На чем основан расчет энергии выделяющейся в ядерных реакциях кратко

Обновлено: 05.07.2024

Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или -квантов.

В результате ядерных реакций могут образовываться новые радиоактивные изотопы, которых нет на Земле в естественных условиях.

Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер (см. § 6.5). Резерфорд бомбардировал атомы азота -частицами. При соударении частиц происходила ядерная реакция, протекавшая по следующей схеме:

При ядерных реакциях выполняется несколько законов сохранения : импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т. е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.

Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, -частицы, ионы). Первая реакция такого рода была осуществлена с помощью протонов большой энергии, полученных на ускорителе, в 1932 году:

Однако наиболее интересными для практического использования являются реакции, протекающие при взаимодействии ядер с нейтронами. Так как нейтроны лишены заряда, они беспрепятственно могут проникать в атомные ядра и вызывать их превращения. Выдающийся итальянский физик Э. Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения вызываются не только быстрыми, но и медленными нейтронами, движущимися с тепловыми скоростями.

Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина

ABCD.
где A и B – массы исходных продуктов, C и D – массы конечных продуктов реакции. Величина называется дефектом масс. Ядерные реакции могут протекать с выделением () или с поглощением энергии (). Во втором случае первоначальная кинетическая энергия исходных продуктов должна превышать величину , которая называется порогом реакции .

Для того чтобы ядерная реакция имела положительный энергетический выход, удельная энергия связи нуклонов в ядрах исходных продуктов должна быть меньше удельной энергии связи нуклонов в ядрах конечных продуктов. Это означает, что величина должна быть положительной.

Возможны два принципиально различных способа освобождения ядерной энергии.

1. Деление тяжелых ядер . В отличие от радиоактивного распада ядер, сопровождающегося испусканием - или -частиц, реакции деления – это процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс.

В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деление ядер урана. Продолжая исследования, начатые Ферми, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (), криптона () и др.

Уран встречается в природе в виде двух изотопов: (99,3 %) и (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра вступают в реакцию деления только с быстрыми нейтронами с энергией порядка .

Основной интерес для ядерной энергетики представляет реакция деления ядра В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра. Две типичные реакции деления этого ядра имеют вид:

Обратите внимание, что в результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. Продуктами деления ядер урана-235 могут быть и другие изотопы бария, ксенона, стронция, рубидия и т. д.

Кинетическая энергия, выделяющаяся при делении одного ядра урана, огромна – порядка 200 МэВ. Оценку выделяющейся при делении ядра энергии можно сделать с помощью понятия удельной энергии связи нуклонов в ядре. Удельная энергия связи нуклонов в ядрах с массовым числом порядка , в то время как в ядрах с массовыми числами удельная энергия примерно равна . Следовательно, при делении ядра урана освобождается энергия порядка или приблизительно на один атом урана. При полном делении всех ядер, содержащихся в урана, выделяется такая же энергия, как и при сгорании угля или нефти.

Продукты деления ядра урана нестабильны, так как в них содержится значительное избыточное число нейтронов. Действительно, отношение для наиболее тяжелых ядер составляет примерно 1,6 (рис. 6.6.2), для ядер с массовыми числами от 90 до 145 это отношение порядка 1,3–1,4. Поэтому ядра-осколки испытывают серию последовательных -распадов, в результате которых число протонов в ядре увеличивается, а число нейтронов уменьшается до тех пор, пока не образуется стабильное ядро.

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией . Схема развития цепной реакции деления ядер урана представлена на рис. 6.8.1.

Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции. Изотоп также может поглощать нейтроны, но при этом не возникает цепной реакции.

Цепная реакция в уране с повышенным содержанием урана-235 может развиваться только тогда, когда масса урана превосходит так называемую критическую массу . В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу. Для чистого урана-235 критическая масса составляет около .

Критическую массу урана можно во много раз уменьшить, если использовать так называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов ядрами урана-235 в сотни раз больше, чем быстрых. Наилучшим замедлителем нейтронов является тяжелая вода D2O. Обычная вода при взаимодействии с нейтронами сама превращается в тяжелую воду.

Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов. При упругом взаимодействии с ядрами дейтерия или углерода нейтроны замедляются до тепловых скоростей.

Применение замедлителей нейтронов и специальной оболочки из бериллия, которая отражает нейтроны, позволяет снизить критическую массу до .

В атомных бомбах цепная неуправляемая ядерная реакция возникает при быстром соединении двух кусков урана-235, каждый из которых имеет массу несколько ниже критической.

Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным ) реактором . Схема ядерного реактора на медленных нейтронах приведена на рис. 6.8.2.

Ядерная реакция протекает в активной зоне реактора, которая заполнена замедлителем и пронизана стержнями, содержащими обогащенную смесь изотопов урана с повышенным содержанием урана-235 (до 3 %). В активную зону вводятся регулирующие стержни, содержащие кадмий или бор, которые интенсивно поглощают нейтроны. Введение стержней в активную зону позволяет управлять скоростью цепной реакции.

Активная зона охлаждается с помощью прокачиваемого теплоносителя, в качестве которого может применяться вода или металл с низкой температурой плавления (например, натрий, имеющий температуру плавления 98 °C). В парогенераторе теплоноситель передает тепловую энергию воде, превращая ее в пар высокого давления, который направляется в турбину, соединенную с электрогенератором, а из турбины поступает в конденсатор. Во избежание утечки радиации контуры теплоносителя I и парогенератора II работают по замкнутым циклам.

Турбина атомной электростанции является тепловой машиной, определяющей в соответствии со вторым законом термодинамики общую эффективность станции. У современных атомных электростанций коэффициент полезного действия приблизительно равен Следовательно, для производства электрической мощности тепловая мощность реактора должна достигать . должны уносится водой, охлаждающей конденсатор. Это приводит к локальному перегреву естественных водоемов и последующему возникновению экологических проблем.

Однако, главная проблема состоит в обеспечении полной радиационной безопасности людей, работающих на атомных электростанциях, и предотвращении случайных выбросов радиоактивных веществ, которые в большом количестве накапливаются в активной зоне реактора. При разработке ядерных реакторов этой проблеме уделяется большое внимание. Тем не менее, после аварий на некоторых АЭС, в частности на АЭС в Пенсильвании (США, 1979 г.) и на Чернобыльской АЭС (1986 г.), проблема безопасности ядерной энергетики встала с особенной остротой.

Наряду с ядерным реактором, работающим на медленных нейтронах, большой практический интерес представляют реакторы, работающие без замедлителя на быстрых нейтронах. В таких реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15 % изотопа Преимущество реакторов на быстрых нейтронах состоит в том, что при их работе ядра урана-238, поглощая нейтроны, посредством двух последовательных -распадов превращаются в ядра плутония, которые затем можно использовать в качестве ядерного топлива:

Коэффициент воспроизводства таких реакторов достигает 1,5, т. е. на урана-235 получается до плутония. В обычных реакторах также образуется плутоний, но в гораздо меньших количествах.

Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И. В. Курчатова.

2. Термоядерные реакции . Второй путь освобождения ядерной энергии связан с реакциями синтеза. При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Это видно из кривой зависимости удельной энергии связи от массового числа (рис. 6.6.1). Вплоть до ядер с массовым числом около 60 удельная энергия связи нуклонов растет с увеличением . Поэтому синтез любого ядра с из более легких ядер должен сопровождаться выделением энергии. Общая масса продуктов реакции синтеза будет в этом случае меньше массы первоначальных частиц.

Реакции слияния легких ядер носят название термоядерных реакций , так как они могут протекать только при очень высоких температурах. Чтобы два ядра вступили в реакцию синтеза, они должны сблизится на расстояние действия ядерных сил порядка , преодолев электрическое отталкивание их положительных зарядов. Для этого средняя кинетическая энергия теплового движения молекул должна превосходить потенциальную энергию кулоновского взаимодействия. Расчет необходимой для этого температуры приводит к величине порядка . Это чрезвычайно высокая температура. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой .

Энергия, которая выделяется при термоядерных реакциях, в расчете на один нуклон в несколько раз превышает удельную энергию, выделяющуюся в цепных реакциях деления ядер. Так, например, в реакции слияния ядер дейтерия и трития
выделяется . В целом в этой реакции выделяется . Это одна из наиболее перспективных термоядерных реакций.

Осуществление управляемых термоядерных реакций даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии. Однако получение сверхвысоких температур и удержание плазмы, нагретой до миллиарда градусов, представляет собой труднейшую научно-техническую задачу на пути осуществления управляемого термоядерного синтеза.

На данном этапе развития науки и техники удалось осуществить только неуправляемую реакцию синтеза в водородной бомбе. Высокая температура, необходимая для ядерного синтеза, достигается здесь с помощью взрыва обычной урановой или плутониевой бомбы.

Термоядерные реакции играют чрезвычайно важную роль в эволюции Вселенной. Энергия излучения Солнца и звезд имеет термоядерное происхождение.

В результате ядерных реакций происходит выделение энергии в виде излучения. Для подсчёта энергии, выделяющейся в конкретной реакции, вводят понятие дефекта масс и логику уравнения Эйнштейна. Эйнштейн показал, что энергия и масса связаны друг с другом соотношением:

  • где
    • — энергия,
    • — масса тела,
    • м/с — скорость света (константа).

    Показано, что в результате любой ядерной реакции суммарная масса элементов до реакции (мишеней) не равна суммарной массе элементов после реакции (продуктов). Разница между этими массами называется дефектом масс:

    • где
      • — дефект масс,
      • — сумма масс элементов до реакции,
      • — сумма масс элементов после реакции.

      В случае, если — ядерная реакция идёт самопроизвольно (энергия выделяется), — ядерная реакция не самопроизвольна, т.е. для неё нужно затратить энергию.

      Тогда, чтобы посчитать энергию реакции, необходимо подставить (2) в (1):

      • где
        • — энергия ядерной реакции (поглощённая/выделившаяся),
        • — модуль дефекта массы,
        • м/с — скорость света (константа).

        Соотношение (3) позволяет посчитать энергию ядерной реакции, зная массы мишеней и продуктов реакции.

        Частным видом таких задач является поиск энергии ядра и удельной энергии ядра.

        Представим себе ситуацию, в которой ядро разделяется на составляющие (до протонов и нейтроном), в этом случае дефект масс можно найти как:

        • где
          • — дефект масс,
          • , — количество протонов и нейтроном в ядре соответственно,
          • , — масса протона и масса нейтрона соответственно,
          • — масса ядра.

          Тогда, исходя из (3), мы получим исходную энергию, которую мы назовём энергией ядра.

          Удельная энергия ядра — это энергия, приходящаяся на один нуклон:

          • где
            • — удельная энергия связи,
            • — энергия ядра,
            • , — количество протонов и нейтроном в ядре соответственно.

            Вывод: вопросы данной части ядерной физики связаны с поиском дефекта масс (2) (обычно все массы даны) и использованием соотношений (3) — (5) для поиска соответствующих энергий.

            Важнейшую роль во всей ядерной физике играет понятие энергии связи ядра. Энергия связи позволяет объяснить устойчивость ядер, выяснить, какие процессы ведут к выделению ядерной энергии. Нуклоны в ядре прочно удерживаются ядерными силами. Для того чтобы удалить нуклон из ядра, надо совершить довольно большую работу, т. е. сообщить ядру значительную энергию.

            Под энергией связи ядра понимают ту энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основе закона сохранения энергии можно также утверждать, что энергия связи ядра равна той энергии, которая выделяется при образовании ядра из отдельных частиц .

            Энергия связи атомных ядер очень велика. Но как ее определить?

            В настоящее время рассчитать энергию связи теоретически, подобно тому как это можно сделать для электронов в атоме, не удается. Выполнить соответствующие расчеты можно, лишь применяя соотношение Эйнштейна между массой и энергией:

            Точнейшие измерения масс ядер показывают, что масса покоя ядра Мя всегда меньше суммы масс входящих в его состав протонов и нейтронов:

            Существует, как говорят, дефект масс: разность масс

            положительна. В частности, для гелия масса ядра на 0,75% меньше суммы масс двух протонов и двух нейтронов. Соответственно для гелия в количестве вещества один моль ΔM = 0,03 г.

            Уменьшение массы при образовании ядра из нуклонов означает, что при этом уменьшается энергия этой системы нуклонов на значение энергии связи Есв:

            Но куда при этом исчезают энергия Есв и масса ΔM?

            При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом γ-кванты как раз обладают энергией Есв и массой

            Энергия связи — это энергия, которая выделяется при образовании ядра из отдельных частиц, и соответственно это та энергия, которая необходима для расщепления ядра на составляющие его частицы.

            О том, как велика энергия связи, можно судить по такому примеру: образование 4 г гелия сопровождается выделением такой же энергии, что и при сгорании 1,5—2 вагонов каменного угля.

            Важную информацию о свойствах ядер содержит зависимость удельной энергии связи от массового числа А.

            Удельной энергией связи называют энергию связи, приходящуюся на один нуклон ядра. Ее определяют экспериментально. Из рисунка 13.11 хорошо видно, что, не считая самых легких ядер, удельная энергия связи примерно постоянна и равна 8 МэВ/нуклон. Отметим, что энергия связи электрона и ядра в атоме водорода, равная энергии ионизации, почти в миллион раз меньше этого значения. Кривая на рисунке 13.11 имеет слабо выраженный максимум. Максимальную удельную энергию связи (8,6 МэВ/нуклон) имеют элементы с массовыми числами от 50 до 60, т. е. железо и близкие к нему по порядковому номеру элементы. Ядра этих элементов наиболее устойчивы.

            У тяжелых ядер удельная энергия связи уменьшается за счет возрастающей с увеличением Z кулоновской энергии отталкивания протонов. Кулоновские силы стремятся разорвать ядро.

            Частицы в ядре сильно связаны друг с другом. Энергия связи частиц определяется по дефекту масс.

            Ядерные реакции

            Атомные ядра при взаимодействиях испытывают превращения. Эти превращения сопровождаются увеличением или уменьшением кинетической энергии участвующих в них частиц.

            Ядерными реакциями называют изменения атомных ядер при взаимодействии их с элементарными частицами или друг с другом. С примерами ядерных реакций вы уже ознакомились в § 103. Ядерные реакции происходят, когда частицы вплотную приближаются к ядру и попадают в сферу действия ядерных сил. Одноименно заряженные частицы отталкиваются друг от друга. Поэтому сближение положительно заряженных частиц с ядрами (или ядер друг с другом) возможно, если этим частицам (или ядрам) сообщена достаточно большая кинетическая энергия. Эта энергия сообщается протонам, ядрам дейтерия — дейтронам, α-частицам и другим более тяжелым ядрам с помощью ускорителей.

            Для осуществления ядерных реакций такой метод гораздо эффективнее, чем использование ядер гелия, испускаемых радиоактивными элементами. Во-первых , с помощью ускорителей частицам может быть сообщена энергия порядка 105 МэВ, т. е. гораздо большая той, которую имеют α-частицы (максимально 9 МэВ). Во-вторых , можно использовать протоны, которые в процессе радиоактивного распада не появляются (это целесообразно потому, что заряд протонов вдвое меньше заряда α-частиц, и поэтому действующая на них сила отталкивания со стороны ядер тоже в 2 раза меньше). В-третьих , можно ускорить ядра более тяжелые, чем ядра гелия.

            Первая ядерная реакция на быстрых протонах была осуществлена в 1932 г. Удалось расщепить литий на две α-частицы:

            Как видно из фотографии треков в камере Вильсона (рис. 13.12), ядра гелия разлетаются в разные стороны вдоль одной прямой согласно закону сохранения импульса (импульс протона много меньше импульса возникающих α-частиц; на фотографии треки протонов не видны).

            Энергетический выход ядерных реакций. В описанной выше ядерной реакции кинетическая энергия двух образующихся ядер гелия оказалась больше кинетической энергии вступившего в реакцию протона на 7,3 МэВ. Превращение ядер сопровождается изменением их внутренней энергии (энергия связи). В рассмотренной реакции удельная энергия связи в ядрах гелия больше удельной энергии связи в ядре лития. Поэтому часть внутренней энергии ядра лития превращается в кинетическую энергию разлетающихся α-частиц.

            Изменение энергии связи ядер означает, что суммарная энергия покоя участвующих в реакциях ядер и частиц не остается неизменной. Ведь энергия покоя ядра Мя*с2 согласно формуле (13.5) непосредственно выражается через энергию связи. В соответствии с законом сохранения энергии изменение кинетической энергии в процессе ядерной реакции равно изменению энергии покоя участвующих в реакции ядер и частиц .

            Энергетическим выходом ядерной реакции называется разность энергий покоя ядер и частиц до реакции и после реакции. Согласно вышесказанному энергетический выход ядерной реакции равен также изменению кинетической энергии частиц, участвующих в реакции.

            Если суммарная кинетическая энергия ядер и частиц после реакции больше, чем до реакции, то говорят о выделении энергии. В противном случае реакция идет с поглощением энергии.

            Выделяющаяся при ядерных реакциях энергия может быть огромной. Но использовать ее при столкновениях ускоренных частиц (или ядер) с неподвижными ядрами мишени практически нельзя. Ведь бо́льшая часть ускоренных частиц пролетает мимо ядер мишени, не вызывая реакцию.

            Ядерные реакции на нейтронах. Открытие нейтрона было поворотным пунктом в исследовании ядерных реакций. Так как нейтроны не имеют заряда, то они беспрепятственно проникают в атомные ядра и вызывают их изменения. Например, наблюдается следующая реакция:

            Великий итальянский физик Энрико Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения обусловлены не только быстрыми, но и медленными нейтронами. Причем эти медленные нейтроны оказываются в большинстве случаев даже гораздо более эффективными, чем быстрые. Поэтому быстрые нейтроны целесообразно предварительно замедлять. Замедление нейтронов до тепловых скоростей происходит в обыкновенной воде. Этот эффект объясняется тем, что в воде содержится большое число ядер водорода — протонов, масса которых почти равна массе нейтронов. Следовательно, нейтроны после соударений движутся со скоростью теплового движения. При центральном соударении нейтрона с покоящимся протоном он целиком передает протону свою кинетическую энергию.

            Реакции, в которые вступают атомные ядра, очень разнообразны. Нейтроны не отталкиваются ядрами и поэтому особенно эффективно вызывают превращения ядер.


            В этом видеоуроке мы дадим определение энергии связи ядра. Познакомимся с понятием дефекта массы. А также узнаем, что называется удельной энергией связи атомного ядра.


            В данный момент вы не можете посмотреть или раздать видеоурок ученикам

            Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

            Получите невероятные возможности




            Конспект урока "Энергия связи атомных ядер"

            В ядре существуют силы особой природы — ядерные силы, которые действуют между нуклонами на расстояниях, сравнимыми с размерами самих ядер, и препятствуют взаимному электростатическому отталкиванию между протонами в ядре.Следовательно, чтобы расщепить ядро на отдельные нуклоны, не взаимодействующие между собой, необходимо совершить работу по преодолению ядерных сил. Другими словами, сообщить ядру определённую энергию.

            Так вот, минимальная энергия, необходимая для расщепления ядра на отдельные нуклоны, называется энергией связи. Чем она больше, тем стабильнее ядро. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

            Самый простой способ определения энергии связи основан на одном замечательном законе природы, устанавливающим соотношение между массой тел и их энергией. Из этого закона следует, что изменение массы тела влечёт за собой изменение энергии этого тела. При этом даже ничтожному изменению массы тела соответствует значительное изменение энергии.

            Энергию связи любого ядра можно определить с помощью точного измерения его массы. С изобретением масс-спектрографов физики получили возможность измерять массы микрочастиц с очень высокой точностью. Эти измерения показывают, что масса любого ядра всегда меньше суммы масс входящих в его состав протонов и нейтронов:

            Обращаем ваше внимание на то, что при использовании данной формулы, массу входящих в неё частиц следует выражать в килограммах. Тогда значение полученной энергии связи будет выражено в джоулях. Здесь же обратим ваше внимание на то, что энергия связи ядра намного порядков превышает энергию связи электронов с атомом (энергию ионизации). Поэтому при расчётах энергию связи электронов с атомом обычно не учитывают.

            Давайте теперь для примера рассчитаем энергию связи ядра изотопа гелия-4.


            Как видим, энергии микромира крайне малы и работать с такими числами представляется крайне неудобным. Гораздо проще рассчитывать энергию связи в электронвольтах и мегаэлектронвольтах.

            Давайте вспомним, что 1эВ равен энергии, необходимой для переноса элементарного заряда в электростатическом поле между точками с разницей потенциалов 1 В. Проще говоря, величина одного электронвольта равна значению элементарного заряда в джоулях. Но энергии связи таковы, что для их вычисления удобно использовать миллионы электронвольт, то есть мегаэлектронвольты.


            В этом случае массу частиц лучше всего выражать в энергетических единицах. Связь между различными единицами массы:


            В этом случае формула для определения энергии связи примет вид:


            Обратите внимание на тот факт, что обычно в таблицах приводятся массы атомов, а не массы ядер. Поскольку при таком подходе учитываются и массы электронов, то для вычисления энергии связи ядра в этом случае целесообразно преобразовать формулу так, чтобы в неё входила не масса ядра, а масса соответствующего атома. Для этого вспомним, что масса ядра есть разность между массой атома и массой всех его электронов. Преобразуем формулу для дефекта масс с учётом последнего уравнения.

            В полученном выражении первым слагаемым у нас стоит произведение зарядового числа на сумму масс протона и электрона. В природе существует единственный элемент, в ядре которого находится один протон, а вокруг ядра вращается один электрон — это атом водорода. Поэтому формула для дефекта масс примет вид, показанный на экране:


            Ещё одной важной характеристикой в ядерной физике является удельная энергия связи. Так называют энергию связи, приходящуюся на один нуклон. Она равна отношению энергии связи к массовому числу:


            Соответственно, чем больше значение удельной энергии связи, тем сильнее связан каждый нуклон в ядре, и тем прочнее ядро.

            Как правило, лёгкие ядра обладают достаточно малой удельной энергией связи. К середине таблицы Менделеева энергия связи достигает своего максимального значения. А к концу — вновь начинает убывать.


            Из графика зависимости удельной энергии связи от числа нуклонов в ядре видно, что при смещении ядер к центральной части графика удельная энергия связи увеличивается, следовательно, любые ядерные реакции, приводящие к такому смещению, являются энергетически выгодными (сопровождаются выделением энергии). Как видно из графика, подобное смещение возможно при реакциях синтеза лёгких ядер в области изменения массового числа примерно 0 → 50 и при реакциях деления тяжёлых ядер в области изменения массового числа примерно 250 → 60. При этом реакции синтеза должны идти мощнее, поскольку подъем графика происходит круче, чем последующее уменьшение удельной энергии связи.

            Энергию, выделяющуюся или поглощающуюся в процессе таких ядерных реакций, можно определить, если известны массы взаимодействующих и образующихся в результате этого взаимодействия ядер и частиц. Эту энергию называют энергетическим выходом ядерной реакции. При этом, если в процессе ядерной реакции энергия выделяется, то реакцию называют экзотермической, если же энергия поглощается — то эндотермической:

            Читайте также: