Какие явления наблюдаются на солнце кратко

Обновлено: 14.05.2024

совокупность явлений, наблюдаемых на Солнце и связанных с образованием солнечных пятен (См. Солнечные пятна), Факелов, флоккулов (См. Флоккулы), волокон (См. Волокно), протуберанцев (См. Протуберанцы), возникновением солнечных вспышек, возмущений в солнечной короне (См. Солнечная корона), увеличением ультрафиолетового, рентгеновского и корпускулярного излучения и др. Активные образования наблюдаются обычно на ограниченном участке поверхности Солнца — в т. н. активной области Солнца, которая существует от нескольких дней до нескольких месяцев. При зарождении активной области появляются флоккулы (увеличивается яркость в линиях поглощения водорода и ионизованного кальция), а спустя некоторое время (обычно нескольких дней) возникают мелкие пятна. Постепенно количество пятен и их величина возрастают, растет интенсивность и др. проявлений С. а. Избыток излучения в линиях водорода и кальция, характеризующий активную область, сильно увеличивается во время солнечных вспышек. Солнечные вспышки возникают вблизи развивающихся или распадающихся групп пятен и проявляются как внезапное появление эмиссии в сильных линиях поглощения (линии водорода Нα, Нβ; линии Н и К ионизованного кальция и др.) и увеличение интенсивности ультрафиолетового и рентгеновского излучения и корпускулярного потока. Повышается также уровень излучения в радиодиапазоне. Слабые вспышки наблюдаются в больших группах пятен почти ежедневно, мощные же вспышки — явление довольно редкое. Продолжительность вспышек — от нескольких минут до нескольких часов. Напряжённость магнитного поля в пятнах достигает нескольких тысяч э.

Интенсивность явлений С. а. характеризуют условными индексами — относительным числом солнечных пятен (Вольфа числа (См. Вольфа число)), площадью пятен, площадью и яркостью факелов, флоккулов, волокон и протуберанцев. Средняя годовая величина таких индексов изменяется периодически. Так, числа Вольфа изменяются со средним периодом около 11 лет (период колеблется от 7,5 до 16 лет). Величина максимума 11-летнего цикла изменяется с периодом около 80 лет.

Активные области занимают на диске Солнца два пояса, расположенных параллельно экватору по обе стороны от него. Удаление этих поясов от экватора изменяется также периодически. В начале 11-летнего цикла активные области наиболее удалены от солнечного экватора, а затем постепенно к нему приближаются (к концу цикла средняя гелиографическая широта составляет ± 8°). С. а. оказывает существенное влияние на земные явления (см. Солнечно-земные связи). См. также Солнце.

Лит.: Солнечная система, под ред. Дж. Койпера, пер. с англ., т. 1, М., 1957; Зирин Г., Солнечная атмосфера, пер. с англ., М., 1969.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Полезное

Смотреть что такое "Солнечная активность" в других словарях:

СОЛНЕЧНАЯ АКТИВНОСТЬ — СОЛНЕЧНАЯ АКТИВНОСТЬ, совокупность нестационарных явлений в атмосфере Солнца: солнечных пятен, факелов, вспышек, протуберанцев и др. Области, где наблюдаются эти явления, называются центрами солнечной активности. В солнечной активности (росте и… … Современная энциклопедия

Солнечная активность — СОЛНЕЧНАЯ АКТИВНОСТЬ, совокупность нестационарных явлений в атмосфере Солнца: солнечных пятен, факелов, вспышек, протуберанцев и др. Области, где наблюдаются эти явления, называются центрами солнечной активности. В солнечной активности (росте и… … Иллюстрированный энциклопедический словарь

СОЛНЕЧНАЯ АКТИВНОСТЬ — регулярное возникновение в атмосфере Солнца характерных образований: солнечных пятен, факелов в фотосфере, флоккулов и вспышек в хромосфере, протуберанцев в короне. Области, где в совокупности наблюдаются эти явления, называются центрами… … Большой Энциклопедический словарь

СОЛНЕЧНАЯ АКТИВНОСТЬ — в широком смысле изменчивость (переменность)Солнца. Проявляетея во всей совокупности нестационарных процессов на Солнце ив его атмосфере: возникновении и исчезновении пятен, протуберанцев, факелов … Физическая энциклопедия

солнечная активность — Регулярное (с периодом около 11 лет) возникновение в атмосфере Солнца характерных образований и явлений: солнечных пятен, протуберанцев и пр., вызывающих магнитные бури и ионизацию газов в атмосфере Земли … Словарь по географии

Солнечная активность — Последние 30 лет солнечной активности. Солнечная активность комплекс явлений и процессов, связанных с образованием и распадом в солнечной атмосфере сильных магнитных полей. Сод … Википедия

солнечная активность — регулярное возникновение в атмосфере Солнца характерных образований: солнечных пятен, факелов в фотосфере, флоккулов и вспышек в хромосфере, протуберанцев в короне. Области, где в совокупности наблюдаются эти явления, называются центрами… … Энциклопедический словарь

солнечная активность — Saulės aktyvumas statusas T sritis ekologija ir aplinkotyra apibrėžtis Periodiškai kas 11,16 metų kintantys Saulės atmosferos dariniai ir reiškiniai. Stiprėjant Saulės aktyvumui, Saulės fotosferoje susidaro stiprūs vietiniai magnetiniai laukai,… … Ekologijos terminų aiškinamasis žodynas

солнечная активность — регулярное возникновение на Солнце особых образований (солнечных пятен и др.), сопровождающееся усилением корпускулярного излучения Солнца; С. а. оказывает воздействие на многие, в т. ч. биологические, процессы на Земле … Большой медицинский словарь

СОЛНЕЧНАЯ АКТИВНОСТЬ — регулярное возникновение в атмосфере Солнца характерных образований: солнечных пятен, факелов в фотосфере, флоккулов и вспышек в хромосфере, протуберанцев в короне. Области, где в совокупности наблюдаются эти явления, наз. центрами С. а. В С. а.… … Естествознание. Энциклопедический словарь

Sun-vp


На первый взгляд кажется, что наблюдать Солнце куда менее интересно, чем объекты ночного неба. И действительно, даже средней руки любительский телескоп открывает наблюдателю сотни тысяч звёзд, а ещё – туманности, галактики, кометы, планеты и малые тела Солнечной системы. В то же время, Солнце, что освещает поверхность нашей планеты на протяжении миллиардов лет, представляется постоянным и однообразным объектом наблюдений. Однако наличие специализированного оборудования позволяет показать множество масштабных, удивительных и интересных явлений на нашем светиле. В распоряжении Астрономического сообщества БФУ им. И. Канта находится как раз такие приборы – расположенные в лаборатории астрономии и астрофизики, мощный солнечный телескоп, созданный путём комбинации телескопа-рефрактора ТАЛ-100 и Coronado-PST , а также телескоп-рефлектор ТАЛ-200 с солнечным фильтром .

Так что же можно наблюдать на поверхности Солнца? Несмотря на то, что для наблюдателя доступен только очень тонкий поверхностный слой огромной звезды, на нём происходит много всего интересного. Казалось бы, раскалённая до немыслимых температур, поверхность Солнца должна видеться нам просто как сияющий диск. Повседневная жизнь только подтверждает такую гипотезу – обычно мы видим Солнце как светящийся объект на небосводе, не различая на нём каких-либо деталей из-за нестерпимо яркого света. По этой причине нельзя смотреть на Солнце в телескоп или бинокль – собранный этими приборами, солнечный свет запросто сожжёт сетчатку глаза неосторожному наблюдателю. Однако используя специальные очень тёмные светофильтры, или просто проецируя изображение из телескопа на экран, даже при помощи самых простых оптических инструментов можно разглядеть сложную структуру поверхности Солнца. Именно так используется рефлектор ТАЛ-200 – в сочетании с плёночным солнечным фильтром, он позволяет проводить качественные наблюдения за поверхностью светила.

Первое, что бросается в глаза даже при беглом наблюдении – очень резкий край солнечного диска . Для огромного горячего газового шара, не имеющего чёткой границы, подобная ярко выраженная поверхность кажется неуместной. Однако всё дело в том, что почти весь видимый глазу солнечный свет исходит из тонкого слоя вещества, называемого фотосферой, чья толщина меньше трёхсот километров. Таким образом, несмотря на то, что Солнце простирается далеко за фотосферу, мы попросту не увидим слабо светящихся частей звезды.

Если мы взглянем на поверхность Солнца, то сможем увидеть на ней тёмные пятна , неравномерно распределённые по диску. Их размеры невелики, но лишь относительно масштабов самого светила – самые крупные из них в несколько раз превосходят Землю. Пятна группируются в скопления, а всего на диске их можно наблюдать несколько десятков. Учёными было установлено, что пятна причудливым образом связаны с активностью магнитного поля Солнца. В результате прохождения сверхсильных магнитных полей через фотосферу, возникают участки, чуть более холодные, чем температуры поверхности Солнца. Их-то и можно наблюдать в виде тёмных пятен. Пятна могут существовать до нескольких месяцев, совершая за это время несколько оборотов вместе со своим светилом.

При детальном наблюдении окрестностей пятен, можно заметить более яркие (и, соответственно, более горячие) области поверхности Солнца, называемые факелами . Их температура на две тысячи градусов выше, чем у солнечного диска и зачастую они окружают относительно холодные пятна. Однако факелы могут существовать и отдельно от пятен, образуя целые факельные поля – области, содержащие десятки факелов, в которых никогда не появляется пятен. Судя по всему, своему появлению факелы тоже обязаны выходам магнитных полей.

Давайте на время отвлечёмся от пятен на Солнце и обратимся к остальной части солнечного диска. На первый взгляд, поверхность кажется однородной, однако даже с помощью не очень мощного телескопа (не забывая про тёмный светофильтр!) можно разглядеть ячеистую структуру поверхности Солнца. Отдельные яркие ячейки (получившие название гранулы) чередуются с чуть более тёмными прожилками. Стоит отметить, что вся эта структура динамично меняется – отдельные гранулы постоянно то исчезают, то появляются, живя на поверхности звезды несколько минут. Всё это напоминает огромный кипящий котёл, где в роли пузырьков выступают тысячекилометровые гранулы. Однако размеры самого Солнца столь велики, что на его поверхности умещается до миллиона таких гранул.

Пятна и гранулярная структура поверхности солнечного диска не только интересны для наблюдения за ними, но и позволяют учёным многое выяснить о Солнце. Так, первые попытки оценить активность Солнца были предприняты в XIX веке, и были связаны как раз-таки с изучением пятен на Солнце. Несмотря на то, что тогда учёные ещё не знали о физической природе пятен, они заметили наличие некоторой закономерности в количестве и расположении пятен. Как было установлено швейцарским астрономом Рудольфом Вольфом и его немецким коллегой Генрихом Швабе, максимумы и минимумы числа пятен на Солнце повторяются каждые одиннадцать лет. Это явление получило название одиннадцатилетних циклов активности. На пике каждого цикла на поверхности светила можно наблюдать до сотни пятен, в то время как в минимуме их бывает всего несколько штук. Больше того, бывали периоды, когда на Солнце не было ни одного тёмного пятна! Сейчас понятно, что количество пятен прямо указывает на магнитную активность Солнца, а потому наблюдения за пятнами – одна из важнейших частей мониторинга солнечной активности. По мере дальнейшего развития солнечной астрономии, а также накопления материалов, учёными было установлено, что кроме самого очевидного – одиннадцатилетнего – цикла (его ещё называют циклом Швабе, по имени одного из первооткрывателей) существуют и более продолжительные периодические колебания солнечной активности, накладывающиеся на циклы Швабе. Современные астрономы выделяют вековой и тысячелетний циклы, не исключая возможности существования и более продолжительных цикличных процессов на Солнце.

Протуберанцы – пожалуй, самые зрелищные процессы на поверхности Солнца. Огромные сгустки вещества, превосходящие по массе Землю, вырываются сверхмощными магнитными полями на высоту до двух миллионов километров от Солнца. В ходе этого процесса вещество протуберанцев разгоняется до скоростей в сотни километров в секунду – в десятки раз быстрее космических ракет. Протуберанцы бывают настолько огромны, что их можно увидеть с Земли даже без сверхсовременных приборов. Однако такое возможно только очень редко – во время непродолжительных полных солнечных затмений. Дело в том, что чрезвычайно яркий свет фотосферы в обычных условиях затмевает свет пусть и раскалённых, но достаточно рассеянных протуберанцев. Фильтрацией этого света и занимаются солнечные телескопы, позволяя наблюдать протуберанцы на постоянной основе.

Корональные выбросы – время от времени происходящие на поверхности Солнца мощные выбросы вещества, сопровождающиеся всплесками активности магнитного поля светила. В отличие от протуберанцев, большая часть вещества которых возвращается на Солнце, содержимое выбросов ускоряется магнитным полем до таких скоростей, что буквально выстреливает в открытый космос. Такие выбросы могут достигать Земли, вызывая в магнитосфере нашей планеты мощные магнитные бури, опасные для чувствительной электроники и сказывающиеся на самочувствие людей. Регистрировать их намного сложнее, чем протуберанцы, ведь выбрасываемое вещество очень разряжено, и его сложно заметить на фоне короны и солнечного ветра. Лишь прибегнув к помощи космических обсерваторий, астрофизикам удалось измерить параметры этого явления.

Нельзя обойти вниманием и ещё одну форму проявления активности Солнца – так называемые солнечные вспышки . В отличие от всех предыдущих явлений, они не сопряжены с выбросами массы, однако тоже вносят существенный вклад в солнечную активность. Эти мощнейшие процессы охватывают все части атмосферы Солнца – от фотосферы до короны и длятся всего несколько минут. Но за это время выделяется колоссальная энергия, в миллионы раз большая, чем взрывы самых мощных термоядерных бомб, созданных человеком. К счастью, большая часть этой колоссальной энергии излучается в рентгеновском диапазоне и полностью поглощается атмосферой нашей планеты. Учёные изучают периодичность вспышек и пытаются построить, на основании данных о магнитной активности Солнца, прогноз появления вспышек. Пока что приемлемую точность имеют лишь краткосрочные прогнозы, что является следствием сложности процессов, протекающих на поверхности Солнца. Однако уже сегодня ясно – солнечные вспышки каким-то образом связаны с корональными выбросами – зачастую, эти явления происходят одновременно на одном и том же участке Солнца. Пока что учёные не могут внятно ответить на вопрос – являются ли они порождение друг друга или всего лишь сопровождают какой-то более сложный процесс солнечной активности.

Помню в девятом классе я шел утром в школу. Было начало апреля и утром стояла та самая погода, которую больше всего любят все весной. Мороз, но не сильный, так что можно было одеться по-весеннему с прицелом, что после обеда будет тепло и побегут ручейки. Все лужи стояли покрытыми тонкой коркой белого льда, по которому проходишь, и он с приятным хрустом ломается. А был и толстый черный лед, завидев который, ты разбегаешься и скользишь по нему, еле удерживая баланс.

Оказывается, это не было глюком вследствие подростковых гормонов, а возникло одно из частых солнечных явлений –

Гало

Про гало я узнал спустя много лет, так как больше не встречал такое явление. Узнал название случайно, то ли по телевизору, то ли в интернете. Мои сравнения с радугой оказались верны.

Гало – это ледяной аналог радуги. Отличие от радуги в том, что преломление света происходит не на каплях жидкости, а на кристаллах льда.

Странно, что в школе нам не рассказывали про гало, а то чувствовал себя первобытным человеком, который впервые увидел огонь.

Паргелий

Полез в копаться в интернет и понял, что это в самом деле не гало, а его разновидность

Брокенский призрак

У меня есть мечта – научиться летать на дельталете и купить этот аппарат. Многие годы я смотрю ролики, как пилоты из разных стран летают на этом сверхлегком летательном аппарате. Есть у меня и любимчик из Питера Алексей. На YouTube у него есть даже канал, называется deltaangar. Кто интересуется дельталетами, тот точно его знает.

Однажды он поднялся в небо, метров на двести или даже больше и нырнул в облака. В какой-то момент камеры на его дельталете засняли любопытное явление. В небе было солнечно и оно светило ярко. В противоположной от солнца стороне на белом облаке проявилась тень дельталета, а вокруг него разноцветный, радужный ореол.

О некоторых из них уже говорилось — это лучистый перенос энергии из центральной области к периферии, конвективное движение газа во внешнем слое Солнца, явление хромосферных спикул. На фоне равенства прихода и расхода энергии в атмосфере Солнца интенсивно протекают вихревые неупорядоченные или турбулентные движения газов. Они свойственны помимо солнечной атмосферы и внешнему слою солнечного шара, образованному непрозрачным газом, — его конвективной области. Среди разного рода движений газов остановимся лишь на некоторых широко распространенных в атмосфере и на поверхности Солнца: солнечных пятнах, солнечных факелах, флоккулах и протуберанцах. Все они обусловлены взаимодействием различных магнитных полей.

Солнечные пятна. Если рассматривать диск светила через затемненное стекло, то временами в разных местах солнечной поверхности даже невооруженным глазом можно увидеть почти черные образования — пятна . Поперечник этих образований может достигать многих тысяч километров. Они распределяются на фоне видимого диска Солнца неравномерно — то одиночно, то группами. Эти образования непостоянны: они существуют от нескольких часов до нескольких месяцев, а затем исчезают, и вместо них, в других местах, появляются новые пятна.

Образующий Солнце газ является прекрасным проводником электричества, особенно в центральной области, где условия экстремальны. В целом Солнце обладает единым магнитным полем и, кроме того, локальными полями. Например, вокруг солнечных пятен магнитные поля имеют напряженность в среднем 3000 Э. Для сравнения укажем, что у Земли магнитное поле несравненно слабее: на магнитных полюсах оно имеет напряженность всего 0,6 — 0,7 Э, а на магнитном экваторе и того меньше — 0,4 Э. Следовательно, оно в 7500 раз слабее, чем у солнечных пятен. Температура темных пятен у Солнца на 1000 — 20000 ниже, чем фотосферы в целом.

В совокупности пятна и их скопления образуют на Солнце активные области. Изменение положения пятен, их количество и подвижность не остаются постоянными. Наиболее известен 11-летний цикл (11,2 года) активности пятен — это осредненный срок, фактически же он колеблется от 7,5 до 16 лет. Солнечные пятна рассматриваются как углубления, или провалы, в видимой поверхности. Ритм изменения солнечной активности отражается на многих процессах и явлениях земной поверхности и ее атмосферы (солнечные сияния, прохождения радиоволн в верхней атмосфере).

Солнечные факелы и флоккулы. На краю солнечного диска, где заметно потемнение, поскольку там находятся верхние, более холодные слои нижней атмосферы, часто наблюдаются светлые факелы. В центральной части диска, где сосредоточены более глубокие и более нагретые, а, следовательно, более яркие слои атмосферы, факелы не видны — они сливаются с фотосферой. Полагают, что факелы имеют несколько более высокую температуру, чем фотосфера, поскольку газ в них сильнее ионизирован, т. е. у него меньше нейтральных атомов. Факелы могут достигать в высоту тысячи, и даже десятки тысяч километров.

В хромосфере над факелами располагаются светлые облака — флоккулы. Они имеют по вертикали размеры в тысячи и сотни тысяч километров. Что же касается распространенности их в горизонтальном направлении, то в совокупности они занимают от 10 до 30% площади солнечного диска. Различают флоккулы, образованные преимущественно либо ионизированным водородом, либо кальцием.

Протуберанцы — особые формы неупорядоченного движения газов в солнечной атмосфере . Они наблюдаются на краю диска, имеют разнообразную и постоянно меняющуюся форму струй, фонтанов, арок, дерева, облака или столба дыма и т.д. С помощью кинематографического метода удалось с большой детальностью исследовать их движения. Установлены некоторые типичные метаморфозы этих образований. Раньше считалось, что протуберанцы — это выбросы Солнца, т. е. они имеют движение снизу вверх. Теперь обнаружены и многие другие формы их движения. Например, есть протуберанцы, зарождающиеся в верхней атмосфере Солнца, в короне, и движущиеся сверху вниз — к солнечной поверхности, в область солнечных пятен. Нередки движения от одного протуберанца к другому, т. е. параллельно поверхности солнечного диска. В движении газов наблюдается образование струй и узлов, и когда они опускаются, то, как бы притягиваются определенным центром или несколькими центрами.

Исследования протуберанцев проведенные кинематографическим методом, А. Б. Северным и В. Л. Хохловой, позволили выявить некоторую упорядоченность их движений. Различные виды протуберанцев можно свести к трем основным типам движения.

Пожалуй, наиболее характерными являются так называемые эруптивные протуберанцы. Такие газовые образования в течение нескольких дней могут иметь вид спокойного облака, или длинной струи дыма, или, наконец, арки. На этой стадии внутри протуберанца никаких заметных движений нет. Но затем они переходят в фазу бурного развития, когда возникают вихревые вращения всего протуберанца или поднимается одно из колен арки. Эти перестройки осуществляются быстро — в течение нескольких минут. Протуберанец начинает растягиваться, подниматься. Происходит как бы замедленный взрыв. Яркость его увеличивается, а потом сразу же ослабевает. При таких вспышках или взрывах движение протуберанца имеет в общем радиальное от Солнца направление и может достигать высоты, равной диаметру Солнца, а скорости движений могут измеряться сотнями километров в секунду. Достигая кульминационной высоты, такой протуберанец начинает распадаться — от него отделяются узлы и струи, которые почти отвесно падают вниз на поверхность Солнца. Весь процесс развития взрывного протуберанца продолжается не больше получаса, после чего все признаки его существования исчезают. Часть его вещества поднимается вверх, темнеет и перестает быть видимой. Пока не удалось установить, выбрасывается ли вещество в межпланетное пространство или остается в верхней атмосфере Солнца. Дело в том, что максимальная установленная скорость роста эруптивного протуберанца составляет 700 км/сек, а параболическая скорость в верхней атмосфере Солнца равняется только 450 км/сек (на высоте радиуса Солнца от его поверхности). Следовательно, вещество эруптивного протуберанца может выбрасываться в межпланетное пространство.

Эруптивные протуберанцы — явления относительно редкие, на их долю приходится всего 10-15% всех случаев образования протуберанцев.

Ко второму типу относятся протуберанцы, приуроченные к областям солнечных пятен. Для таких протуберанцев свойственно движение газовых струй и узлов по определенным искривленным траекториям, напоминающим силовые линии некоторых магнитных полей. Другими словами, наблюдается в какой-то степени упорядоченность движений этих газовых скоплений, приуроченность их к своеобразным каналам или путям, масса протуберанца не растекается. Иногда узлы и струи движутся по круговым путям: от поверхности Солнца к верхней атмосфере — одна ветвь и в обратном направлении — другая. Чаще происходит движение от коронарных облаков к поверхности Солнца. Имеются случаи появления в солнечной короне светящейся точки, быстро развивающейся в сложный протуберанец, который распространяется вниз, к поверхности Солнца, и в этом направлении сильно увеличивается в размерах и приобретает форму подобия облака. Скорости движения газовых сгустков в этих протуберанцах меньше, чем у эруптивных, они составляют всего десятки — первые сотни километров в секунду.

К третьему типу относятся многочисленные протуберанцы без упорядоченных движений, т. е. хаотическими движениями. Они претерпевают непрерывные изменения отдельных узлов, газовых струй и конфигураций в их совокупности. В протуберанцах исчезают и появляются новые узлы и струи, испытывающие то сжимание, то растяжение. В общем, для таких протуберанцев свойственны большие размеры; высота их может достигать 150 тыс. км. На солнечном диске протуберанцы видны как светлые струи, нередко они напоминают воздушные вихри земных циклонов.

До сих пор недостаточно раскрыта физическая сущность явлений протуберанцев. Очевидно, что неупорядоченные движения газовых масс протуберанцев объясняются неравномерностью теплового поля солнечной атмосферы и, следовательно, различной степенью ионизации ее газов, непостоянством магнитного поля, давления света и другими факторами. Можно лишь с уверенностью утверждать, что физические процессы на поверхности Солнца и в его атмосфере имеют совершенно особый, несравнимый с процессами на Земле характер, что исключает возможность сопоставления их между собой. Но в целом, как Земля, так и планеты реагируют на них, что и представляет для нас интерес.

Солнце — звезда, вокруг которой вращаются планеты Солнечной системы. Каждую секунду светило сжигает 500 млн тонн водорода и излучает такое огромное количество энергии, что мы ощущаем его тепло, хотя нас разделяют почти 150 млн км.

Диаметр Солнца составляет 1,4 млн км и более чем в сто раз превышает диаметр Земли. Сила гравитации притягивает к Солнцу и удерживает на орбитах тела, удаленные от него на сотни миллиардов километров. Как и все звезды, Солнце представляет собой огромный термоядерный реактор, постоянно сжигающий колоссальные объемы водорода — самого простого из химических элементов, существующих во Вселенной. Основным источником энергии Солнца служит термоядерная реакция слияния ядер водорода и их превращения в ядра гелия.


Живая звезда

Солнце живет по тем же правилам, что и все остальные звезды. В каждой звезде устанавливается равновесие между силами гравитации, сжимающими вещество звезды в направлении ее центра, и силами термоядерной реакции, в ходе которой ядра атомов сливаются и высвобождается энергия, способствующая, напротив, расширению звезды. Термоядерные реакции происходят вследствие гравитации, но противодействуют ей. Пока между ними сохраняется равновесие, продолжается жизнь звезды. Благодаря такому равновесию Солнце светит уже 4,6 млрд лет. Имеющиеся в нем запасы водорода должны позволить светилу излучать энергию еще как минимум в течение такого же срока.

Пламенное ядро

Температура и давление в солнечном ядре невероятно велики: 15 млн градусов Цельсия и 340 млрд (по оценкам НАСА, 200 млрд) атмосфер. В этой печи и происходят термоядерные реакции, дающие Солнцу его энергию. Каждую секунду 500 млн тонн водорода превращаются в гелий, при этом почти 4 млн тонн вещества переходят в энергию. Высвобождающаяся энергия устремляется из ядра наружу и попадает сначала в окружающую ядро зону лучистого переноса энергии, а оттуда в конвективную зону, в которой происходит бурная циркуляция вещества, передающая энергию следующему слою — фотосфере.

Мощное магнитное поле

Фотосфера, расположенная над конвективной зоной, представляет собой слой толщиной около 200 км, состоящий из довольно прозрачного вещества, сквозь которое могут проходить возникающие здесь световые лучи. Средняя температура фотосферы около 6400 °С. Вся поверхность фотосферы светится неравномерно. Исследователи установили, что она представляет собой мозаику из ярких областей (гранул) размером около 1-2 тыс. км — это места, где мы видим возмущения, непрерывно происходящие в конвективной зоне.

Иногда в фотосфере возникают темные участки — так называемые солнечные пятна размером от нескольких тысяч до десятков тысяч километров в поперечнике. Температура в этих зонах на 2000-3000°С ниже, чем в окружающих областях. Здесь действуют магнитные поля, в десятки тысяч раз более сильные, чем магнитное поле Земли. Магнитные поля замедляют поток тепла из недр Солнца, и температура на этих участках снижается. Солнечные пятна, как правило, существуют несколько недель, а самые крупные могут сохраняться месяцы. Вокруг солнечных пятен нередко можно наблюдать факелы — облака ярко светящегося газа. Изучение солнечных пятен позволило лучше понять циклы солнечной активности. Следя за положением пятен и их перемещениями, астрономы оценили период вращения Солнца вокруг оси, проходящей через его полюса, — он составляет около 30 земных дней. Строго говоря, период вращения различается на разных широтах — он короче на солнечном экваторе и длиннее у полюсов. Так, сидерический период — относительно неподвижных звезд — составляет примерно 25 дней на экваторе и достигает 30 дней вблизи полюсов, а поскольку Земля движется вокруг Солнца в ту же сторону, то для земного наблюдателя период вращения Солнца равен 27 дням на экваторе и 32 дням у полюсов.

Солнечная корона

Во время полного солнечного затмения можно наблюдать окружающее солнечный диск розовое кольцо, толщина которого составляет примерно 10 тыс. км. Это хромосфера. Над ее поверхностью время от времени поднимаются огромные светящиеся струи — протуберанцы. Эти выбросы газа, напоминающие по форме петли, фонтаны, кусты, арки, завитки, обычно связаны с солнечными пятнами. Их форма определяется магнитным полем Солнца. Они могут выбрасываться со скоростью почти 1000 км/с и подниматься над поверхностью хромосферы на высоту до 500 тыс. км.

Солнечная корона из сильно разреженного вещества, окружающая хромосферу, простирается более чем на 10 солнечных радиусов. Она пронизана струями раскаленного газа, ее температура чрезвычайно велика. На больших расстояниях из короны во всех направлениях исходят непрерывные мощные потоки заряженных частиц — так называемый солнечный ветер.

В окрестностях Земли его средняя скорость составляет около 400 км/с. Взаимодействуя с газами земной атмосферы, солнечный ветер заставляет их атомы светиться, вызывая полярное сияние, похожее на огромные развевающиеся в небе разноцветные знамена.

Смена настроения

Магнитное поле Солнца оказывает постоянное влияние на фотосферу, хромосферу и солнечную корону, однако в разное время действует неодинаково. Периодические изменения, связанные с колебаниями магнитного поля Солнца, называются солнечной активностью. Цикл солнечной активности длится примерно 11 лет. Ее проявления включают солнечные пятна, факелы, протуберанцы, а также вспышки — внезапный взрывной выброс энергии магнитных полей, связанный с возникновением солнечных пятен. Вспышки длятся всего несколько минут, но вызывают магнитные бури на Земле.

В периоды увеличения солнечной активности возрастает количество пятен (от практически полного их отсутствия до приблизительно 100). Когда цикл завершается, число солнечных пятен снова уменьшается. Потом цикл повторяется. Во время пика солнечной активности и вспышек полярное сияние усиливается и становится особенно ярким, а протуберанцы иногда можно наблюдать даже с поверхности Земли.

Природа и причины циклов солнечной активности — одна из великих загадок. Астрономы подробно описали это явление, но ни одна из предложенных моделей пока не в состоянии предсказывать возникновение солнечных пятен, исходя из физических принципов.

Это напоминает наше бессилие в области предсказания землетрясений. Между тем разобраться в солнечных циклах было бы очень полезно, потому что проявления солнечной активности сказываются на жизни Земли, возможно даже определяя некоторые изменения климата. Наша крошечная планета во многом зависит от капризов Солнца.

Читайте также: