Какими организмами был представлен живой мир в криптозое докембрии кратко

Обновлено: 05.07.2024

Докембрий, или криптозой является самым ранним временем в геологической истории нашей планеты, начиная с образования Земли 4,6 млрд лет назад до начала кембрийского периода палеозойской эры около 542 млн лет назад.

Докембрий считается суперэоном, который включает такие эоны, как катархей, архей и протерозой. Криптозой сменился фанерозойским эоном.

Возникновение Земли

Земля начала формироваться более чем 4,6 млрд лет назад из того же облака газов (в основном водорода и гелия) и межзвездной пыли, которая сформировала Солнце, остальную солнечную систему и даже нашу галактику. На самом деле Земля все еще формируется и остывает от галактической имплозии, которая создала другие звезды и планетные системы в нашей галактике. Этот процесс начался около 13,6 млрд лет назад, когда стал развиваться Млечный Путь.

Когда наша солнечная система начала объединяться, Солнце образовалось из облака пыли и газа, которые продолжали сжиматься с помощью гравитационных сил. Это заставило его пройти процесс слияния и стать источником света, тепла и другого излучения. Во время этого процесса оставшиеся облака газа и пыли, которые окружали Солнце, начали формироваться в более мелкие объекты, называемые планетезималями, которые в конечном итоге образовали планеты, известные нам сегодня.

Земля пережила период катастрофического и интенсивного образования около 4,6-4,4 млрд лет назад. Приблизительно 4,1-3,8 млрд лет назад она превратилась в планету с атмосферой (не такой, как сегодня) и океаном. Считается, что первые признаки жизни появились только около 3,5 млрд лет назад.

Эоны и эры докембрия

Катархей

Земля сформировалась при такой высокой температуре и давлении, что поначалу она была словно расплавленная. Первые миллиарды лет образования Земли (4,6-4,0 млрд лет назад) приходятся на катархей, когда наша планета непрерывно бомбардировалась остатками пыли и обломков (включая астероиды, метеориды и кометы) до тех пор, пока полностью не сформировалась.

Когда Земля начала принимать твердую форму, в ее атмосфере не было свободного кислорода. Было так жарко, что капли воды в атмосфере не могли оседать, чтобы образовать поверхностные воды или лед. Во время катархея первая атмосфера состояла из гелия и водорода, поэтому ни один организм не мог бы выжить.

Вторая атмосфера Земли была сформирована главным образом из таких летучих соединений, как водяной пар, монооксид углерода, метан, аммиак, азот, диоксид углерода, хлористоводородная кислота и сера, вызванных постоянными извержениями вулканов, осаждавшими планету. Свободного кислорода в это время еще не было.

Около 4,1 миллиарда лет назад поверхность Земли – или кора – стала охлаждаться и стабилизироваться, создавая сплошную поверхность с ее скалистым ландшафтом. Облака образовались, когда Земля начала остывать, создавая огромные объемы дождевой воды, которые наполнили океаны.

Архей

В течение следующих 1,5 млрд лет (4,0 – 2,5 млрд лет назад) архейского эона зародилась первая жизнь.

Архейский эон подразделяется на четыре эры:

  • Эоархей (4,0-3,6 млрд лет назад);
  • Палеоархей (3,6-3,2 млрд лет назад);
  • Мезоархей (3,2-2,8 млрд лет назад);
  • Неоархей (2,8 – 2, 5 млрд лет назад).

Первая жизнь появилась в океане и большая часть живых организмов докембрия, была представлена прокариотическими одноклеточными организмами. На самом деле существует довольно богатая история бактерий и связанных одноклеточных организмов в летописи окаменелостей. Считается, что первые представители одноклеточных организмов появились в архейском домене.

Возраст самой старой окаменелости составляет около 3,5 млрд лет.

Ранние формы жизни напоминают цианобактерии. Это были фотосинтетические сине-зеленые водоросли, которые процветали в чрезвычайно горячей атмосфере, богатой углекислым газом.Их окаменелости обнаружены на побережье Западной Австралии.

Другие, подобные окаменелости были найдены во всем мире. Их возраст составляет около двух миллиардов лет.

С таким количеством фотосинтетических организмов, населяющих Землю, было только вопросом времени, когда атмосфера начала накапливать более высокие уровни кислорода, поскольку кислород является побочным продуктом фотосинтеза. Когда в атмосфере стало больше кислорода, появилось много новых видов, которые смогли использовать кислород для получения энергии.

Протерозой

Протерозой, который длился от 2,5 млрд до 542 млн лет назад стал свидетелем некоторых из самых захватывающих событий в истории жизни Земли.

Протерозойский эон был самым длительным в истории планеты и включал три эры:

  • Палеопротерозой (2,5-1,6 млрд лет назад);
  • Мезопротерозой (1,6 – 1 млрд лет назад);
  • Неопротерозой (1000 – 542 млн лет назад).

Свободный кислород начал расти примерно в середине протерозоя – около 1,8 млрд лет назад – и создал условия, позволяющие большей части существующей жизни выжить.

Криптозой состоит из нескольких эр. В ар­хейскую эру Землю населяли первые анаэроб­ные гетеротрофы; 3 млрд лет назад появились цианобактерии. В протерозойскую эру (2,5- 0,5 млрд лет назад) в атмосфере накопилось достаточно кислорода, чтобы возникли первые аэробные организмы. В результате симбиоза разных групп древних простейших организ­мов сформировались эукариотические клетки, близкие к современным. В итоге в протерозое на клеточном уровне уже обнаруживаются все царства живых организмов (растения, живот­ные и грибы). В последние 100 млн лет этой эры появилась многоклеточность; возникли губки, кишечнополостные, черви, иглоко­жие, членистоногие, моллюски и, наконец, первые хордовые.


Возникновение органических соединений

Какие космические факторы на ранних этапах развития Земли явились предпосылками для возникновения органических соединений?

На ранних этапах развития Земли органические соединения образовывались из неорганических абиогенным путем. Источником энергии для этих процессов служило ультрафиолетовое излучение Солнца. В атмосфере не существовало ни озона, ни кислорода, поэтому ультрафиолет ничем не задерживался и достигал поверхности планеты. Под его воздействием, а также при участии электрических грозовых разрядов из воды и газов образовывались простейшие органические вещества: формальдегид, глицерин, аминокислоты, мочевина и др.

Теория биопоэза

Назовите основные стадии возникновения жизни согласно теории биопоэза.

Образование и эволюция коацерватов

Как образовывались, какими свойствами обладали и в каком направлении эволюционировали коацерваты?

Образование коацерватов было бы невозможно без взаимодействия органических веществ друг с другом и с неорганическими соединениями. В результате такого взаимодействия из жирных кислот и спиртов образовались липиды, из аминокислот — пептиды, из нуклеотидов — нуклеиновые кислоты. Липиды формировали пленки на поверхности водоемов, а белки — растворенные в воде полимерные комплексы. Такие комплексы, сливаясь друг с другом, образовывали коацерваты — структуры, обособленные от остальной массы воды. Коацерваты были способны, обмениваясь с окружающей средой, концентрировать различные вещества. Так, накопление ионов металлов и их взаимодействие с белками привело к образованию ферментов. Нуклеиновые кислоты, попавшие в коацерваты, имели больше шансов сохранить свою структуру и не разрушиться. Коацерваты обладали некоторыми признаками живого, но для превращений их в первые живые организмы не хватало биологических мембран.

Возникновение пробионтов

Расскажите, как возникли пробионты.

Эволюция гетеротрофов

Опишите, как могло происходить усложнение внутреннего строения первых гетеротрофов.

Постепенно количество органических веществ абиогенного происхождения стало уменьшаться. Это привело к жесткой конкуренции между пробионтами, которая ускорила возникновение автотрофов, использующих для создания органики энергию солнечного света. Первые автотрофы использовали бескислородный путь фотосинтеза. Позднее появились цианобактерии, способные к фотосинтезу с выделением кислорода. Следствием накопления кислорода в атмосфере стало, во-первых, возникновение аэробных организмов, во-вторых, формирование защитного озонового слоя.

Самозарождение жизни в современных условиях

Почему невозможно самозарождение жизни в современных условиях?

Эры и периоды истории Земли

По какому принципу историю Земли делят на эры и периоды?

Разделение истории Земли на этапы произошло после того, как геологи и палеонтологи сравнили между собой разноуровневые пласты осадочных пород и находящиеся в них окаменелости. Временные границы между эрами и периодами были установлены с учетом особенностей геологических процессов, климата, появления и исчезновения определенных групп живых организмов.

Возникновение жизни

Когда возникли первые живые организмы?

Криптозой

Какими организмами был представлен живой мир в криптозое (докембрии)?

Криптозой состоит из нескольких эр. В архейскую эру Землю населяли первые анаэробные гетеротрофы; 3 млрд лет назад появились цианобактерии. В протерозойскую эру (2,5–0,5 млрд лет назад) в атмосфере накопилось достаточно кислорода, чтобы возникли первые аэробные организмы. В результате симбиоза разных групп древних простейших организмов сформировались эукариотические клетки, близкие к современным. В итоге в протерозое на клеточном уровне уже обнаруживаются все царства живых организмов (растения, животные и грибы). В последние 100 млн лет этой эры появилась многоклеточность; возникли губки, кишечнополостные, черви, иглокожие, членистоногие, моллюски и, наконец, первые хордовые.

Пермский период

Почему в пермский период палеозойской эры вымерло большое количество видов амфибий?

В пермский период (285–230 млн лет назад) климат стал существенно холоднее и суше, чем в карбоне. Поэтому численность амфибий, которым вода необходима для увлажнения кожи и развития личинок, стала резко сокращаться. Многие крупные и гигантские виды быстро исчезли. В целом произошла довольно быстрая смена амфибий рептилиями, которые были гораздо лучше приспособлены к сухопутному образу жизни.

Кузнецов А.Б

О том, чем интересен докембрий и почему современная геологическая картина мира так схожа с периодом кембрийского взрыва, рассказал директор Института геологии и геохронологии докембрия РАН (Санкт-Петербург) член-корреспондент РАН Антон Борисович Кузнецов.

В докембрии на нашей планете появились земная кора, океаны, свободный кислород, возникли первые живые организмы

В докембрии на нашей планете появились земная кора, океаны, свободный кислород, возникли первые живые организмы

— Антон Борисович, чем уникален докембрий?

— Докембрий — самый продолжительный период геологической истории Земли, он длился более 4 млрд лет. Можно сказать, это была эпоха становления Земли, подготовка планеты к заселению открытой жизнью. Твердая геологическая оболочка появилась на поверхности Земли около 4,2 млрд лет назад. С тех пора земная кора начала свою эволюцию, которая продолжается по сей день. Именно в докембрии появились крупные континенты, которые впоследствии разрастались, соединялись друг с другом, расползались и скучивались вновь. Также в раннем докембрии (архее) сформировался океан. Вначале появились бактерии и прокаритоты (безъядерные одноклеточные организмы), которые могли жить в сероводородной среде. Затем — эукариты, которые со временем инкорпорировали в себя хлорофилл, что позволило им освоить процесс фотосинтеза и генерировать кислород. В результате этого на Земле произошла кислородная революция, появился свободный кислород, которым смогли дышать первые организмы, заселившие сначала океан, а потом и сушу. С геологической точки зрения докембрий интересен тем, что в этот период сформировались самые крупные месторождения полезных ископаемых, в частности 80% всего добываемого золота, огромные запасы железной руды. Все значительные залежи неметаллических полезных ископаемых, таких как магнезиты, сидериты хемогенного происхождения и т.д., образовались в докембрии. Появление кислорода стало одной из причин первого крупного оледенения 2,4 млрд лет назад, накануне экспансии строматолитов (цианобактериальных микрорганизмов) в мелководные моря всех континентов. Оледенения стали своеобразными маркерами, реперными точками, после которых происходил очередной скачок в эволюции жизни на Земле. Вторая крупная эпоха оледенений произошла уже в конце докембрия, накануне нового эволюционного витка — экспансии многоклеточных.

— На сколько геохронологических частей можно разделить докембрий?

— В современной шкале он делится на несколько частей в миллиардах лет: гадей (до 4,0), архей (4,0–2,5), палеопротерозой (2,5–1,6), мезопротерозой (1,6–1,0) и неопротерозой (1,0–0,5). Одну из этих частей, так называемый гадей, ученые стали выделять совсем недавно. Это та загадочная эпоха, по следам которой мы не имеем вообще ни одной горной породы, не можем пощупать ее руками, как говорят геологи. Следы этого периода геологической жизни мы получаем только благодаря изучению ископаемых изотопно-геохимическими методами
Первые породы, которые в докембрии мы уже можем потрогать, появились примерно в палеоархее (от 3,6 до 3,2 млрд лет назад). Наиболее древние из этих пород — гнейсы Исуа, их возраст примерно 3,7 млрд лет. Примечательно, что эти породы имели осадочное, водное происхождение. Что это значит? Оказывается, у Земли 3,7 млрд лет назад уже существовала водная оболочка. Об этом же нам говорят самые древние карбонаты в Южной Африке возрастом 3,4 млрд лет. Интересно и то, откуда на Земле появилась вода. Благодаря изотопным методам сегодня мы уже узнаем, что примерно 10% земной воды имеют не местное происхождение: эта вода прилетела к нам вместе с ледяными глыбами из космоса.

— А оставшиеся 90% откуда взялись?

— Остальные 90% — это, конечно, продукты дегазации магмы (процесс отделения газов от магм), горячее ядро нашей планеты. В реальности мы не можем увидеть магму, которая находится очень глубоко. Но о ее составе мы можем судить по каменным ксенолитам, выброшенным на поверхность кимберлитовыми трубками, а также по составу лавы современных и докембрийских вулканов. Так вот, количество минерально связанной и свободной воды в мантии достигает 0,2%. При этом архейские лавы коматиитов показывают, что количество воды в мантии 3,5–3,0 млрд лет назад было больше до 0,6%. Много это или мало? Если учитывать современную вулканическую активность, это 200–300 млн т воды в год, около десяти Химкинских водохранилищ. Магматическая оболочка нашей планеты прошла уникальную эволюцию, которую не прошла ни одна планета Солнечной системы. Взять хотя бы знаменитые граниты, которыми украшены набережные и метро нашего прекрасного города Санкт-Петербурга и станции метрополитена многих других городов России. Ведь таких пород нет ни на Марсе, ни на Венере, ни на других планетах Солнечной системы! Дело в том, что только благодаря горячему ядру и миллиардам лет конвекции магмы смогла состояться эволюция этого вещества от ультраосновного состава до кислого; то есть произошла выплавка земной коры, которая стала потом основой наших континентов. В ходе частичной переплавки уже выплавленного материала произошло обогащение коры калием и кварцем. Привычные для нас красивейшие друзы кварца также не встречаются ни на одной из соседних планет. С геологической точки зрения Марс и Луна остановили свое развитие на границе архея-протерозоя.

— Расскажите, пожалуйста, подробнее о формировании континентов в докембрии.

— В истории Земли было несколько эпох суперконтинентального развития. В докембрии выделяют четыре крупные эпохи формирования континентов. Образование континентов — очень интересный процесс, поскольку континенты на поверхности нашей планеты — словно живая ткань: фрагменты коры то сходились вместе, то расходились в разные стороны. В докембрии было четыре крупных суперконтинента, в это время отдельные крохотные острова собирались вместе. Суперконтинентальные эпохи совпадают с подразделениями докембрия. Самый крупный и наиболее известный континент образовался на границе архея и протерозоя, то есть 2,5 млрд лет назад. Название этого суперконтинента — Кенорленд, или Склавия. После его ­распада на границе палеопротерозоя и мезопротерозоя, около 1,6 млрд лет назад, в результате свекофенской орогении собрался суперконтинент Нуна (Колумбия). Кстати, именно в эту эпоху соединились в единую плиту Фенно-Карелия, Волго-Уралия и Воронеж-Сарматия. Примерно 1 млрд лет назад в ходе глобальной гренвильской орогении образовался новый огромный суперконтинент Родиния. Он собрал все континентальные фрагменты, находящиеся на поверхности Земли. Само название — Родиния — было дано оттого, что этот огромный континент стал как бы прародителем всех остальных континентов, образовавшихся уже в фанерозое и палеозое (около 541 млн лет назад). В течение последующих нескольких сотен миллионов лет, накануне кембрийского взрыва, образовался новый суперконтинент Гондвана, или Паннотия.

Микрофоссилии, населявшие древние моря 640–540 млн лет назад накануне кембрийского взрыва. Коллекция Е.Ю. Голубковой, ИГГД РАН.

Микрофоссилии, населявшие древние моря 640–540 млн лет назад накануне кембрийского взрыва. Коллекция Е.Ю. Голубковой, ИГГД РАН.

— Если бы у нас с вами была машина времени и мы бы перенеслись в самое начало докембрия, то какой пейзаж увидели?

— Если удалось бы перенестись в гадей, мы бы увидели там бесконечные лавовые потоки и бурлящее море магмы вместо воды. В начале архея на Землю обрушился метеоритный дождь, который шел в течение нескольких миллионов лет, и суша стала выглядеть как поверхность Луны. В позднем архее появился океан, который был похож на кипящие термальные источники с ядовитыми испарениями. С появлением кислорода и экспансией цианобактерий в протерозое моря превратились в мутный зеленый бульон, похожий на болота. Суша была похожа на современные пустыни, над которыми неслись пыльные бури. Ближе к концу докембрия, в криогении, Земля на несколько десятков миллионов лет покрылась ­многокилометровыми ледниками, которые простирались от полюсов до тропических широт. Одним словом, ни травинки, ни деревца, ни пения птиц.

— Последним этапом в хронологии докембрия был эдиакарий. Его часто сравнивают с библейским Эдемом. Почему?

— Эдиакарий действительно называют эдаким райским садом. Дело в том, что в это время на Земле практически не было явных хищников, которые бы поедали живые организмы. В эдиакарии жили крупные многоклеточные мягкотелые организмы (похожие на лепешки), которые заселили все дно мелководных бассейнов и питались бактериальными матами (строматолитами). Эти бассейны, что интересно, были не совсем морскими, а находились в устьях крупных рек, то есть это некие осолоненные водные бассейны.

— Жизнь, конечно, зародилась гораздо раньше эдиакария, но так называемые видимые многоклеточные организмы, вероятно, появились именно в эдиакарии. Если мы говорим об эдиакарской фауне, то ее представители действительно предпочитали жить в мелких прудах, устьях. Почему именно там? Для таких организмов было важно, чтобы в зоне их обитания не было каких-то сильно приливно-отливных воздействий, чтобы их не уносило в океан, чтобы была спокойная гидродинамика. Эти древние животные ползали, как современные медузы, и собирали пищу со дна, однако жизнь их длилась недолго, поскольку вскоре, около 540 млн лет назад, появились новые организмы, которые их, попросту говоря, съели. Но это уже принципиально новая веха в истории Земли, которая называется кембрием.

— Как современная наука объясняет кембрийский взрыв, когда на Земле произошел невиданно резкий рост биоразнообразия? Это как-то связано с уровнем кислорода на планете в тот период?

— Безусловно, проблема кислорода играет здесь очень важную роль. Как раз после криогения, крупной ледниковой эпохи в конце докембрия (635–720 млн лет назад), в результате таяния ледников произошло необычное событие: океан полностью перемешался и исчезли его стратифицированные бескислородные оазисы, то есть океанские воды полностью насытились кислородом, вплоть до глубинных слоев. А ведь до этого, в докембрии, начиная от появления кислорода в морской воде примерно 2,5 млрд лет назад, он насыщал лишь поверхностный слой океана. Получается, что после неопротерозойских оледенений, накануне кембрийского взрыва, наш океан впервые насытился кислородом. Кроме того, ледниковые воды размыли большие площади суши, в результате чего океан обогатился огромным количеством питательных веществ — нутриентов, что также спровоцировало эволюционный скачок. Во многих геологических разрезах, где присутствуют докембрийские породы, непосредственно перед появлением слоев с кембрийской жизнью, с кембрийской фауной мы наблюдаем слои, в которых явно присутствуют метки, указывающие на то, что количество кислорода в осадочных бассейнах увеличилось. Это демонстрирует очевидную связь уровня кислорода и кембрийского взрыва. Подобные геологические разрезы есть в разных местах земного шара: в Австралии, Африке, Северной Америке, Центральной Азии и на Восточно-Европейской платформе. В России такие разрезы мы находим в Архангельской области, Якутии и в других регионах.

Отпечатки следов ползания древних организмов. Вероятно, Helminthoida

Отпечатки следов ползания древних организмов. Вероятно, Helminthoida

Баянгольская свита, Монголия. Фото: А.Б. Кузнецов, 2013 г.

— В чем особенность кембрийского периода? Были у вас свои находки, связанные с кембрийским взрывом?

Читайте также: