Какие условия способствовали появлению индустриального меланизма у бабочки березовой пяденицы кратко

Обновлено: 07.07.2024

ОТВЕТ: Индустриальный меланизм - это явление, когда из-за развития промышленности и загрязнения воздуха в Англии в 19-20 веках произошло увеличение числа темноокрашенных бабочек по сравнению со светлоокрашенными. Причина изменения направления естественного отбора в пользу темноокрашенных бабочек – загрязнение стволов берез копотью в промышленных районах, что дает преимущество в маскировке темноокрашенным бабочкам. Это появление движущей формы естественного отбора.

Почему большинство организмов в ходе эволюции перешли к половому размножению?

ОТВЕТ:Половое размножение увеличивает разнообразие потомства, что ускоряет естественный отбор- главную направляющую силу эволюции.

Почему со временем повышается устойчивость насекомых-вредителей к ядохимикатам?

ОТВЕТ: В популяции насекомых –вредителей из-за появления мутаций со временем появляются особи, устойчивые к ядохимикатам. Эти особи сохраняются естественным отбором и их количество в последующих поколениях увеличивается. Поэтому прежние дозы или виды ядохимикатов уже перестают действовать на вредителей.

Пчеловидные мухи, не имеющие жалящего аппарата, по внешнему виду сходны с пчелами. Объясните на основе эволюционной теории возникновение данного вида приспособления.

ОТВЕТ: Вид приспособленности, когда незащищенные виды становятся похожими на защищенные виды, называется мимикрия. Причина: у разных видов могут возникнуть сходные мутации по внешним признакам. Особи, незащищенного вида, имеющие сходство с особями защищенного вида, получают преимущество в выживании (реже склевываются птицами) и распространяются в популяции.

Назовите тип приспособления, значение защитной окраски, а также относительный характер приспособленности камбалы, которая живет в морских водоемах близ дна.

ОТВЕТ: Тип окраски – покровительственная – слияние с фоном морского дна; способность изменять окраску верхней стороны тела делает рыбу незаметной на фоне грунта, позволяя скрываться от врагов и от возможной добычи. Приспособленность не помогает при движении рыбы, и она становится заметной для врагов.

Популяцию считают единицей эволюции. Обоснуйте это утверждение.

ОТВЕТ:В популяции: накапливаются мутации, приводящие к изменению генофонда; происходит миграция особей и обмен генами; происходит борьба за существование и естественный отбор

Какие органические вещества обеспечили воспроизводство организмов в период возникновения жизни?

ОТВЕТ:Нуклеиновые кислоты.

Что представляют собой полученные в лабораторных условиях коацерваты?

ОТВЕТ:Сгусток органических веществ.

В основе какой теории лежит представление о возникновении жизни на Земле химическим путем?

ОТВЕТ:Теории абиогенного синтеза.

Почему первые живые организмы были гетеротрофами?

ОТВЕТ:В первичном океане было много органических веществ, и отсутствовали автотрофы.

Почему брожение считают эволюционно более древним типом энергетического обмена, чем дыхание?

ОТВЕТ:Брожение осуществляется без участия кислорода, которого не было в атмосфере.

Основы генетики

Почему генетикам необходимо знать гетерозиготность генотипов в популяциях человека?

ОТВЕТ: Для выявления наследственных заболеваний.

Каковы причины сцепленного наследования генов?

ОТВЕТ:Расположение генов в одной хромосоме.

3.Почему соматические мутации не передаютсяпо наследству при половом размножении?

ОТВЕТ:Возникают в клетках тела и исчезают со смертью организма.

Какова причина рождения детей с синдромом Дауна?

ОТВЕТ:Геномная мутация, т.е. наличие лишней хромосомы в 21-ой паре.

Что представляет собой гибридологический метод изучения наследственности?

ОТВЕТ:Подбор и скрещивание родительских форм, отличающихся рядом признаков и анализ наследования признаков потомством.

С помощью какого метода можно выявить болезнь Дауна?

ОТВЕТ:Цитогенетического (изучив и посчитав количество хромосом под микроскопом).

С какими структурами связана цитоплазматическая наследственность листьев томата?

ОТВЕТ:С хлоропластами и митохондриями, так как в них есть свои молекулы ДНК, свои гены.

Почему в фенотипе мух дрозофил длинные крылья встречаются чаще у серых особей?

Что представляет собой генофонд?

ОТВЕТ:Совокупность генов всех особей популяции и вида.

Какова сущность гипотезы чистоты гамет?

У матери, не являющейся носителем гена гемофилии, и больного гемофилией отца родились 2 дочери и 2 сына. Определите генотипы родителей, генотипы и фенотипы детей, если ген гемофилии является рецессивным и сцеплен с полом.

ОТВЕТ:генотипы родителей Х Н Х Н и Х h У; генотипы потомства - Х Н Х h и Х Н У; дочери – носительницы гена гемофилии, а сыновья – здоровы.

Отец имеет короткие ресницы (рецессивный аутосомный ген), а мать – длинные (доминантный ген), трое их детей имеют длинные ресницы, а двое – короткие. Определите виды гамет и генотипы родителей, а также генотипы потомства.

ОТВЕТ: Так как в потомстве наблюдается расщепление 1:1, значит отец имеет генотип аа, а мать – Аа. Гаметы отца – а, гаметы матери – А, а. Генотипы детей Аа (с длинными ресницами), аа (с короткими ресницами).

Юлия Кринецкая


Юлия Кринецкая

🐝

.
.
.
.
.
Показать полностью.
.
.
.
.
.
.
индустриальный меланизм это явление, при котором в результате перехода местности под контроль человека бабочки из своей обычной окраски переходят в более выгодную, черную (на фоне копоти, домов их не видно). Обычная пяденица - белая с серыми пятнами, поэтому на березе ее не видно. Черный характер окраски появляется доя предотвращения поедания ее птицами. Форма отбора - движущая.

Биология ЕГЭ 100БАЛЛОВ

Правильный ответ
.
.
.
.
Показать полностью.
.
.
.
.
.
.
1) Индустриальный меланизм — это явление, когда из-за развития промышленности и загрязнения воздуха в Англии в 19-20 веках произошло увеличение числа темноокрашенных бабочек по сравнению со светлоокрашенными.
2) Причина изменения направления естественного отбора в пользу темноокрашенных бабочек — загрязнение стволов берез копотью в промышленных районах, что дает преимущество в маскировке темноокрашенным бабочкам.
3) Это появление движущей формы естественного отбора.

Узоры на крыльях бабочек

Промышленный меланизм березовой пяденицы давно вошел в учебники как яркий пример эволюции в действии. Однако до сих пор не была известна природа мутации, породившей черную (меланистическую) форму березовой пяденицы, распространившуюся в индустриальных районах в связи с потемнением стволов деревьев. Британские генетики показали, что появление темных бабочек было связано со встраиванием транспозона в ген cortex, регулирующий деление клеток. Одновременно другая группа исследователей обнаружила, что варианты (аллели) этого гена коррелируют с различными элементами орнамента у самых разных бабочек. Судя по всему, ген cortex был привлечен к раскрашиванию крыльев еще на заре эволюции бабочек. Каким образом регулятор клеточных делений управляет окраской крыльев, пока неясно.

Промышленный меланизм березовой пяденицы давно вошел в учебники как типичный пример адаптивных изменений под действием отбора в изменившихся условиях среды. Пожалуй, это вообще самый известный пример наблюдаемой эволюции. При этом, как ни странно, до сих пор не была идентифицирована конкретная мутация, от которой у бабочек почернели крылья. Лишь недавно удалось, комбинируя классические методы генетики (то есть скрещивания и анализ расщепления признаков у потомства) и современные методы секвенирования и анализа нуклеотидных последовательностей, выявить участок генома длиной менее 400 кб (килобаз, тысяч пар оснований), в котором находится искомая мутация. Этот участок включает 13 белок-кодирующих генов и два гена микро-РНК. Удалось также показать, что распространившаяся в популяциях березовой пяденицы доминантная мутация carbonaria возникла единожды и совсем недавно (A. E. van’t Hof et al., 2011. Industrial melanism in British peppered moths has a singular and recent mutational origin). Разумеется, это не значит, что другие мутации, приводящие к меланизму, никогда не возникали. Это значит лишь, что данный конкретный случай промышленного меланизма у данного вида бабочек был связан с распространением только одной такой мутации, возникшей недавно.

Британские генетики, получившие этот результат, не остановились на достигнутом. В своей новой статье, опубликованной в последнем выпуске журнала Nature, они сообщили об успешной расшифровке молекулярной природы мутации carbonaria. Для этого пришлось тщательно отсеквенировать упомянутый участок генома у 110 черных и 283 светлых особей Biston betularia.

Оказалось, что полиморфизмы (различия нуклеотидной последовательности), коррелирующие с окраской крыльев, концентрируются только в одном из 13 генов, а именно в гене cortex. В пределах этого гена таких полиморфизмов оказалось довольно много, но только один из них встречается исключительно у черных бабочек (у 105 особей из 110) и не был встречен ни у одной светлой особи. Очевидно, именно этот полиморфизм и является искомой мутацией carbonaria, а все остальные полиморфизмы, чаще встречающиеся у черных бабочек, чем у светлых, распространились вместе с ним за счет сцепленного наследования (генетического автостопа, см. Genetic hitchhiking).

Природа мутации carbonaria оказалась весьма интересной: это не что иное, как крупный (21 925 нуклеотидов) мобильный элемент (транспозон), встроившийся в первый интрон гена cortex (рис. 2). Таким образом, получено еще одно наглядное подтверждение способности транспозонов производить полезные наследственные изменения (разумеется, полезность и вредность мутаций зависят от условий, и мутация carbonaria была полезна лишь в условиях сильного промышленного загрязнения).

Структура гена cortex

Авторы показали, что встраивание транспозона привело к усилению экспрессии гена cortex на той стадии развития личинки, когда происходит наиболее интенсивный рост зачатков крыльев. Ген имеет две альтернативные точки начала транскрипции (1A и 1B на рис. 2), поэтому на его основе синтезируется два варианта (изоформы) белка. Как выяснилось, встроенный транспозон усиливает экспрессию только одной из двух изоформ, более массовой (1B).

Анализ распределения полиморфизмов в окрестностях ключевой мутации подтвердил, что мутация carbonaria возникла недавно (скорее всего, в первой половине XIX века) и быстро распространилась под действием отбора. Хотя эпоха грязного воздуха, давшая преимущество черным бабочкам, длилась недолго, их короткий триумф оставил в их геномах характерные следы (см. Selective sweep). Чем ближе к месту встройки транспозона, тем чаще в пределах гена cortex у черных бабочек встречаются строго определенные полиморфизмы — те самые, которые имелись у счастливой первой обладательницы мутации carbonaria и затем распространились за счет генетического автостопа.

Что касается тех пяти черных бабочек, у которых нет транспозона в интроне гена cortex, то это, судя по всему, носители альтернативных аллелей того же гена, которые обычно обеспечивают вариант окраски insularia, промежуточный между typica и carbonaria. Ранее уже было известно, что аллели insularia изредка порождают очень темные фенотипы, практически неотличимые от carbonaria.

Один и тот же участок генома обеспечивает вариации окраски у разных бабочек

Рис. 3. Один и тот же участок генома обеспечивает вариации окраски у разных бабочек. Справа — схема хромосомы, на которой разными цветами обозначены гомологичные участки, а серым выделен фрагмент, содержащий ген cortex, изменения которого влияют на окраску крыльев. У Heliconius erato данный локус контролирует наличие или отсутствие желтой полосы на задних крыльях, у H. melpomene — желтые полосы на обеих парах крыльев, у H. numata — черные, желтые и оранжевые элементы узора, обеспечивающие сходство с бабочками рода Melinaea (пример мимикрии). Рисунок из обсуждаемой статьи N. J. Nadeau et al. в Nature

Оказалось, что у разных видов Heliconius самые разнообразные элементы орнамента крыльев — черные, желтые, оранжевые пятна и полосы — коррелируют с полиморфизмами в гене cortex (рис. 3). Как правило, ключевые полиморфизмы находятся в некодирующих областях гена, в том числе в интронах. Это значит, что эволюционные изменения орнамента крыльев были связаны с изменениями регуляции гена cortex, а не структуры кодируемого им белка. По-видимому, в некоторых случаях полиморфизмы, связанные с окраской крыльев, влияют на альтернативный сплайсинг, которому подвергается cortex, и меняют уровень экспрессии и соотношение изоформ в зачатках крыльев.

Ген cortex не относится к числу генов, которые можно было заподозрить в причастности к раскраске крыльев. Он входит в семейство генов, регулирующих деление клеток. Гены этого семейства активируют комплекс стимуляции анафазы, что способствует разделению сестринских хромосом во время клеточного деления. У дрозофилы ген cortex задействован в регуляции мейоза в яичниках самки и не имеет никакого отношения к окраске крыльев. Авторы второй статьи проверили, что будет, если ген cortex бабочки Heliconius melpomene заставить работать в зачатках крыльев дрозофилы — и это не привело ни к какому видимому эффекту.

Судя по всему, ген cortex, изначально не связанный с окраской, был привлечен к работе над орнаментом крыльев около 100 млн лет назад, на заре эволюции бабочек, и с тех пор неоднократно подвергался интенсивному отбору в разных эволюционных линиях.

Ген cortex отличается от найденных ранее генов орнаментации крыльев бабочек тем, что он кодирует не транскрипционный фактор и не сигнальный белок, выделяемый клетками наружу для межклеточного общения. Транскрипционные факторы и сигнальные белки легко приобретают новые функции: это профессиональные переключатели и регуляторы работы генов, которым всё равно, какие гены регулировать. Но cortex — специфический регулятор клеточных делений, который у дрозофилы обслуживает процесс созревания яйцеклеток. Его вовлеченность в раскрашивание крыльев бабочек приоткрывает какие-то новые грани в эволюционной биологии развития. Каким образом cortex влияет на окраску крыльев, неясно. Однако нужно иметь в виду, что узор на крыльях бабочек сложен из чешуек, каждая из которых формируется из единственной клетки (рис. 1). Динамика процессов деления и миграции клеток, которым суждено стать чешуйками того или иного цвета, на стадии поздней личинки и куколки, очевидно, влияет на итоговый орнамент, но конкретные механизмы этого влияния еще предстоит выяснить.

Источники:
1) Arjen E. van’t Hof, Pascal Campagne, Daniel J. Rigden, Carl J. Yung, Jessica Lingley, Michael A. Quail, Neil Hall, Alistair C. Darby, Ilik J. Saccheri. The industrial melanism mutation in British peppered moths is a transposable element // Nature. 2016. V. 534. P. 102–105.
2) Nicola J. Nadeau, Carolina Pardo-Diaz, Annabel Whibley, Megan A. Supple, Suzanne V. Saenko, Richard W. R. Wallbank, Grace C. Wu, Luana Maroja, Laura Ferguson, Joseph J. Hanly, Heather Hines, Camilo Salazar, Richard M. Merrill, Andrea J. Dowling, Richard H. ffrench-Constant, Violaine Llaurens, Mathieu Joron, W. Owen McMillan, Chris D. Jiggins. The gene cortex controls mimicry and crypsis in butterflies and moths // Nature. 2016. V. 534. P. 106–110.

Уско­рен­ная под­го­тов­ка к ЕГЭ с ре­пе­ти­то­ра­ми Учи.До­ма. За­пи­сы­вай­тесь на бес­плат­ное за­ня­тие!


-->


Задание 26 № 11248

Объясните причину индустриального меланизма у бабочек березовой пяденицы с позиции эволюционного учения и определите форму отбора.

1) Индустриальный меланизм — это явление, когда из-за развития промышленности и загрязнения воздуха в Англии в 19-20 веках произошло увеличение числа темноокрашенных бабочек по сравнению со светлоокрашенными.

2) Причина изменения направления естественного отбора в пользу темноокрашенных бабочек — загрязнение стволов берез копотью в промышленных районах, что дает преимущество в маскировке темноокрашенным бабочкам.

Светлые и темные мотыльки у каменной стены

Индустриальный меланизм – это термин, описывающий, как некоторые животные меняют цвет в ответ на изменения окружающей среды, вызванные загрязнением. Этот термин был придуман сразу после промышленной революции, когда уголь использовался на заводах в таких городах, как Лондон и Нью-Йорк. Индустриальный меланизм был открыт в 1900 году генетиком Уильямом Бейтсоном, и различные естествоиспытатели наблюдали это явление с течением времени. Хотя причина индустриального меланизма не была очевидна сразу, исследователи обнаружили, что это была эволюционная реакция на изменение окружающей среды.

Почему индустриальный меланизм возникает

В закопченном городе мотыльки и бабочки темного цвета живут лучше, чем их более светлые собратья. Конечно, если промышленные отходы очищаются, и окружающая среда становится светлее, животные с более темным окрасом становятся более заметными и уязвимыми для нападения. Те, кто светлее, в этом сценарии смогут выжить дольше и передать свои более светлые гены своему потомству.

Хотя это объяснение имеет смысл для некоторых примеров индустриального меланизма, некоторые животные, такие как змеи и жуки, не кажутся лучше замаскированными в результате изменения пигментации; у этих видов есть другие причины изменения цвета.

Примеры индустриального меланизма

Примеров индустриального меланизма немало. Самый известный и самый распространенный – это бабочки, обитающие в промышленных городах.

Берёзовая пяденица

Берёзовая пяденица (Biston betularia)

Берёзовая пяденица (Biston betularia) замаскированная на коре дуба. Henrik_L / Getty Images

Берёзовая пяденица распространена практически по всей Европе. Первоначально это были светлые бабочки, живущие на светлых лишайниках, покрывающих деревья. Их светлый цвет эффективно маскировал их от хищников.

Во время промышленной революции угольные электростанции выделяли как диоксид серы, так и сажу. Диоксид серы уничтожил большую часть лишайников, а сажа затемнила светлые деревья и камни. Светлые берёзовые пяденицы ярко выделялись на потемневшем фоне и стали легкой мишенью для птиц. Между тем бабочки темного цвета жили дольше и размножались; фактически, более темные берёзовые пяденицы были на 30% более приспособленными по сравнению со светлой пяденицей. К 1895 году более 90% пядениц были темного цвета. (1, 2)

Со временем новые законы об охране окружающей среды Великобритании и США радикально снизили выбросы сажи и диоксида серы. Почти все берёзовые пяденицы в Пенсильвании и Мичигане были темными в 1959 году, но к 2001 году только 6% были темными. Они отреагировали на более чистый воздух, более светлые поверхности и более здоровые светлые лишайники. (3)

Морские змеи

Полосатая морская змея

Полосатая морская змея. Джеймс Р. Д. Скотт / Getty Images

Морские змеи с черепаховой головой (Emydocephalus annulatus) обитают в южной части Тихого океана, где они изначально носили полосы светлого и темного цвета. Однако некоторые популяции этих змей почти черные. Исследователи были заинтригованы различиями в окраске и работали вместе, чтобы лучше понять, почему и как произошли изменения. (4)

Исследователи собрали сотни морских змей на промышленных и непромышленных объектах Новой Зеландии и Австралии. Они также собрали отслоившиеся змеиные шкуры. После тестирования они обнаружили, что:

  • черная кожа чаще встречалась у змей, обитающих в промышленных районах;
  • черная кожа содержала такие элементы, как цинк и мышьяк, которые используются в промышленности
  • полосатые змеи чаще встречались в более чистых районах
  • более темные полосы полосатых змей содержали больше цинка и мышьяка, чем более светлые полосы
  • змеи темного цвета с большей вероятностью будут терять шкуру

В отличие от берёзовой пяденицы, морские змеи не получают никаких адаптивных преимуществ в результате изменения окраски. Так почему же происходит это изменение? Более темные змеи чаще сбрасывают кожу – это может означать, что они чаще избавляются от загрязняющих веществ. Эта гипотеза проверена, но еще не доказана.

Двухточечная коровка

Черная божья коровка с двумя пятнами на ивовом листе

Черная божья коровка с двумя пятнами на ивовом листе. Яна Бойко / Getty Images

Двухточечные коровки были двух цветов: красные с черными пятнами и черные с красными пятнами. Однако со временем исследователи обнаружили, что большинство из них имеют красный цвет с черными пятнами. Это кажется адаптивным преимуществом; красных жуков легче увидеть, и они выглядят менее аппетитно для хищников из-за своего цвета, что снижает вероятность того, что они будут съедены. (5)

В отличие от берёзовой пяденицы и морских змей, двухточечные коровки, похоже, не реагируют напрямую на промышленное загрязнение. В районе исследования (в Норвегии) наблюдается постоянное потепление, и исследователи считают, что божьи коровки, скорее всего, реагируют на изменение климата. (5)

Читайте также: