Объясните почему рибосома перемещается по ирнк не плавно а прерывисто по триплетам кратко

Обновлено: 04.07.2024

Потому что информация об одной аминокислоте зашифрована одним триплетом. И если бы рибосома двигалась плавно, то триплетные значения смешались бы и синтезировались бы не те аминокислоты, которые нужны.

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

+

2 Смотреть ответы Добавь ответ +10 баллов


Ответы 2

+

В активном центре рибосомы размещаются два триплета иРНК и соответственно две тРНК. Рибосома перемещается по иРНК не плавно, а прерывисто, триплет за триплетом. На каждом шаге присоединяется новая аминокислота. Транспортные РНК перемещаются со своей аминокислотой к рибосоме и "примеряют" свой антикодон к очередному кодону иРНК, находящемуся в активном центре (комплементарные нуклеотиды хорошо подходят друг другу, между ними возникают водородные связи) . Если антикодон оказывается не комплементарным, то тРНК удаляется в цитоплазму к другим рибосомам. Если же он оказывается комплементарным, то тРНК присоединяется

Сергей Мамонтов - Биология. Общие закономерности. 9 класс

Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Описание книги "Биология. Общие закономерности. 9 класс"

Описание и краткое содержание "Биология. Общие закономерности. 9 класс" читать бесплатно онлайн.

Учебник соответствует Федеральному государственному образовательному стандарту основного общего образования, рекомендован Министерством образования и науки РФ и включен в Федеральный перечень учебников.

Большое количество красочных иллюстраций, разнообразные вопросы и задания, дополнительные сведения и любопытные факты, а также возможность параллельной работы с электронным приложением способствуют эффективному усвоению учебного материала.

3. Пластический обмен. Биосинтез белков

Вспомните!

АминокислотыНуклеотидыРибосомыГенетический код

Совокупность реакций биологического синтеза называют пластическим обменом (или ассимиляцией). Название данного вида обмена отражает его сущность: из простых веществ, поступающих в клетку извне, образуются вещества клетки.

Рассмотрим одну из важнейших форм пластического обмена – биосинтез белков. Как уже отмечалось, всё многообразие их свойств в конечном счёте определяется последовательностью аминокислот в белковой цепи. Множество отобранных эволюцией уникальных сочетаний аминокислот воспроизводится путём синтеза нуклеиновых кислот с последовательностью азотистых оснований, соответствующей последовательности аминокислот в белках. Каждой аминокислоте в полипептидной цепочке в молекуле ДНК соответствует комбинация из трёх нуклеотидов – триплет. Эта зависимость между триплетами оснований и аминокислотами называется генетическим кодом. В такой код входит 64 разных триплета – возможные сочетания трёх из четырёх азотистых оснований.

Одно из основных свойств кода – его специфичность. Один триплет всегда соответствует одной аминокислоте. Код универсален для всего живого – от микроорганизмов до человека.

Для того чтобы синтезировался белок, информация о последовательности аминокислот в его структуре должна быть доставлена к рибосомам – органоидам клетки, осуществляющим синтез белка. Для этого на одной из цепей молекулы ДНК синтезируется одноцепочечная молекула РНК, последовательность нуклеотидов которой точно соответствует (комплементарна) последовательности нуклеотидов матрицы – полинуклеотидной цепи ДНК. Так образуется информационная РНК (иРНК), которая затем перемещается в цитоплазму клетки (рис. 5).

В цитоплазме к одному из концов иРНК прикрепляются субъединицы рибосомы, и начинается синтез полипептида. Рибосома перемещается по молекуле иРНК не плавно, а прерывисто, триплет за триплетом (рис. 6).

По мере перемещения рибосомы по молекуле иРНК к полипептидной цепочке одна за другой пристраиваются аминокислоты, соответствующие триплетам иРНК. Точное соответствие аминокислоты коду триплета иРНК обеспечивается транспортной РНК. Для каждой аминокислоты существует своя тРНК, один из триплетов которой комплементарен строго определённому триплету иРНК. Точно так же каждой аминокислоте соответствует свой фермент, присоединяющий её к тРНК. После завершения синтеза полипептидная цепочка отделяется от матрицы – молекулы иРНК. Молекула иРНК может использоваться для синтеза полипептидов многократно, как и рибосома. В целом процесс перевода информации, заключённой в последовательности нуклеотидов в ДНК, в последовательность аминокислот в белке показан на рисунке 5.

Рис. 5. Схема биосинтеза белка (чёрной стрелкой обозначено направление движения рибосомы)

Рис. 6. Синтез полипептидной цепи на рибосоме: А, Б, В, Г – последовательные стадии трансляции

Описание синтеза белков дано здесь очень упрощённо. На самом деле этот процесс чрезвычайно сложен и связан с участием многих ферментов и затратой большого количества энергии.

Поразительная сложность системы биосинтеза и её высокая энергоёмкость обеспечивают высокую точность и упорядоченность синтеза полипептидов.

Вопросы для повторения и задания

1. Что такое ассимиляция?

3. Объясните, почему рибосома перемещается по иРНК не плавно, а прерывисто, по триплетам.

4. Где синтезируются рибонуклеиновые кислоты?

5. В какой части клетки происходит синтез белка?

6. Обсудите в классе, почему биосинтез белка считают одной из важнейших форм пластического обмена.

7. Приведите ещё примеры биологических реакций, которые можно отнести к пластическому обмену. Объясните свой выбор.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.

• Найдите в Интернете сайты, материалы которых могут служить дополнительным источником информации, раскрывающим содержание ключевых понятий параграфа.

4. Энергетический обмен. Способы питания

Вспомните!

БрожениеДыханиеНитрифицирующие бактерии

ФотосинтезХемосинтезФототрофыХемотрофы

Процессом, противоположным синтезу, является диссимиляция – совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют ещё энергетическим обменом клетки.

Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекуле органических соединений. В глюкозе количество потенциальной энергии, заключённой в связях между атомами С, Н и О, составляет 2800 кДж на 1 моль (т. е. на 180 г глюкозы). При расщеплении глюкозы энергия выделяется поэтапно при участии ряда ферментов:

С6Н12O6 + 6O2 → 6Н2O + 6СO2 + 2800 кДж.

Часть энергии, освобождаемой из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т. е. накапливается, в богатых энергией фосфатных связях аденозинтрифосфорной кислоты (АТФ). Именно АТФ обеспечивает энергией все клеточные функции: биосинтез, механическую работу (деление клетки, сокращение мышц), активный перенос веществ через мембраны, поддержание мембранного потенциала в процессе проведения нервного импульса, выделение различных секретов.

Молекула АТФ состоит из азотистого основания аденина, сахара рибозы и трёх остатков фосфорной кислоты. Аденин, рибоза и первый фосфат образуют аденозинмонофосфат (АМФ). Если к первому фосфату присоединяется второй, получается аденозиндифосфат (АДФ). Молекула с тремя остатками фосфорной кислоты (АТФ) наиболее энергоёмка. Отщепление концевого фосфата АТФ сопровождается выделением 40 кДж, а не 12 кДж энергии, как при разрыве обычных химических связей. Благодаря богатым энергией связям в молекулах АТФ клетка может накапливать большое количество энергии и расходовать её по мере надобности. Синтез АТФ осуществляется главным образом в специальных органоидах клетки – митохондриях (см. § 6, рис. 11). Отсюда молекулы АТФ поступают в разные участки клетки, обеспечивая энергией процессы жизнедеятельности.

Этапы энергетического обмена. Энергетический обмен обычно делят на три этапа. Первый этап – подготовительный. На этом этапе молекулы ди– и полисахаридов, жиров, белков распадаются на мелкие молекулы – глюкозу, глицерин и жирные кислоты, аминокислоты; крупные молекулы нуклеиновых кислот – на нуклеотиды. При этом выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение).

У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и т. д.

В мышцах в результате анаэробного (бескислородного) дыхания одна молекула глюкозы распадается на две молекулы молочной кислоты. В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ.

Читайте также: